首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The characteristics of arsenic-contaminated groundwater and the potential risks from the groundwater were investigated. Arsenic contamination in groundwater was found in four villages (Vinh Tru, Bo De, Hoa Hau, Nhan Dao) in Ha Nam province in northern Vietnam. Since the groundwater had been used as one of the main drinking water sources in these regions, groundwater and hair samples were collected in the villages. The concentrations of arsenic in the three villages (Vinh Tru, Bo De, Hoa Hau) significantly exceeded the Vietnamese drinking water standard for arsenic (10 microg/L) with average concentrations of 348, 211, and 325 microg/L, respectively. According to the results of the arsenic speciation testing, the predominant arsenic species in the groundwater existed as arsenite [As(III)]. Elevated concentrations of iron, manganese, and ammonium were also found in the groundwater. Although more than 90% of the arsenic was removed by sand filtration systems used in this region, arsenic concentrations of most treated groundwater were still higher than the drinking water standard. A significant positive correlation was found between the arsenic concentrations in the treated groundwater and in female human hair. The risk assessment for arsenic through drinking water pathways shows both potential chronic and carcinogenic risks to the local community. More than 40% of the people consuming treated groundwater are at chronic risk for arsenic exposure.  相似文献   

2.
The biological treatment of groundwater is used primarily to remove electron donors from water sources, providing (biologically) stable drinking water, which preclude bacterial regrowth during subsequent water distribution. To the electron donors belong also the dissolved metal cations of ferrous iron and manganese, which are common contaminants found in most (anaerobic) groundwater. The removal of iron and manganese is usually accomplished by the application of chemical oxidation and filtration. However, biological oxidation has recently gained increased importance and application due to the existence of certain advantages, over the conventional physicochemical treatment. The oxidation of iron and manganese is accelerated by the presence of certain indigenous bacteria, the so-called "iron and manganese oxidizing bacteria." In the present paper, selected long-term experimental results will be presented, regarding the bioremediation of natural groundwater, containing elevated concentrations of iron and arsenic. Arsenic is considered as a primary pollutant in drinking water due to its high toxicity. Therefore, its efficient removal from natural waters intended for drinking water is considered of great importance. The application of biological processes for the oxidation and removal of dissolved iron was found to be an efficient treatment technique for the simultaneous removal of arsenic, from initial concentrations between 60 and 80 microg/l to residual (effluent) arsenic concentrations lower than the limit of 10 microg/l. The paper was focused on the removal of As(III) as the most common species in anaerobic groundwater and generally is removed less efficiently than the oxidized form of As(V). To obtain information for the mechanism of As(III) removal, X-ray photoelectron spectroscopy (XPS) analyses were applied and it was found that As(III) was partially oxidized to As(V), which enabled the high arsenic removal efficiency over a treatment period of 10 months.  相似文献   

3.
Arsenic contaminating groundwater in Bangladesh is one of the largest environmental health hazards in the world. Because of the potential risk to human health through consumption of agricultural produce grown in fields irrigated with arsenic contaminated water, we have determined the level of contamination in 100 samples of crop, vegetables and fresh water fish collected from three different regions in Bangladesh. Arsenic concentrations were determined by hydride generation atomic absorption spectrophotometry. All 11 samples of water and 18 samples of soil exceeded the expected limits of arsenic. No samples of rice grain (Oryza sativa L.) had arsenic concentrations more than the recommended limit of 1.0 mg/kg. However, rice plants, especially the roots had a significantly higher concentration of arsenic (2.4 mg/kg) compared to stem (0.73 mg/kg) and rice grains (0.14 mg/kg). Arsenic contents of vegetables varied; those exceeding the food safety limits included Kachu sak (Colocasia antiquorum) (0.09-3.99 mg/kg, n=9), potatoes (Solanum tuberisum) (0.07-1.36 mg/kg, n=5), and Kalmi sak (Ipomoea reptoms) (0.1-1.53 mg/kg, n=6). Lata fish (Ophicephalus punctatus) did not contain unacceptable levels of arsenic. These results indicate that arsenic contaminates some food items in Bangladesh. Further studies with larger samples are needed to demonstrate the extent of arsenic contamination of food in Bangladesh.  相似文献   

4.
Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7712 showed detectable arsenic concentrations that ranged between 1 and 806 μg/L. Additionally, 1436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes.  相似文献   

