首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temperature effect on total anaerobic and aerobic bacterial growth in pig slurry was studied using low level batch aeration treatments. Five bioreactors were built using Plexiglas tubes to perform five temperature treatments (5 degrees C, 10 degrees C, 15 degrees C, 20 degrees C, and 25 degrees C). An airflow rate of 0.129 L/min/L manure was used to aerate manure contained in all reactors. Data showed that temperature had a profound impact on the aerobic counts in pig slurry during the aeration process. When the temperature increased from 15 degrees C to 25 degrees C, the average oxidation-reduction potential decreased from +40 mV to -60 mV, accompanied by a 75% reduction of aerobic bacteria in the manure. At 25 degrees C, the anaerobic counts were consistently higher than aerobic counts for most of days. A quadratic relationship was observed between the aerobic counts and the oxidation-reduction potential with a correlation coefficient of 0.8374. To reduce odor generation potential, the oxidation-reduction potential in the manure should be maintained at +35 mV or higher.  相似文献   

2.
The aim of this experimental study was to evaluate the influence of anaerobic digestion and storage on indicator microorganisms in swine and dairy excreta. Samples were collected every 90 days for 15 months at eight farms, four pig, and four dairy farms, four of them having a biogas plant. Moreover, to evaluate storage effects on samples, 20 l of manure and slurry taken at each farm (digested manure only in farms with a biogas plant) were stored in a controlled climatic chamber at 18 °C, for 6 months. The bacterial load and the chemical-physical characteristics of excreta were evaluated at each sampling time, stored slurry, and manure were sampled and analyzed every 2 months. A high variability of the concentration of bacteria in the different excreta types was observed during the experiment, mainly depending on the type and time of treatment. No sample revealed either the presence of Escherichia coli O157:H7 or of Salmonella, usually linked to the temporary rearing of infected animals in facilities. Anaerobic digestion and storage affected in a significant way the reduction of indicator bacteria like lactobacilli, coliforms, and streptococci. Anaerobic digestion lowered coliforms in pig slurry (? 2.80 log, P < 0.05), streptococci in dairy manure (? 2.44 log, P < 0.001) and in pig slurry (? 1.43 log, P < 0.05), and lactobacilli in pig slurry (? 3.03 log, P < 0.05). Storage lowered coliforms and the other indicators counts, in particular in fresh wastes, while clostridia did not show a reduction in concentration.  相似文献   

3.
Metal oxides have great potential for controlling the fate and transport of viruses in the subsurface and water-treatment systems. The processes, however, are subject to solution chemistry. In this study, a number of column experiments were conducted to examine the effects of solution pH and anions (carbonate and phosphate) on attachment, transport, and inactivation of two bacteriophages (phiX174 and MS-2) in goethite-coated sand medium. Removal of both viruses on goethite-coated sand increased as solution pH decreased from 9.3 to 7.5, due mostly to virus inactivation. MS-2, a relatively hydrophobic virus with a lower isoelectric point (3.9), was more sensitive to the change of solution pH than phiX174, a relatively hydrophilic virus with a higher isoelectric point (6.6), in terms of their attachment and inactivation on goethite. About 90% of the MS-2 particles removed by goethite (accounting for 81% of the total input) were inactivated at pH 7.5, whereas all of the removed MS-2 particles (accounting for 10% of the total input) still remained infectious at pH 9.3. In comparison, approximately 74% of the goethite-bound phiX174 particles (accounting for 95% of the total input) lost their infectivity at pH 7.5, in contrast to a complete recovery at pH 9.3 (accounting for 65% of the total input) when the columns were eluted using a beef extract solution (pH 9.5). Presence of phosphate (20 mM H(2)PO(4)(-)) in input solution reduced virus attachment and appeared to protect the viruses from being inactivated during transport; this effect was more significant on MS-2 than on phiX174. Specifically, approximately 29% of the phiX174 particles and approximately 49% of MS-2 particles injected into the column were removed during transport. Mass recovery data showed that no phiX174 was inactivated in the presence of phosphate, whereas about 38% of the MS-2 particles attached on goethite lost their infectivity. Conversely, presence of carbonate on goethite increased virus attachment and inactivation due to contribution of additional attachment sites from protonated surface groups of the carbonate ions that were adsorbed on goethite. About 70% of the total input viruses (both phiX174 and MS-2) were removed during transport, of which 35% phiX174 and 85% MS-2 were eventually inactivated.  相似文献   

