首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biogeochemical processes were identified which improved the leachate composition in the flow direction of a landfill leachate plume (Banisveld, The Netherlands). Groundwater observation wells were placed at specific locations after delineating the leachate plume using geophysical tests to map subsurface conductivity. Redox processes were determined using the distribution of solid and soluble redox species, hydrogen concentrations, concentration of dissolved gases (N(2), Ar, and CH(4)), and stable isotopes (delta15N-NO(3), delta34S-SO(4), delta13C-CH(4), delta2H-CH(4), and delta13C of dissolved organic and inorganic carbon (DOC and DIC, respectively)). The combined application of these techniques improved the redox interpretation considerably. Dissolved organic carbon (DOC) decreased downstream in association with increasing delta13C-DOC values confirming the occurrence of degradation. Degradation of DOC was coupled to iron reduction inside the plume, while denitrification could be an important redox process at the top fringe of the plume. Stable carbon and hydrogen isotope signatures of methane indicated that methane was formed inside the landfill and not in the plume. Total gas pressure exceeded hydrostatic pressure in the plume, and methane seems subject to degassing. Quantitative proof for DOC degradation under iron-reducing conditions could only be obtained if the geochemical processes cation exchange and precipitation of carbonate minerals (siderite and calcite) were considered and incorporated in an inverse geochemical model of the plume. Simulation of delta13C-DIC confirmed that precipitation of carbonate minerals happened.  相似文献   

2.
Variation with depth and time of organic matter (carbon, nitrogen, phosphorus), inorganic pollutant (mercury), as well as bacterial abundance and activity, were investigated for the first time in sediment profiles of different parts of Lake Geneva (Switzerland) over the last decades. The highest organic contents (about 32%), mercury concentration (27 mg kg−1), bacterial abundance (in order of 9 × 109 cell g−1 dry sediment), and bacterial activity (1299 Relative Light Units (RLU)) were found in the highly polluted sediments contaminated by the waste water treatment plant (WWTP) discharge, which deposited during the period of cultural eutrophication. Such data, which contrast with the other sampled sites from deeper and more remote parts of the lake, prove that the organic matter and nutrients released from the municipal WWTP have considerable effects on bacterial abundance and activities in freshwater sediments. In fact, the relatively unpolluted deepwater sites and the coastal polluted site show large synchronous increases in bacterial densities linked to the anoxic conditions in the 1970s (lake eutrophication caused by external nutrient input) that subsequently increased the nutrient loading fluxes. These results show that the microbial activities response to natural or human-induced changing limnological conditions (e.g., nutrient supply, oxygen availability, redox conditions) constitutes a threat to the security of water resources, which in turn poses concerns for the world’s freshwater resources in the context of global warming and the degradation of water quality (oxygen depletion in the bottom water due to reduced deep waters mixing). Moreover, the accumulation of inorganic pollutants such as high mercury (methyl-mercury) concentration may represent a significant source of toxicity for sediment dwelling organisms.  相似文献   

3.
Feng Z  Song X  Yu Z 《Chemosphere》2008,73(4):519-525
Matrix-bound phosphine (MBP) concentrations in surface sediments collected from 37 stations along the coast of China in 2006 are reported. MBP was found in all samples and the average concentration was 6.30ngkg(-1)dry weight (dw). The distribution of MBP showed certain spatial variation characteristics with high MBP concentrations at stations near to the coast. The average concentrations of MBP in the northern Yellow Sea (NYS), the southern Yellow Sea (SYS), the northern area of East China Sea (NECS), the southern area of East China Sea (SECS), and South China Sea (SCS) were 5.57+/-3.78, 3.78+/-2.81, 5.27+/-3.07, 5.48+/-4.05 and 13.52+/-7.86ngkg(-1)dw, respectively. The correlations between MBP and influencing factors, such as the sedimentary environmental characteristics (sediment type, the grain size, contents of phosphorous, organic matters and redox potential) and the aquatic environmental characteristics (temperature, salinity, depth and hydrodynamics) were studied. The results indicated that MBP was strongly influenced by various factors, such as total phosphorus (TP), organic phosphorus (OP), organic carbon (OC), the grain size and hydrodynamics, all of which not only offered reasonable interpretations for the distribution characteristics of MBP but also provided evidence to support the viewpoint that phosphine originated from OP decomposition. This work is the first comprehensive study of the distribution of MBP along the coast of China and its relationships with environmental factors which will lead to a better understanding of the phosphorus (P) biogeochemical cycle in the sea.  相似文献   