5.
Arsenic level of hair samples of apparently healthy Egyptian was measured by means of hydride atomic absorption spectrophotometery. It ranged between 0.04 and 1.04 mg As/kg hair, about 55% of the analysed hair samples were within the range of allowable values (0.08-0.25 mg As/kg hair), but 45% were not. There were no considerable sex-related differences (0.303 and 0.292 mg As/kg hair for males and females, respectively). Different educational levels did not influence it either, when the effect of the age had been excluded. Children and adolescents proved to be more susceptible to arsenic as their mean levels (0.353 microg/g), and were significantly higher than those in the adults (0.233 microg/g). Smoking and some dietary habits had an important role in the elevation of arsenic levels among the nonoccupational Egyptian population: 60% of smokers and 66.7% of indoor passive smokers had arsenic levels >0.25 mg As/kg hair. Arsenic levels were also dependent on the kind of smoking, as hair arsenic of the subject smoking molasses tobacco was found to be significantly higher than that of cigarette smokers (0.459 and 0.209 mg As/kg hair, respectively). The frequency of meat and fish consumption per week was also found to be positively, significantly correlated with arsenic levels. On the other hand, the frequency of consumption of fruits, fresh and cooked vegetables, milk and milk products per week beneficially influenced the arsenic level of the hair samples examined. Arsenic content of the consumed water in Egypt was 0.001 mg/l, which is below the maximum drinking water level allowed by World Health Organisation (WHO). Therefore, the arsenic content of domestic tap water hardly contributed to the arsenic exposure of the Egyptian population in the regions of the study. It is likely that exposure routes by smoking, fish and animal protein consumption are the principal cause of arsenic accumulation in the general Egyptian population.  相似文献   

6.
A review of published information on the arsenic contamination of groundwater in the Terai regions of Nepal showed that the source was mainly geogenic due to the dissolution of the arsenic-bearing minerals. Clinical observations of patients in the arsenic affected districts revealed chronic arsenic poisoning from drinking water. Half a million people inhabiting the region are believed to have been exposed to arsenic levels greater than 50 microg/L in their drinking water. Thirty-one percent of the population (3.5 million) in the region are estimated to have been exposed to arsenic levels between 10 and 50 microg/L. Iron assisted biosand filters currently distributed and in operation are a suitable alternative to mitigate the interim arsenic standard of 50 microg/L, as set by the Nepal Government. Arsenic biosand filters were also effective in removing bacteria and viruses from drinking water in laboratory and field tests. However, groundwater treatment targeting cluster communities in the Terai region is the sustainable way of mitigating the arsenic problem.  相似文献   

7.
Concentrations of arsenic and other trace elements in groundwater were examined at three villages (PT, POT and CHL) in the Kandal Province of Cambodia. Concentrations of arsenic in the groundwater ranged from 6.64 (in POT village) to 1543 microg/L (in PT village), with average and median concentrations of 552 and 353 microg/L, respectively. About 86% out of fifteen samples contained arsenic concentrations exceeding the WHO drinking water guidelines of 10 microg/L. Concentrations of arsenic (III) varied from 4 (in POT village) to 1334 microg/L (in PT village), with an average concentration of 470 microg/L. In addition, about 67%, 80% and 86% of the groundwater samples had higher concentrations for, respectively, barium, manganese and lead than the WHO drinking water guidelines. These results reveal that groundwater in Kandal Province is not only considerably contaminated with arsenic but also with barium, manganese and lead. A risk assessment study found that one sample (PT25) had a cumulative arsenic concentration (6758 mg) slightly higher than the threshold level (6750 mg) that could cause internal cancer in smelter workers with chronic exposure to arsenic from groundwater. High cumulative arsenic ingestion poses a health threat to the residents of Kandal Province.  相似文献   

8.
A study was carried out to assess the spatial distribution of arsenic in the intertidal sediments of the River Scheldt in Belgium. Sediment samples were collected from different locations along the River Scheldt up to 100 cm depth and analysed for the major physicochemical properties. The study reveals that the arsenic contents in the sediment samples vary in a wide range, from 2.3 to 140.2 mg kg(-1) dry weight. Moreover, the arsenic concentrations are generally below the background concentrations and remediation thresholds of arsenic in Flanders, Belgium. The occurrence of arsenic is found closely related to some physicochemical properties of the sediments. Arsenic has a strong positive correlation with organic matter and clay contents. On the contrary, a negative correlation exists between arsenic, sand and pH. It is recommended to develop and use organic matter control practices for lowering further accumulation of arsenic within the sediments.  相似文献   