4.
This study was conducted to investigate the effects of temperature and time on the mechanisms of phosphorus removal in swine manure during aeration. Removal of soluble orthophosphates significantly increased with aeration time and temperature. Successive significant ortho-P removals were observed between days one and nine but no significant additional removals were recorded thereafter. Removals were significantly higher at temperatures of 20 and 25 degrees C than at temperatures of 5, 10, and 15 degrees C and ranged between 22.9 to 31.0%. Insoluble inorganic phosphorus also changed significantly with aeration time and temperature and with a similar trend as soluble orthophosphates. The pH of the manure explained 92 and 87% of the content of insoluble inorganic phosphorus at lower temperatures (5, 10, 15 degrees C) and at higher temperatures (20, and 25 degrees C), respectively. Organic phosphorus and aerobes growth patterns were similar to that of soluble orthophosphates removal. The rapid growth of aerobes was most probably the principal factor behind a rapid soluble ortho-P removal above 15 degrees C. The contribution of inorganic phosphates to the removal of soluble orthophosphates was approximately 61% while that due to organic P was approximately 35%. Precipitation was found to be the principal mechanism governing removal of soluble ortho-P in swine manure during aeration treatments.  相似文献   

5.
Water can be removed from pig slurry by evaporation, through the application of wasted heat from a power plant or from other processes. Apart from obtaining a concentrate with an obviously higher nutrient concentration than the original slurry, another objective of water removal is to obtain water as condensate, which could be reused. The objective of this work was to study the vacuum evaporation of pig slurry liquid fraction and to evaluate condensate composition as a function of both pH (4, 5, and 6) and pig slurry type (fresh slurry and anaerobically digested slurry). Batch experiments showed that condensate characteristics, total ammonia nitrogen (NH3-N), volatile fatty acids (VFA), and chemical oxygen demand were strongly dependent on initial slurry pH. In addition to producing part of the required thermal energy, previous anaerobic digestion presented several other clear advantages. The consumption of VFA and other volatile organic compounds during anaerobic digestion reduced the volatilization of organic matter in the evaporation treatment and, consequently, provided a higher quality condensate.  相似文献   

6.
The impact of different redox mediators on colour removal of azo dye model compounds and textile wastewater by thermophilic anaerobic granular sludge (55 degrees C) was investigated in batch assays. Additionally, a comparative study between mesophilic (30 degrees C) and thermophilic (55 degrees C) colour removal was performed with textile wastewater, either in the presence or absence of a redox mediator. The present work clearly evidences the advantage of colour removal at 55 degrees C compared with 30 degrees C when dealing with azo coloured wastewaters. The impact of the redox mediators anthraquinone-2,6-disulfonate (AQDS), anthraquinone-2-sulfonate (AQS) and riboflavin was evident with all dyes, increasing decolourisation rates up to 8-fold compared with the mediator-free incubations. The generation of the hydroquinone form AH2QDS, i.e. the reduced form of AQDS, was extremely accelerated at 55 degrees C compared with 30 degrees C. Furthermore, no lag-phase was observed at 55 degrees C. Based on the present results we postulate that the production/transfer of reducing equivalents was the process rate-limiting step, which was accelerated by the temperature increase. It is conclusively stated that 55 degrees C is a more effective temperature for azo dye reduction than 30 degrees C, which on the one hand can be attributed to the faster production/transfer of reducing equivalents, but also to the decrease in activation energy requirements.  相似文献   

7.
The aim of this study was to examine the fate of the organothiophosphorus pesticide methidathion during anaerobic digestion of biological waste. Three reactor experiments were conducted under various conditions of temperature, pH and retention time. The influence of pH and temperature as well as the partitioning between solid and aqueous phase were studied in batch experiments. The mesophilic (25, 35 degrees C) reactor experiments showed a decline to about 10% of the maximum methidathion concentration within 30-80 d. In the thermophilic (55 degrees C) reactor experiment, methidathion disappeared within 20 d. The batch experiments showed an abiotic hydrolysis of methidathion over the experiment period of 4 d, accelerated by alkaline conditions (pH 10.5 and 12.8) and high temperatures (55 degrees C). The hydrolysis was also noticeable at a neutral pH, while methidathion was most stable at weakly acid pH values. Methidathion bonded strongly to the biological waste, and the amount released into the water phase was below the maximum aqueous solubility. About 10% of methidathion remained non-extractable. High concentrations of dissolved organic carbon and yeast extract as a model substance for disintegrated cells further reduced the content of methidathion in the water phase, possibly caused by co-sorption to the solid organic matter.  相似文献   