4.
Characterization of phosphorus (P) enriched solids was undertaken in the sediments below four mature septic system infiltration beds, where previous monitoring of phosphate (PO4) concentrations in the groundwater had indicated that substantial retention of P was occurring in the vadose zone. At each site, zones of sediment P enrichment were identified by an acid extraction procedure. Acid extractable sediment P concentrations were found to be 2–5 times higher than background values, within narrow discrete zones generally 10–30 cm in thickness, located within one meter of the infiltration pipes. Back scattered electron images of the P enriched zones indicated that the P solids occurred as distinct authigenic grains (up to 300 μm diameter) and as grain coatings. Microprobe analyses indicated predominantly Fe–P in calcareous sediments (Cambridge and Langton) and Al–Fe–P in non-calcareous sediments (Muskoka and Harp Lake). Porewater analyses indicated that the zones of P accumulation were closely associated with zones of redox change characterized by the conversion of effluent NH4+ to NO3. The data suggests that a substantial amount of the septic derived P is being attenuated by mineral precipitation reactions that occur rapidly after the effluent encounters subsurface sediments. Reductive dissolution of ferric (oxy)hydroxide minerals as a consequence of reducing environments near the infiltrations pipes, the release of Fe2+ in solution and subsequent conversion of Fe2+ to Fe3+ may promote the precipitation of ferric or ferrosoferric PO4 minerals. In sediments with limited buffering capacity (calcite deficient), the decrease in pH resulting from effluent oxidation may cause Al (oxy)hydroxide dissolution and subsequent precipitation of Al–P rich phases. These precipitation reactions appear to have the capacity to immobilize a substantial amount of septic derived P (25–99% at these sites) for a considerable period of time.  相似文献   

5.
J Aigars 《Chemosphere》2001,45(6-7):827-834
The redox-dependent variations in concentrations of phosphorus at two different accumulation bottom areas were investigated in the Gulf of Riga (Baltic Sea) between December 1993 and January 1995. The sediment samples from nine sampling occasions were analyzed for phosphorus forms and redox potential. The average concentrations of total phosphorus measured in 0-1 cm (65 and 89 micromol P g(-1) for sites G5 and T3, respectively) were among the highest reported from the entire Baltic Sea. Redox-dependent "mobile" phosphorus (MP) contributed more than 50% of total in the uppermost-oxidized centimeter, whereas in reduced layers it was 16-18% throughout the year. The significant differences (ANOVA, P<0.01) among months of inorganic phosphorus (IP) concentration at 0-1 cm were observed at site G5 due to temporary accumulation of mobile phosphorus mediated by redox-dependent bacteria activity during summer. On the contrary no accumulation was observed at T3 probably as a result of low redox potential caused by high accumulation rates and low bioturbation. Although the water column above sediments remained oxic throughout the investigation period, the redox potential at site T3 was close to the redoxcline (i.e., +230 mV) during summer. Further increase of eutrophication might lead to development of anoxic conditions at sediment-water interface and that in turn will result in rapid release of redox-dependent phosphorus stored in surface sediments. The availability of excess phosphorus will further enhance eutrophication in partly phosphorus-limited Gulf of Riga.  相似文献   

