首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flood inundation maps play a key role in assessment and mitigation of potential flood hazards. However, owing to high costs associated with the conventional flood mapping methods, many communities in the United States lack flood inundation maps. The objective of this study is to develop and examine an economical alternative approach to floodplain mapping using widely available soil survey geographic (SSURGO) database. In this study, floodplain maps are developed for the entire state of Indiana, and some counties in Minnesota, Wisconsin, and Washington states by identifying flood‐prone soil map units based on their attributes. For validation, the flood extents obtained from SSURGO database are compared with the extents from other floodplain maps such as the Federal Emergency Management Agency issued flood insurance rate maps (FIRMs), flood extents observed during past floods, and flood maps derived using digital elevation models. In general, SSURGO‐based floodplain maps (SFMs) are largely in agreement with other flood inundation maps. Specifically, the floodplain extents from SFMs cover 78‐95% area compared to FIRMs and observed flood extents. Thus, albeit with a slight loss in accuracy, the SSURGO approach offers an economical and fast alternative for floodplain mapping. In particular, it has potentially high utility in areas where no detailed flood studies have been conducted.  相似文献   

2.
ABSTRACT: Recognition of the flood hazard that exists on alluvial fans has seriously lagged behind the recognition of other more conventional flood hazards such as those associated with most rivers. This delay in recognition was due, until recently, to a general lack of economic investment and development in these areas and a concomitant lack of historical alluvial fan flood damage. Dramatic recent events, such as Tropical Storm Kathleen, emphasized to the Federal Insurance Administration (FIA) the need for developing an appropriate methodology to identify flood hazard areas on alluvial fans. This paper presents the methodology now employed by FIA as well as flood plain management considerations that could reduce future flood related damage to communities developing in these areas.  相似文献   

3.
ABSTRACT. The Spring 1973 Mississippi River flood was investigated using remotely sensed data from ERTS-1. Both manual and automatic analyses of the data indicate that ERTS-I is extremely useful as a regional tool for flood management. Quantitative estimates of area flooded were made in St. Charles County, Missouri and Arkansas. Flood hazard mapping was conducted in three study areas along the Mississippi River using pre-flood ERTS-1 imagery enlarged to 1:250,000 and 1:100,000 scale. The flood prone areas delineated on these maps correspond to areas that would be inundated by significant flooding (approximately the 100 year flood). The flood prone area boundaries were generally in agreement with flood hazard maps produced by the U. S. Army Corps of Engineers and U. S. Geological Survey although the latter are somewhat more detailed because of their larger scale. Initial results indicate that ERTS-1 digital mapping of flood prone areas can be performed at 1:62,500 which is comparable to some conventional flood hazard map scales.  相似文献   

4.
Metropolitan areas located in arid and semiarid environments are rapidly expanding onto the piedmonts of nearby desert mountains. Hazards to urban development are posed by the complex fluvial systems that characterize these environments, yet no generally accepted methodology exists for evaluating flood hazards on desert piedmonts. An approach to flood hazard assessment is presented that involves the hydrogeomorphic analysis of land surfaces. Five flood hazard zones are identified for an area in central Arizona by analyzing the spatial variation of landforms and their associated fluvial processes. The methodology is applicable to similar environments elsewhere because it is based on the identification of forms and processes common to arid regions. The information provided by the analysis can form the basis for a comprehensive flood hazard management plan.  相似文献   

5.
Floodplain delineation may inform protection of wetland systems under local, state, or federal laws. Nationally available Federal Emergency Management Agency Flood Insurance Rate Maps (FIRMs, “100‐year floodplain” maps) focus on urban areas and higher‐order river systems, limiting utility at large scales. Few other national‐scale floodplain data are available. We acquired FIRMs for a large watershed and compared FIRMs to floodplain and integrated wetland area mapping methods based on (1) geospatial distance, (2) geomorphic setting, and (3) soil characteristics. We used observed flooding events (OFEs) with recurrence intervals of 25‐50 to >100 years to assess floodplain estimate accuracy. FIRMs accurately reflected floodplain areas based on OFEs and covered 32% of river length, whereas soil‐based mapping was not as accurate as FIRMs but characterized floodplain areas over approximately 65% of stream length. Geomorphic approaches included more areas than indicated by OFE, whereas geospatial approaches tended to cover less area. Overall, soil‐based methods have the highest utility in determining floodplains and their integrated wetland areas at large scales due to the use of nationally available data and flexibility for regional application. These findings will improve floodplain and integrated wetland system extent assessment for better management at local, state, and national scales.  相似文献   