8.
Amendment of a soil slurry with low concentrations of a cyclodextrin, hydroxypropyl-beta-cyclodextrin (HPCD), (0.05-0.5 g l(-1)) increased the phenanthrene mineralization rate of a microbial consortium by 25% under Fe(III)-reducing conditions. Although a higher concentration (5.0 g l(-1)) resulted in a faster initial rate of mineralization, mineralization ceased after 25 days with maximum mineralization 17% lower than the control (no HPCD). At lower HPCD concentrations, mineralization was still taking place at day 76. Although pH should affect Fe(III) solubility, mineralization rates at pH 6.0 and 8.0 were comparable. Decreasing the temperature reduced the extent and rate of mineralization, but mineralization rates at 10 degrees C were still 60% of that obtained at 30 degrees C.  相似文献   

9.
The goal of this research was to demonstrate the ability to achieve Class A pathogen standards in nonthermophilic acid digesters. It was proposed that the key mechanism responsible for fecal coliform inactivation was the presence of un-ionized volatile fatty acids. Lab-scale acid digesters were assembled and operated in a batch mode for 5 days at mesophilic (38 degrees C) and low-mesophilic (21 degrees C) temperatures and at different solids concentrations. The key factor recognized for successful pathogen inactivation was pH, which is also the main factor driving the shift in organic acids toward the un-ionized form. Compared to conventional mesophilic acid digestion, low-mesophilic acid digestion was effective in fecal coliform inactivation because the process maintained lower pH throughout the duration of the experiment, offered continuous release of organic acids, and showed higher concentrations of organic acids in un-ionized form, including acetate, propionate, butyrate, and valerate.  相似文献   

10.
Thermophilic-anaerobic digestion in a single-stage, mixed, continuous-flow reactor is not approved in the United States as a process capable of producing Class A biosolids for land application. This study was designed to evaluate the inactivation of pathogens and indicator organisms in such a reactor followed by batch treatment in a smaller reactor. The combined process was evaluated at 53 degrees C with sludges from three different sources and at 51 and 55 degrees C with sludge from one of the sources. Feed sludge to the continuous-flow reactor was spiked with the pathogen surrogates Ascaris suum and vaccine-strain poliovirus. Feed and effluent were analyzed for these organisms and for indigenous Salmonella spp., fecal coliforms, Clostridium perfringens spores, and somatic and male-specific coliphages. No viable Ascaris eggs were observed in the effluent from the continuous reactor at 53 or 55 degrees C, with greater than 2-log removals across the digester in all cases. Approximately 2-log removal was observed at 51 degrees C, but all samples of effluent biosolids contained at least one viable Ascaris egg at 51 degrees C. No viable poliovirus was found in the digester effluent at any of the operating conditions, and viable Salmonella spp. were measured in the digester effluent in only one sample throughout the study. The ability of the continuous reactor to remove fecal coliforms to below the Class A monitoring limit depended on the concentration in the feed sludge. There was no significant removal of Clostridium perfringens across the continuous reactor under any condition, and there also was limited removal of somatic coliphages. The removal of male-specific coliphages across the continuous reactor appeared to be related to temperature. Overall, at least one of the Class A pathogen criteria or the fecal coliform limit was exceeded in at least one sample in the continuous-reactor effluent at each temperature. Over the range of temperatures evaluated, the maximum time required to meet the Class A criteria by batch treatment of the continuous-reactor effluent was 1 hour for Ascaris suum and Salmonella spp. and 2 hours for fecal coliforms.  相似文献   