9.
砷为广泛存在于自然界中的一种元素,在环境中表现出复杂的地球化学性质,不同形态的砷在大气、土壤及水体中的迁移和富集受许多物理化学因素的制约,并产生毒害程度不同的环境效应。总结砷的来源、其在不同环境介质中的存在状态及砷污染对生态环境的影响,提出应在了解不同介质环境中砷的赋存状态后,采用不同的治理方法有效地去除砷,以最大程度地降低砷对人体健康及生态环境造成的危害。  相似文献   

10.
A field survey was conducted in arsenic impacted and non-impacted paddies of Bangladesh to assess how arsenic levels in rice (Oryza sativa L.) grain are related to soil and shoot concentrations. Ten field sites from an arsenic contaminated tubewell irrigation region (Faridpur) were compared to 10 field sites from a non-affected region (Gazipur). Analysis of the overall data set found that both grain and shoot total arsenic concentrations were highly correlated (P<0.001) with soil arsenic. Median arsenic concentrations varied by 14, 10 and 3 fold for soil, shoot and grain respectively comparing the two regions. The reason for the sharp decline in the magnitude of difference between Gazipur and Faridpur for grain arsenic was due to an exponential decline in the grain/shoot arsenic concentration ratio with increasing shoot arsenic concentration. When the Bangladesh data were compared to EU and US soil-shoot-grain transfers, the same generic pattern could be found with the exception that arsenic was more efficiently transferred to grain from soil/shoot in the Bangladesh grown plants. This may reflect climatic or cultivar differences.  相似文献   

11.
This paper reviews the current knowledge on the toxicity, speciation and biogeochemistry of arsenic in aquatic environmental systems. The toxicity of arsenic is highly dependent on the chemical speciation. The effects of pH, Eh, adsorbing surfaces, biological mediation, organic matter, and key inorganic substances such as sulfide and phosphate combine in a complex and interwoven dynamic fashion to produce unique assemblages of arsenic species. The number of different arsenic species found in environmental samples and an understanding of the transformations between arsenic species has increased over the past few decades as a result of new and refined analytical methods. Changes in arsenic speciation and in total arsenic content of foods upon processing have suggested possible risks associated with processed and unprocessed food. Arsenic removal from water using adsorbents, chemical oxidation, photolysis and photocatalytic oxidation techniques is also reviewed.  相似文献   

12.
Toasting friends and family with realgar wines and painting children's foreheads and limbs with the leftover realgar/alcohol slurries is an important customary ritual during the Dragon Boat Festival (DBF); a Chinese national holiday and ancient feast day celebrated throughout Asia. Realgar is an arsenic sulfide mineral, and source of highly toxic inorganic arsenic. Despite the long history of realgar use during the DBF, associated risk to human health by arsenic ingestion or percutaneous adsorption is unknown. To address this urine samples were collected from a cohort of volunteers who were partaking in the DBF festivities. The total concentration of arsenic in the wine consumed was 70 mg L?1 with all the arsenic found to be inorganic. Total arsenic concentrations in adult urine reached a maximum of ca. 550 μg L?1 (mean 220.2 μg L?1) after 16 h post-ingestion of realgar wine, while face painting caused arsenic levels in children's urine to soar to 100 μg L?1 (mean 85.3 μg L?1) 40 h after the initial paint application. The average concentration of inorganic arsenic in the urine of realgar wine drinkers on average doubled 16 h after drinking, although this was not permanent and levels subsided after 28 h. As would be expected in young children, the proportions of organic arsenic in the urine remained high throughout the 88-h monitoring period. However, even when arsenic concentrations in the urine peaked at 40 h after paint application, concentrations in the urine only declined slightly thereafter, suggesting pronounced longer term dermal accumulation and penetration of arsenic. Drinking wines blended with realgar or using realgar based paints on children does result in the significant absorption of arsenic and therefore presents a potentially serious and currently unquantified health risk.  相似文献   