6.
Experiments were conducted to compare the sorption and desorption of phenanthrene and its primary degradation product, 1-hydroxy-2-naphthoic acid (HNA), in estuarine sediment, humic acid (HA) and humin. Ionic composition, ionic strength (0.4 M) and pH (7.6) were employed to mimic native estuarine pore water at the sediment-water interface. Sorption to whole sediment and organic matter (OM) fractions was significantly lower for HNA than for phenanthrene. Whereas HNA did not sorb to HA, uptake to sediment and humin was observed, suggesting that HNA does not bind directly to OM. Phenanthrene uptake was characterized by hysteretic behavior and exhibited slow desorption. In contrast, HNA initially was more readily desorbed from sediment and humic fractions, but a significant fraction was not recovered in repeated desorption runs. The lower sorption of HNA reflects its greater polarity and water solubility, but the consistent retention of a non-desorbing fraction suggests strong binding and/or chemical transformation reactions may be important. It was postulated that abiotic transformation of HNA may occur in estuarine sediments, in part due to the presence of redox active minerals (Fe(III) and Mn(IV) oxides). The presence of Fe and Mn solids in the estuarine sediment was verified by sequential extraction and studies were then conducted to investigate the transformation of HNA in the presence of synthetic goethite (alpha-FeOOH) and birnessite (delta-MnO2) as model solids. Reaction with birnessite led to transformation of all HNA in solution within 24 h and resulted in the formation of partial oxidation products (POPs). Following reaction with goethite, HNA was present in solution and POPs were observed in the weakly bound fraction. This study indicates that degradation products of polycyclic aromatic hydrocarbons (PAHs) may have distinctly different sorption affinities and reactivities toward environmental surfaces than their parent compounds.  相似文献   

7.
Methylation of mercury (Hg) to highly toxic methyl Hg (MeHg), a process known to occur when organic matter (OM) decomposition leads to anoxia, is considered a worldwide threat to aquatic ecosystems and human health. We measured temporal and spatial variations in sediment MeHg, total Hg (THg), and major elements in a freshwater lagoon in Sweden polluted with Hg-laden cellulose fibers. Fiber decomposition, confined to a narrow surface layer, resulted in loss of carbon (C), uptake of nitrogen (N), phosphorus (P), and sulfur (S), and increased MeHg levels. Notably, fiber decomposition and subsequent erosion of fiber residues will cause buried contaminants to gradually come closer to the sediment–water interface. At an adjacent site where decomposed fiber accumulated, there was a gain in C and a loss of S when MeHg increased. As evidenced by correlation patterns and vertical chemical profiles, reduced S may have fueled C-fixation and Hg methylation at this site.  相似文献   

8.
To evaluate the efficiency and the influence of thermal desorption on the soil organic compartment, contaminated soils from coking plant sites (NM and H) were compared to their counterparts treated with thermodesorption. The extractable organic matter, and the metal content and distribution with soil compartments were studied.In both thermodesorbed soils, PAH (polycyclic aromatic hydrocarbon) degradation exceeded 90%. However, the thermal desorption led not only to a volatilization of the organic compounds but also to the condensation of extractable organic matter.The treatments only affected the Fe and Zn distribution within the more stable fractions, whereas the organic compound degradation did not affect their mobility and availability.  相似文献   

9.
Huang XL  Zhang JZ 《Chemosphere》2011,85(8):1227-1232
Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment.  相似文献   

10.
Fu CT  Wu SC 《Chemosphere》2006,62(11):1786-1794
To elucidate the effects of seasonal variation of precipitation on the distribution of polychlorinated biphenyls (PCBs) in estuarine sediments and benthic feeders, PCB concentrations of river surface sediments and mullet fish (Liza macrolepis) were investigated in the estuary of Er-Jen River near former PCB contamination sites before and after each wet season from 2002 to 2004. Analyses of grain size distribution and organic matter revealed that the pre-existing surface sediments were covered by and mixed with the soil particulates brought by surface runoff after each wet season. Obvious increment of PCB content and significantly elevated fraction (p < 0.005) of light PCBs of the river mouth’s sediments after each wet season indicated that the invading particles were rich in unweathered PCBs. PCBs previously buried in the surface soil of heavily contaminated sites were flushed into this estuary through surface runoff. The precipitation altered the PCB patterns in sediment organic matter, the dietary source of mullet, and consequently changed that of mullets accordingly, which all possessed significant greater fraction of light PCBs. In this study, it was demonstrated that seasonal summer precipitation affected the distribution of PCBs on surface sediments and the mullets of this estuary. PCB residuals retained in this region still pose potential threats to biota resided here.  相似文献   

11.
Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L−1 and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 μg L−1) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity.  相似文献   