11.
In order to make regulations that safeguard food and the environment, an understanding of the fate oftransgenes from genetically modified (GM) plants is of crucial importance. A compost experiment including mature transgenic corn plants and seeds of event Bt 176 (Zea mays L.) was conducted to trace the fate of the transgene cryIA(b) during the period of composting. In bin 1, shredded corn plants including seeds were composted above a layer of cow manure and samples from the corn layer were collected at intervals during a 12-month period. The samples were tested for the transgene persistence and microbial counts and also the compost was monitored for temperature. In bin 2, piles of corn seeds, surrounded by sheep manure and straw, were composted for 12 months. A method combining nested polymerase chain reaction (PCR) and southern hybridization was developed for detection of the transgene in compost. The detection sensitivity was 200 copies of the transgene per gram of dry composted corn material. Composting commenced on day 0, and the transgene was detected in specimens from bin 1 on days 0 and 7 but not on day 14 or thereafter. The transgene in corn seeds was not detectable after 12 months of composting in bin 2. Temperatures in both bins rose to about 50 degrees C within 2 weeks and remained above that temperature for about 3 months, even when the ambient temperature dropped below -20 degrees C. Extracts from compost were inoculated onto culture plates and then were incubated at 23 to 55 degrees C. Within the first 2 weeks of composting in bin 1, the counts of bacteria incubated at 55 degrees C increased from 3.5 to 7.5 log10, whereas those incubated at 23 degrees C remained at about 7.5 log10. The counts of fungi incubated at 45 degrees C increased slightly from 2.5 to 3.1 log10, but those incubated at 23 degrees C decreased from 6.3 to 3.0 log10. The rapid degradation of the transgene during composting of Bt corn plants suggested that the composting process could be used for safe disposal of transgenic plant wastes.  相似文献   

12.
With the aim to evaluate the effect of temperature, 4-chloro-3-methyl phenol (CMP) degradation by Fenton's reagent was investigated at 25 and 70 degrees C under the following initial conditions: [CMP]0 = 10 mM, [Fe2+]0 = 0.5 mM; ([H2O2]0/[CMP]0) = 80, pH0 = 3. The results indicated that CMP degradation was strongly influenced by temperature. In fact, the maximum TOC removal, achieved after ca. 24h, was by far greater at 70 degrees C (85%) than at 25 degrees C (36%). The same happened for organic chlorine (TOX) conversion into inorganic chloride, i.e. 100%, after 3 h at 70 degrees C, and 87%, after 27 h at 25 degrees C. As the recorded trends of CMP removal and chloride formation were basically the same, hydroxy substitution (ipso-substitution) was hypothesised as one likely mechanism of CMP degradation. The higher level of mineralization recorded at 70 degrees C was ascribed to: (i) a greater *OH concentration; (ii) a consequently greater extent of CMP oxidation to organic acids; (iii) a higher decarboxylation rate of such acids. An interesting consequence of such extended organic acids decarboxylation was a pH increase up to 8 that, in turn, caused, in the treated mixture, the decomposition of excess H2O2 as well as the precipitation of iron ions. These two latter outcomes are technologically important considering that usually, before discharging Fenton treated wastewater, specific polishing steps are required just to remove iron ions, decompose excess hydrogen peroxide and neutralise the pH.  相似文献   

13.
From field studies conducted by Tulane University (New Orleans, Louisiana), efficiency of advanced alkaline disinfection in closed systems was found to depend on ammonia concentration, pH, exposure time, temperature, total solids content, pretreatment storage time, and mixing effectiveness. In this study of a closed alkaline system, an additional pathogen stressor pressure was tested. The effect of the alkaline dosing has been assessed for dewatered raw and aerobically and anaerobically digested municipal sludge cake that produce un-ionized ammonia at concentrations of 0.05 to 2% on a dry-weight basis. Inactivation of Ascaris suum eggs increased from 50 to 99% as the temperature was increased from 40 to 55 degrees C, thus achieving Class A levels. The systems studied were compared with an alkaline process operated under open conditions, which limited the concentrations of ammonia available because of Henry's Law. Under a closed pressurized system, the effect of un-ionized ammonia was greatly increased, and the resulting time required for inactivation was reduced from hours or days to minutes. In the next few years, it is expected that alkaline disinfection of biosolids will be optimized in relation to the factors stated above, at much lower doses of the alkaline agents. The closed-system alkaline processes that will be developed will be more energy-efficient, cost-effective, and have full control of potential odorous emissions.  相似文献   

14.
Odor emission from livestock production systems is a major nuisance in many rural areas. This study aimed at determining the major airborne chemical compounds responsible for the unpleasant odor perceived in swine facilities during slurry handling, and at proposing predictive models of odor concentration (OC) based on the concentrations of specific odorants in the air. A multivariate data analysis strategy involving principal components analysis and multiple linear regressions was implemented to analyze the relationships between concentration of 35 gases (measured by GC/MS or gas detection tubes), and the overall OC perceived by sensory analysis. The study compiled data on the concentration of odor and odorants, measured in the headspace of 24 unstored and stored slurry samples collected from three different types of production units on 8 commercial swine farms. Among all the measured constituents, OC was found to have the highest correlation with the sulfur containing compounds (i.e. hydrogen sulfide, dimethylsulfide, dimethyldisulfide, dimethyltrisulfide). The concentration of hydrogen sulfide accounted for 68% of the variation in OC above the stirred slurry samples. The highest concentrations of volatile organic compounds were observed for phenols and indoles, which made a significant contribution to the overall OC when the slurry was fresh. The contribution of ammonia to the OC was only significant in the absence of hydrogen sulfide. The precision of predictive models of OC based on the concentration of specific odorants in the air was satisfactory (R2 between 0.66 and 0.89). Hence, this study suggests that monitoring of specific odor compounds released from agitated swine slurry can be used to predict the concentration of odor perceived close to the source (e.g. at storage units), allowing the assessment of odor nuisance potentials.  相似文献   