13.
ObjectivesThe aim of this study was to evaluate the massive efforts to lower water arsenic concentrations in Bangladesh.MethodsIn our large mother–child cohort in rural Matlab, we measured the arsenic concentrations (and other elements) in drinking water and evaluated the actual exposure (urinary arsenic), from early gestation to 10 years of age (n = 1017).ResultsMedian drinking water arsenic decreased from 23 (2002–2003) to < 2 μg/L (2013), and the fraction of wells exceeding the national standard (50 μg/L) decreased from 58 to 27%. Still, some children had higher water arsenic at 10 years than earlier. Installation of deeper wells (> 50 m) explained much of the lower water arsenic concentrations, but increased the manganese concentrations. The highest manganese concentrations (~ 900 μg/L) appeared in 50–100 m wells. Low arsenic and manganese concentrations (17% of the children) occurred mainly in > 100 m wells. The decrease in urinary arsenic concentrations over time was less apparent, from 82 to 58 μg/L, indicating remaining sources of exposure, probably through food (mean 133 μg/kg in rice).ConclusionDespite decreased water arsenic concentrations in rural Bangladesh, the children still have elevated exposure, largely from food. Considering the known risks of severe health effects in children, additional mitigation strategies are needed.  相似文献   

14.
Arsenic geochemistry and health   总被引:19,自引:0,他引:19  
Arsenic occurs naturally in the earth's crust and is widely distributed in the environment. Natural mineralization and activities of microorganisms enhance arsenic mobilization in the environment but human intervention has exacerbated arsenic contamination. Although arsenic is useful for industrial, agricultural, medicinal and other purposes, it exerts a toxic effect in a variety of organisms, including humans. Arsenic exposure may not only affect and disable organs of the body, especially the skin, but may also interfere with the proper functioning of the immune system. This paper, therefore, generally highlights the toxic effects of arsenic as well as its mobilization in the natural environment and possible controls. It also briefly attempts to outline the impact of arsenic on the immune system, whose alteration could lead to viral/bacterial infections.  相似文献   

15.
The Rio Grande located along the US-Mexico border is affected by anthropogenic activities along its geographical course. Runoff and wind deposition of smelting residues may contribute to the pollution of the Rio Grande in the El Paso-Ciudad Juarez area. Few studies have addressed the presence or impacts of heavy metals or arsenic in this ecosystem. This study reports a survey of heavy metals (Cr, Cu, Cd, Ni, Pb, and Zn) and arsenic (As) in water and sediments of the Rio Grande collected from seven sites in the El Paso-Juarez region. Since water quality influences metal content in water, physical (temperature, flow and conductivity), and chemical (pH, dissolved oxygen, nitrates, alkalinity, and water hardness) parameters were measured at each site. Arsenic and heavy metal levels were determined using Inductively Couple Plasma (ICP) emission spectroscopy following EPA procedures. Zinc and lead were found as both total and dissolved metals in most of the samples, with concentrations of total recoverable metals reaching up to 105 and 70 microg/l, respectively. Most metals were found in sediment samples collected from four of seven sites. The highest Cu concentration (35 mg/l) was found at the American Dam site. Concentrations of metals found through this survey will be used as a reference for future studies in monitoring arsenic, heavy metals, and their impacts in the Rio Grande.  相似文献   

16.
Triclosan (TCS) is an antimicrobial agent widely used in many personal care products. This study investigated the occurrence of TCS in effluents, biosolids and surface waters, and its fate in wastewater treatment plants (WWTPs). The aqueous concentrations of TCS in nineteen effluents from Australian WWTPs ranged from 23 ng/L to 434 ng/L with a median concentration of 108 ng/L, while its concentrations in nineteen biosolids ranged from 0.09 mg/kg to 16.79 mg/kg on dry weight basis with a median concentration of 2.32 mg/kg. The removal rates for TCS in five selected WWTPs were found to range between 72% and 93%. Biological degradation was believed to be the predominant removal mechanism for TCS in the WWTPs. However, adsorption onto sludge also played a significant role in the removal of TCS in the WWTPs. TCS at concentrations up to 75 ng/L was detected in surface waters (outfall, upstream, and downstream) from five rivers receiving effluent discharge from WWTPs. Preliminary risk assessment based on the worst-case scenario showed that the TCS concentrations in surface waters might lead to risks to aquatic organisms such as algae. Based on the TCS levels in the biosolids, application of biosolids on agricultural land may also cause adverse effects in the soil environment.  相似文献   