12.
The objectives of this study are to examine the phosphorus release in aerobic sludge digestion and to better understand its governing mechanisms. In this study, phosphorus release was examined using the secondary sludge from both conventional and biological nutrient removal processes. The experiments were carried out at room temperature (22 +/- 2 degrees C), with or without automatic control of pH (4.5 to 7.8), and under three aeration schemes: fully aerobic (dissolved oxygen [DO] at 3 to 4 mg/L), low DO (0.2 to 0.8 mg/L), and cyclic (with alternate on/off aeration). The released phosphorus concentrations were 20 to 80 mg/L for the conventional sludge and 60 to 130 mg/L for the biophosphorus sludge. Higher phosphorus release also occurred at low pH (<6.0). As for the effect of DO, fully aerobic digestion caused higher phosphorus release than the low-DO and cyclic operations. For better understanding, the solid phosphorus in sludge was conceptually categorized into three forms: inorganic phosphorus precipitates, organic cellular phosphorus, and polyphosphate (poly-P) in polyphosphate-accumulating organisms. Dissolution of inorganic phosphorus precipitates is controlled by physical and chemical conditions, with pH being the most important in this study. Lowering the pH to 4 to 6 clearly promoted the release of inorganic phosphorus. Polyphosphate hydrolysis, on the other hand, was found to be regulated biologically (sensitive to occurrence of anaerobic conditions) and was insignificant in the glutaraldehyde-fixed sludge. Phosphorus release from organic phosphorus should correlate with the volatile solid (VS) digestion, which lyses the cells and frees the phosphorus covalently bonded with the organic matters. The amounts of phosphorus released per unit VS digested (deltaP/deltaVS) were therefore calculated for experiments with long periods of constant pH (to minimize interferences from dissolution/precipitation of inorganic phosphorus). The results suggested that some poly-P was hydrolyzed and released accompanying the aerobic VS digestion, but at rates far lower than those under anaerobic conditions.  相似文献   

13.
Sediments contaminated by various sources of mercury (Hg) were studied at 8 sites in Sweden covering wide ranges of climate, salinity, and sediment types. At all sites, biota (plankton, sediment living organisms, and fish) showed enhanced concentrations of Hg relative to corresponding organisms at nearby reference sites. The key process determining the risk at these sites is the net transformation of inorganic Hg to the highly toxic and bioavailable methylmercury (MeHg). Accordingly, Hg concentrations in Perca fluviatilis were more strongly correlated to MeHg (p < 0.05) than to inorganic Hg concentrations in the sediments. At all sites, except one, concentrations of inorganic Hg (2-55 microg g(-1)) in sediments were significantly, positively correlated to the concentration of MeHg (4-90 ng g(-1)). The MeHg/Hg ratio (which is assumed to reflect the net production of MeHg normalized to the Hg concentration) varied widely among sites. The highest MeHg/Hg ratios were encountered in loose-fiber sediments situated in southern freshwaters, and the lowest ratios were found in brackish-water sediments and firm, minerogenic sediments at the northernmost freshwater site. This pattern may be explained by an increased MeHg production by methylating bacteria with increasing temperature, availability of energy-rich organic matter (which is correlated with primary production), and availability of neutral Hg sulfides in the sediment pore waters. These factors therefore need to be considered when the risk associated with Hg-contaminated sediments is assessed.  相似文献   

14.
Within the framework of toxicity testing using formulated sediment, a conditioning treatment prior to toxic contamination has been examined. This preliminary step enables the bacterial colonisation of the sediment, the initiation of organic matter degradation, and the establishment of stable biological and physico-chemical conditions. The treatment involved in keeping the formulated sediment under water in conditions similar to that chosen for toxicity tests. The behaviour of a formulated sediment was compared with a natural sediment. The monitoring of physico-chemical and biological parameters of sediment and water column was carried out over a 30-day incubation in two laboratories. The parameters of pH and redox, dissolved organic carbon (DOC), NH4 and NO2, total organic carbon (TOC) were measured. The bacterial community was characterised by the determination of bacterial density, in total bacteria number or colony forming units (CFU), several exoenzymatic activities (P-glucosidase, xylosidase, leucine-amino-peptidase phosphatase and sulfatase activities), and three gas productions (CO2, N2O and CH4). The same experiment was carried out with a natural sediment. A 10- to 15-day conditioning allowed a physico-chemical stabilisation and corresponded to kinetic changes in hydrolysis activities. As compared to data of the natural sediment, the biological activity of the formulated sediment showed a different dynamic with lower activity levels. For both sediments, an important decrease of activities levels was observed after 15 days because of a substrate limitation. The work showed that a preliminary conditioning treatment of a formulated sediment provides the stabilisation of parameters that can affect toxicant bioavailability. Additional research is needed to determine the real influence of conditioning on the bioavailability of contaminants. The possible advisability of organic matter input, to maintain the sediment bacterial activity, has to be studied.  相似文献   