6.
ABSTRACT: The project described in this report was undertaken by the Louisiana State Planning Office to establish the extent of backwater flooding in Louisiana in April 1975. Band 7 Landsat imagery, enlarged to a scale of 1:250,000 was used to visually identify flooded areas. Inundated areas were delineated on overlays keyed to 1:250,000 U.S. Geological Survey topographic quadrangles. Tabular data identifying acres flooded, according to land use type, were derived by merging the flood map overlays with computerized 1972 land use data. Approximately 1.12 million acres of the state were inundated by flood waters. The total acreage and land use types affected by flooding were determined within 72 hours from the time the flood areas were imaged. Flooded maps were prepared for 26 parishes. Field observations were made by Louisiana Cooperative Extension Service county agents in order to determine the accuracy of parish flood maps and flood acreage figures by land use type. Results indicated that this was a fast, accurate, and relatively inexpensive method of compiling flood data for disaster planning and postflood analysis.  相似文献   

7.
ABSTRACT: This paper presents a new methodology to calculate economic losses from hypothetical, extreme flood events, such as the Probable Maximum Flood. The methodology uses economic data compiled from already-available secondary sources, such as U.S. Census data on magnetic tapes, utilizing microcomputer and other electronic media. Estimates of land elevations are obtained from topographic maps, and flood elevations axe estimated using, for example, a dam breach and flood routing (DAMBRK) model (Fread, 1984). The calculations are performed at a disaggregate spatial scale, by various land use and industrial classification categories. The basic areal units are city blocks (for urbanized areas), enumeration districts, and Census tracts. Depth-damage functions, which provide an estimate of damages as a proportion of the existing value of the structure, are estimated statistically. Computer software (called DAMAGE) is used to combine the economic, flood elevation, and depth-damage information to compute economic losses for different possible flood stages and for different inflow events. Two case studies are presented as illustrations of the method.  相似文献   

8.
Abstract: After a century of evolving flood policies, there has been a steady increase in flood losses, which has partly been driven by development in flood prone areas. National flood policy was revised in 1994 to focus on limiting and reducing the amount of development inside the 100‐year floodplain, with the goal of decreasing flood losses, which can be measured and quantified in terms of population and property value inside the 100‐year floodplain. Monitoring changes in these measurable indicators can inform where and how effective national floodplain management strategies have been. National flood policies are restricted to the spatial extent of the 100‐year floodplain, thus there are no development regulations to protect against flooding adjacent to this boundary. No consistent monitoring has been undertaken to examine the effect of flood policy on development immediately outside the 100‐year floodplain. We developed a standardized methodology, which leveraged national data to quantify changes in population and building tax value (exposure). We applied this approach to counties in North Carolina to assess (1) temporal changes, before and after the 1994 policy and (2) spatial changes, inside and adjacent to the 100‐year floodplain. Temporal results indicate the Piedmont and Mountain Region had limited success at reducing exposure within the 100‐year floodplain, while the Coastal Plain successfully reduced exposure. Spatially, there was a significant increase in exposure immediately outside the 100‐year floodplain throughout North Carolina. The lack of consistent monitoring has resulted in the continuation of this unintended consequence, which could be a significant driver of increased flood losses as any flood even slightly higher than the 100‐year floodplain will have a disproportionately large impact since development is outside the legal boundary of national flood policy.  相似文献   

9.
Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS‐based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large‐scale event for which we use medium resolution input layer (10 m) and a small‐scale event for which we use a high‐resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.  相似文献   