15.
Penetration of viruses through soils is governed by the processes of transport, reversible adsorption, accumulation and inactivation. Until now, it was difficult to decouple the latter two processes and accurately predict viral fate. The present work describes a novel method-tracer studies with a mixture of native and fluorescent-dyed bacteriophages-that facilitates parallel quantification of the two processes. When the native phages are experiencing both accumulation and inactivation, the labeled ones are inactivated already and therefore can only be accumulated. Thus the effect of inactivation is applicable to native bacteriophages only and depletion of phage concentration due to inactivation can be elucidated from a total phage balance. The novel approach is exemplified by batch and column studies of the effects of temperature, pH, and saturation, on inactivation of MS2 bacteriophage. A three-parameter model accounting for inactivation, reversible adsorption (i.e., retardation), and accumulation is implemented.  相似文献   

16.
The quality of rural life can be affected by offensive odors released from animal buildings and storage units. The objectives of this study were to compare the concentrations of odor and odorants above different types of stirred swine slurry to analyze the relationships between concentrations of odor (and odorants) and physicochemical characteristics of the slurry (i.e. pH, temperature, dry matter, volatile solids, and concentration of 22 chemical compounds); and to propose predictive models for the odor concentration (OC) based on these physicochemical characteristics (solely and in combination with concentrations of specific odorants in the air above the slurries). The study comprised data on concentrations of odor and odorants in the air above slurry samples (fresh and/or stored) collected from production units with farrowing sows, finishing swines, or weaning pigs at eight swine operations (N = 48). OC measured in the air above stirred swine slurry samples were not significantly different among production types or storage times. The physicochemical characteristics of the slurries were not useful for predicting OC or concentrations of hydrogen sulfide (or organic sulfides) above the slurry, but were related to concentrations of other emitted gases such as phenols and indoles (r2 = 0.65–0.79, p <0.05), ammonia (r2 = 0.86, p < 0.05) and carboxylic acids (r2 = 0.23–0.59, p <0.05). There was good precision of predictive models of OC based on selected slurry characteristics (i.e. pH, dry matter, nitrogen content, sulfur content or concentrations of individual aromatic compounds and carboxylic acids) together with concentrations of specific odorants in the air (e.g. hydrogen sulfide) (r2 between 0.70 and 0.92). This study suggests that predictive models could be useful for evaluating odor nuisance potentials of swine slurry during handling.  相似文献   

17.
There is increasing interest in the United States in producing biosolids from municipal wastewater treatment that meet the criteria for Class A designation established by the U.S. Environmental Protection Agency. Class A biosolids are intended to be free of pathogens and also must meet requirements for reduction of the vector-attraction potential associated with untreated sludge. High-temperature processes are considered to produce Class A biosolids if the combination of operating temperature and treatment time exceeds minimum criteria, but this option is not applicable to mixed, continuous-flow reactors. Such reactors, or any combination of reactors that does not meet the holding time requirement at a specific temperature, must be demonstrated to inactivate pathogens to levels consistent with the Class A criteria. This study was designed to evaluate pathogen inactivation by thermophilic anaerobic digestion in a mixed, continuous-flow reactor followed by batch or plug-flow treatment. In this first of a two-part series, we describe the performance of a continuous-flow laboratory reactor with respect to physical and chemical operating parameters; microbial inactivation in the combined continuous-flow and batch treatment system is described in the second part. Sludges from three different sources were treated at 53 degrees C, while sludge from one of the sources was also treated at 55 and 51 degrees C. Relatively short hydraulic retention times (four to six days) were used to represent a conservative operating condition with respect to pathogen inactivation. Treatment of a fermented primary sludge led to an average volatile-solids (VS) destruction efficiency of 45%, while VS destruction for the other two sources was near or below 38%, the Class A criterion for vector attraction reduction. Consistent with other studies on thermophilic anaerobic digestion of sludges at short residence times, effluent concentrations of volatile fatty acids (VFAs) were relatively high. Also consistent with other studies, the most abundant VFA in the effluent was propionate. Gas production ranged from 0.3 to 0.5 m3/kg VS fed and from 0.8 to 1.3 m3/kg VS destroyed.  相似文献   