15.
This field study was conducted to explore the spatial and seasonal changes in total phosphorus and fraction distribution in relation to land uses. Water samples were collected biweekly at four sampling locations, which represented different potential phosphorus sources along the Upper Peruque Creek in Eastern Missouri. Total phosphorus concentrations of > 0.8 mg/L appeared sporadically at site 2, downstream of a small community, with an average of 0.82 +/- 0.14 mg/L in fall. Particulate phosphorus accounted for approximately 80% of total phosphorus at all sampling sites, except for site 2, where approximately 50 to 75% of dissolved phosphorus was often observed. Approximately 71 and 85% of total phosphorus in the sediment was in the form of iron (III) phosphate at the headwaters and downstream sites, respectively; 29 and 15% was in the form of phytic acid at the two sites. Land uses affect the total phosphorus concentration and alternate phosphorus fraction and speciation in the creek.  相似文献   

16.
合肥市南淝河不同排口表层沉积物磷形态分布特征   总被引:4,自引:0,他引:4  
对合肥市南淝河不同排口处表层沉积物进行了采样,并采用修正后的标准测试程序SMT和钼锑抗紫外分光光度法测定了其中的总磷(TP)、无机磷(IP)、有机磷(OP)、铁/铝磷(Fe/Al-P)和钙磷(Ca-P),同时分析了各形态磷之间以及与沉积物有机质之间的相关性。结果表明,由于各排口附近不同的水动力条件,污染状况以及沉积环境,各排口表层沉积物总磷(TP)的质量分数存在显著差异,其值在771.23~3 065.36 mg/kg之间,除二里河排口(S15)沉积物磷以钙磷(CaP)为主外,其他采样点表层沉积物磷均以铁/铝磷(Fe/Al-P)为主,各形态P的最低值均在位于南淝河上游的S4点,TP、IP、Fe/Al-P的最大值均出现在位于望塘污水厂排口下游60 m处的S6点,潜在释放磷比例最大值在南淝河上游受农业面源污染影响较大的S3点。沉积物各形态磷之间存在着不同程度的相关性,各形态磷与有机质存在着显著的正相关。以上结果表明,南淝河沉积物磷形态分布特征受排口类型影响显著,其中城市污水处理厂尾水可能是受纳水体沉积物重要的磷源。  相似文献   

17.
The distribution of alkaline phosphatase activity (APA) and P fractions in sediment cores and the relationship between them were studied in a shallow Chinese freshwater lake (Lake Taihu). Sediment cores were collected from four sites, characterized by different degrees of eutrophication in June 2004. Sediment P was fractionated into Fe/Al-P, Ca-P, organic P (OP), inorganic P (IP) and total P (TP). The former two species made the largest contribution to the sediment P pool. Results show that trophic status and hydrological conditions have great impact on the APA of the sediments. The order of the APA in sediments was conjectured to be: macrophyte dominated lake>transitional lake>algal dominated lake. APA profiles follow a similar downcore decreasing trend. There was a positive relationship between the APA and the TP, IP. The multiple linear regression equation of the APA and P fractions is: APA=-97+0.768TP-0.985Fe/Al-P.  相似文献   