10.
ABSTRACT: The persistence of development and settlement in flood plains and continued damages from flooding, raises the question of how property owners respond to flood plain location and whether property values reflect this response. Existing studies disagree on the significance of flood hazard for property values. This study evaluates the effect of flood plain location on assessed valuation and home value in three towns in New Jersey. A t-test on mean assessed value and value of owner-occupied units at block levels showed no statistically significant variation for flood prone and nonflood prone lands. Possible explanations are that homeowners do not know or perceive the risk of living in flood plains, assessors do not incorporate flooding into assessment criteria, and the National Flood Insurance Program subsidies and broadened financial markets may equalize property values.  相似文献   

11.
ABSTRACT: Many practices followed uniformly nationwide in the federal flood control and floodplain management programs are inappropriate or even counter productive in the arid Utah climate. An analysis of the 130-year Utah flood history, the structural and nonstructural flood programs in the state, and local perceptions obtained by field visits and interviews in 35 Utah communities revealed a number of such inefficiencies. Since flood flows dissipate quickly when they emerge from mountain watersheds onto desert lowlands, risks are concentrated near the apex of alluvial fans, include hazard from mud as well as water flow, and are compounded by canal interception of flood waters. Because of variation in the area flooded from one event to the next, floodplain mapping has tended to show risks too high in mapped areas and too low outside. Traditional channelization carries floods downstream past where they would dissipate naturally. The federal government needs to become more active in developing better flood hazard delineation and structural and nonstructural designs for arid areas. State government can help by providing a forum where communities can exchange experiences, reviewing structural designs prepared by local government, and providing local communities with technical expertise for dealing with federal agencies.  相似文献   

12.
Flooding and the susceptibility to flood damage inherent in all land uses constitute the flood hazard. Resolution of the hazard while properly recognizing flood plain environmental attributes within the context of overall community or area needs is the essence of comprehensive flood plain management. The traditional approach–flood control–has effected modification of only the flooding component of the hazard whether it be coastal or inland. Until recently Federal programs have overlooked the possibilities of modifying the susceptibility component, for which the major responsibility lies with non-Federal interests. Beginning with actions in the TVA area, the latter is now being strongly encouraged through Federal programs and actions notably the Flood Plain Management Services and Survey Programs of the Corps of Engineers, those stemming from Executive Order 11296, and those required for eligibility under the National Flood Insurance Act of 1968. Flood plain management objectives must be stated in planning, e.g., economic efficiency, reduction in threat to life and health, environmental improvement, and regional development, to permit proper evaluation of the optional means and approaches for achieving them.  相似文献   

13.
ABSTRACT: By integrating literature from flood hazard research and urban economics a theoretical structure is developed to explain changes in residential land values following flood events. The negative aspects of the flood hazard are shown to be capitalized in the value of the property. It is further suggested that land values (i.e., capitalization) will vary both spatially across the floodplain and temporally depending on the frequency, severity and spatial characteristics of the flood event. Previous work in this area has not addressed the capitalization process explicitly and has not specifically examined the ability of the land market to recover. This may account for the contradictory findings in the published literature.  相似文献   

14.
The increase in damage due to natural disasters is directly related to the number of people who live and work in hazardous areas and continuously accumulate assets. Therefore, land use planning authorities have to manage effectively the establishment and development of settlements in flood-prone areas in order to avoid the further increase of vulnerable assets. Germany faced major destruction during the flood in August 2002 in the Elbe and Danube catchments, and many changes have been suggested in the existing German water and planning regulations. This article presents some findings of a “Lessons Learned” study that was carried out in the aftermath of the flood and discusses the following topics: 1) the establishment of comprehensive hazard maps and flood protection concepts, 2) the harmonization of regulations of flood protection at the federal level, 3) the communication of the flood hazard and awareness strategies, and 4) how damage potential can be minimized through measures of area precaution such as resettlement and risk-adapted land use. Although attempts towards a coordinated and harmonized creation of flood hazard maps and concepts have been made, there is still no uniform strategy at all planning levels and for all states (Lae nder) of the Federal Republic of Germany. The development and communication of possible mitigation strategies for “unthinkable extreme events” beyond the common safety level of a 100-year flood are needed. In order to establish a sustainable and integrated flood risk management, interdisciplinary and catchment-based approaches are needed.  相似文献   