18.
Anaerobic digestion of corn ethanol thin stillage was tested at thermophilic temperature (55 degrees C) with two completely stirred tank reactors. The thin stillage wastestream was organically concentrated with 100 g/L total chemical oxygen demand and 60 g/L volatiles solids and a low pH of approximately 4.0. Steady-state was achieved at 30-, 20-, and 15-day hydraulic retention times (HRTs) and digester failure at a 12-day HRT. Significant reduction of volatile solids was achieved, with a maximum reduction (89.8%) at the 20-day HRT. Methane yield ranged from 0.6 to 0.7 L methane/g volatile solids removed during steady-state operation. Effluent volatile fatty acids below 200 mg/L as acetic acid were achieved at 20- and 30-day HRTs. Ultrasonic pretreatment was used for one digester, although no significant improvement was observed. Ethanol plant natural gas consumption could be reduced 43 to 59% with the methane produced, while saving an estimated $7 to $17 million ($10 million likely) for a facility producing 360 million L ethanol/y.  相似文献   

19.
The anaerobic activities in swine slurry storage and treatment generate biogas containing gaseous ammonia component which is a chemical agent that can cause adverse environmental impacts when released to the atmosphere. The aim of this pilot plant study was to remove ammonia from biogas generated in a covered lagoon, using a sulfuric acid wet scrubber. The data showed that, on average, the biogas contained 43.7 ppm of ammonia and its concentration was found to be exponentially related to the air temperature inside the lagoon. When the air temperature rose to 35°C and the biogas ammonia concentration reached 90 ppm, the mass transfer of ammonia/ammonium from the deeper liquid body to the interface between the air and liquid became a limiting factor. The biogas velocity was critical in affecting ammonia removal efficiency of the wet scrubber. A biogas flow velocity of 8 to 12 mm s?1 was recommended to achieve a removal efficiency of greater than 60%. Stepwise regression revealed that the biogas velocity and air temperature, not the inlet ammonia concentration in biogas, affected the ammonia removal efficiency. Overall, when 73 g L?1 (or 0.75 M) sulfuric acid solution was used as the scrubber solution, removal efficiencies varied from 0% to 100% with an average of 55% over a 40‐d measurement period. Mass balance calculation based on ammonium–nitrogen concentration in final scrubber liquid showed that about 21.3 g of ammonia was collected from a total volume of 1169 m3 of biogas, while the scrubber solution should still maintain its ammonia absorbing ability until its concentration reaches up to 1 M. These results showed promising use of sulfuric acid wet scrubber for ammonia removal in the digester biogas.  相似文献   

20.
Huwe J  Hakk H  Lorentzsen M 《Chemosphere》2007,67(2):259-266
Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-beta-d-glucoside) produced by sorghum has been studied in order to assess its fate in soil. The log K(ow) of dhurrin was -1.18+/-0.08 (22 degrees C). Hydrolysis was a first-order reaction with respect to dhurrin and hydroxyl ion concentrations. Half lives ranged from 1.2h (pH 8.6; 25 degrees C) to 530d (pH 4; 25 degrees C). The activation energy of hydrolysis was 112+9kJ. At pH 5.8 and room temperature, addition of humic acids (50gl(-1)) increased the rate of hydrolysis tenfold, while addition of kaolinite or goethite (100-250gl(-1)) both decreased the rate considerably. No significant sorption to soil components could be observed. The degradation rates of dhurrin in top and subsoils of Oxisols, Ultisols, Alfisols and Mollisols were studied at 22 degrees C (25mgl(-1), soil:liquid 1:1 (w:V), pH 3.8-8.1). Half-lives were 0.25-2h for topsoils, and 5-288h in subsoils. Hydrolysis in solution explained up to 45% of the degradation in subsoils whereas the contribution in topsoils was less than 14%, indicating the importance of enzymatic degradation processes. The highest risk of dhurrin leaching will take place when the soil is a low activity acid shallow soil with low content of clay minerals, iron oxides and humic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号