18.
The main objective of this study was to investigate the feasibility of coagulation as a post-treatment method of anaerobically treated primary municipal wastewater. Both mesophilic and ambient (20 degrees C) temperature conditions were investigated in a laboratory-scale upflow anaerobic sludge bed (UASB) reactor. In addition, optimization of the coagulant, both in terms of type and dose, was performed. Finally, phosphorus removal by means of aluminum and iron coagulation and phosphorus and ammonia nitrogen removal by means of struvite precipitation were studied. Anaerobic treatment of primary effluent at low hydraulic retention times (less than 15 hours) resulted in mean chemical oxygen demand (COD) removals ranging from 50 to 70%, while, based on the filtered treated effluent, the mean removals increased to 65 to 80%. Alum coagulation of the UASB effluent gave suspended solids removals ranging from approximately 35 to 65%. Turbidity removal reached up to 80%. Remaining COD values after coagulation and settling were below 100 mg/L, while remaining total organic carbon (TOC) levels were below 50 mg/L. Filterable COD levels were generally below 60 mg/L, while filterable TOC levels were below 40 mg/L. All coagulants tested, including prepolymerized aluminum and iron coagulants, demonstrated similar efficiency compared with alum for the removal of suspended solids, COD, and TOC. Regarding struvite precipitation, optimal conditions for phosphorus and nitrogen removal were pH 10 and molar ratio of magnesium: ammonia-nitrogen: phosphate-phosphorus close to the stoichiometric ratio (1:1:1). During struvite precipitation, removal of suspended solids reached 40%, while turbidity removal reached values up to 80%. The removal of COD was approximately 30 to 35%; yet, when removal of organic matter was based on the treated filterable COD, the removal increased to approximately 65%. In addition, nitrogen was removed by approximately 70%, while phosphorus removal ranged between approximately 30 and 45% on the basis of the initial phosphorus concentration. Finally, size fractionation of the organic matter (COD) showed that the various treatment methods were capable of removing different fractions of the organic matter.  相似文献   

19.
Degradation of three sulfonamides (SAs), namely sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadimethoxine (SDM) in surface water and sediments collected from Taihu Lake and Dianchi Lake, China was investigated in this study. The surface water (5–10 cm) was collected from the east region of Taihu Lake, China. Two sets of degradation experiments were conducted in 3-L glass bottles containing 2 L of fresh lake water and 100 μg/L of individual SAs aerated by bubbling air at a rate of approximately 1.2 L/min, one of which was sterilized by the addition of NaN3 (0.1 %). Sediment samples were taken from Taihu Lake and Dianchi Lake, China. For the sediment experiment, 5 g of sediment were weighed into a 50-mL glass tube, with 10 mg/kg of individual SAs. Different experimental conditions including the sediment types, sterilization, light exposure, and redox condition were also considered in the experiments. The three SAs degraded in lake water with half-lives (t 1/2) of 10.5–12.9 days, and the half-lives increased significantly to 31.9–49.8 days in the sterilized water. SMZ and SDM were degraded by abiotic processes in Taihu and Dianchi sediments, and the different experimental conditions and sediments characteristics had no significant effect on their declines. SMX, however, was mainly transformed by facultative anaerobes in Taihu and Dianchi sediments under anaerobic conditions, and the degradation rate of SMX in non-sterile sediment (t 1/2 of 9.6–16.7 days) were higher than in sterilized sediment (t 1/2 of 18.7–135.9 days). Under abiotic conditions, degradation of SMX in Dianchi sediment was faster than in Taihu sediment, probably due to the higher organic matter content and inorganic photosensitizers concentrations in Dianchi sediment. High initial SAs concentration inhibited the SAs degradation, which was likely related to the inhibition of microorganism activities by high SAs levels in sediments. Results from this study could provide information on the persistence of commonly used sulfanomides antibiotics in lake environment.  相似文献   

20.
通过对不同赤泥投加比例下河道底泥磷释放作用的研究,发现底泥中铁铝磷与钙磷的比值(Fe/Al-P∶Ca-P)、铁磷比(Fe∶TP)及有机质含量(OM)是赤泥能否应用于河道底泥磷释放控制中的决定性因素。实验结果表明,只有当河道底泥中Fe/Al-P∶Ca-P小于0.88,Fe∶TP小于16.1,且有机质含量低于1.87%时,投加适量赤泥才能起到抑制河道底泥内源磷释放的作用;反之,赤泥的投加则有可能促进底泥内源磷的释放。在实际工程应用中,推荐赤泥与底泥的接触时间不低于7d,从而使赤泥的效能发挥到最佳状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号