17.
大薸对水体氮磷去除效果的初步研究   总被引:4,自引:0,他引:4  
通过大薸在模拟富营养化水体中的培养试验,研究其在不同程度富营养化水体中对N、P的去除效果。结果显示:在总氮(TN)、总磷(TP)初始浓度分别为245~941 mg/L和044~153 mg/L的3种富营养化水体中,大薸均可正常生长。经过21 d的生长,大薸鲜重达16433~1934 g,干重达857~1053 g,大薸鲜重的特定生长率为044%~119%/d,大薸干重的特定生长率为046%~14%/d,大薸的分株速率为133%~362%/d。3种富营养化水体中的N、P去除量分别为6920~31860 mg和1560~6600 mg,大薸的N、P吸收量分别为3520~20821 mg和899~4837 mg,且随水体初始N、P浓度的升高而增加。大薸吸收对水体N去除的贡献率为5326%~6524%,对水体P去除的贡献率分别为5958%~7419%。由此可以看出,大薸对氮磷具有较好的去除效果,在富营养化水体中种植大薸可起到改善水质的作用  相似文献   

18.
Chemical (gas chromatography-mass spectrometry, GC-MS) and biological (E-Screen assay) analyses were used to determine the concentrations of 15 endocrine disrupting compounds (EDCs) and estrogen equivalent (EEq) in grab and passive samples from five municipal wastewater treatment plants (WWTPs) in South East Queensland, Australia. EEq concentrations derived by E-Screen assays for the grab samples were between 108-356 ng/L for the influents and < 1-14.8 ng/L for the effluents with the exception of one effluent sample which was at 67.8 ng/L EEq. The EDC concentrations and EEq values for the passive samples were several times lower than those of the grab samples: a decrease probably caused by, but not limited to biofouling, low flow rate, biodegradation and temperature which can progressively reduce the uptake of compounds into the sampler. At this stage, grab sampling is the most reliable method for field monitoring; nevertheless, passive sampler is a useful sampling tool but the method requires more research to ensure that the information obtained can be interpreted appropriately. Although alkylphenols and phthalates were detected at higher concentrations in the wastewater samples as compared to natural hormones, the environmental risk may be negligible as their estrogenic potencies are several orders of magnitude lower than that of the natural estrogens. In most wastewater samples, the natural estrogens contributed to 60% or more of the EEq value. Removal efficacy of most estrogenic and xenoestrogenic compounds from the conventional activated sludge or biological nutrient removal (BNR) WWTPs monitored in this study was in the range of 80-> 99%. The efficiency of the WWTPs in removing estrogenic activity was > 95%. The EEqs of the E-Screen and those calculated from the results of extensive chemical analyses using the estradiol equivalency factors were comparable for most of the WWTPs samples.  相似文献   

19.
Transport pathways for arsenic and selenium: a minireview   总被引:2,自引:0,他引:2  
Arsenic and selenium are metalloids found in the environment. Arsenic is considered to pose the most significant potential threat to human health based on frequency of occurrence, toxicity and human exposure. Selenium, on the other hand, ranks only 147th in toxicity but, in contrast to arsenic, is a required micronutrient. Whether a toxin or micronutrient, their metabolism requires that cells to accumulate these metalloids. In this review we discuss the membrane proteins that transport arsenic and selenium into cells, from bacteria to humans, as well as some of the efflux proteins involved in detoxification.  相似文献   

20.
The current arsenic exposure condition, arsenicosis prevalence, urinary arsenic and MDA (malondialdehyde) concentrations in people were studied. The study area, a village in Xing Ren County in Guizhou Province, PR China, is a coal-borne arsenicosis endemic area that was identified several decades ago. The residents in Xing Ren have been using coal containing high arsenic levels all their life. Urinary arsenic levels of villagers were 192.2+/-22 microg/g creatinine (n=113) in the coal-borne endemic area (Xing Ren county) and were significantly higher than 63.6+/-5.9 microg/g creatinine (n=30) in a neighbouring control site (a village in Xing Yi county). The urinary MDA concentrations of villagers from the endemic area were also significantly higher compared to those of the control area. There was a strong correlation between age and urinary arsenic and MDA concentrations in the endemic area of Xing Ren; urinary arsenic and MDA levels decreased with age. Fifty out of 113 (44.3%) villagers in the endemic area had arsenicosis symptoms and the prevalence in villagers older than 40 y was 100% in male (92.2% overall). Urinary MDA concentration was significantly higher in people with arsenicosis symptoms in the endemic areas. Oxidative stress (urinary MDA concentration) was strongly related to arsenic exposure but not to the age and smoking habit. Higher urinary arsenic and MDA levels in younger villagers from the endemic area suggest that they are having a higher exposure to coal-borne emitted arsenic because they spend more time indoor. There is an urgent need to develop proper intervention methods in the Guizhou endemic areas in order to reduce the risk to the local communities who are still using arsenic contaminated-coal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号