15.
ABSTRACT: The accurate and reliable determination of floodplains, floodway boundaries, and flood water elevations are integral requirements of Flood Insurance Studies. These studies are intended to be used for determining the flood insurance rates. Therefore, the accuracy of the water surface profiles are important. To ensure the high degree of accuracy, the HUD Flood Insurance Administration has developed standards which must be met in the analysis of water surface profiles. A somewhat less accurate study is required for the preparation of Flood Emergency Plans. As part of the flood insurance studies of eight locations in the State of North Dakota, various flood hazard and floodplain information reports were reviewed. The hydrologic and hydraulic analyses, especially the computation of the 100-year water surface profiles, were completed using both simplified and complex hydraulic computation methods. Significant differences were found (1 to 3 feet) between the profiles computed by the SCS simplified method and those computed by HEC-2 computer program. However, the floodplain boundaries determined by both methods were found to be similar. Approximate methods are recommended for rapid determination of the floodplain, floodway boundaries, and inundation area mapping, while sophisticated computer programs (HEC-2) are recommended to be used for developing areas where the 100-year flood elevation has a significant impact on the cost of land development.  相似文献   

16.
ABSTRACT: Literature on the flood hazard/residential land market relationship is full of contradictory findings, many of which are counter-intuitive to the belief that flooding has a negative impact on house prices. This research advances a conceptual framework through which these relationships might be re-examined. Based on the expected utility model, the theoretical framework integrates the economic notion of capitalization with spatial and temporal characteristics of the flood hazard. Four communities with different flood regimes are used to test the effect of flooding on the residential real estate market. Results show that, (1) there is an identifiable relationship between characteristics of the flood hazard and changes in house values; (2) the length of the recovery period is dependent on characteristics and expectations of flooding, attributes of the real estate market, and availability of capital to fuel recovery; and (3) dynamics of the urban market and spatial extent of the flood hazard influence these relationships. Further research is now necessary to examine these findings under different spatial, temporal, hydrological, and socio-economic conditions.  相似文献   

17.
ABSTRACT: In this paper a numerical model for flood propagation in urban areas is proposed. It has been applied to evaluate flooding hydraulic characteristics in terms of potential flood elevations, depths, and inundated areas. Furthermore, the algorithm efficiency and the consequent reduced computation time allow the use of the hydraulic model as a part of a more complex system for civil protection actions, planning, and management. During flood events, the transportation network plays a main role both in rescuing people when they are more vulnerable and in moving people and materials from and toward affected areas. The reduced efficiency of this transportation network is evaluated based on a least‐flood‐risk path‐finding algorithm. The results of a case study concerning the northern part of the city of Rome, show that the numerical model for unsteady flow in open channel networks achieves the proposed aims. It has proven to be able to describe the flood hydraulic characteristics and to be suitable for real‐time flood emergency management in urban areas.  相似文献   

18.
National Oceanic and Atmospheric Administration's National Weather Service (NWS) flash flood warnings are issued by Weather Forecast Offices and are underpinned by information from the Flash Flood Guidance (FFG) system operated by the River Forecast Centers (RFCs). This study focuses on the quantitative evaluation and limitations of the FFG system using reported flash flood cases in 2010 and 2011. The flash flood reports were obtained from the NWS Storm Event database for the Arkansas‐Red Basin RFC (ABRFC). The current FFG system at the ABRFC provides gridded flash flood guidance (GFFG) system using the NWS Hydrology Laboratory‐Research Distributed Hydrologic Model to translate the upper zone soil moisture to estimates of Soil Conservation Service Curve Numbers. Comparisons of the GFFG and real‐time Multisensor Precipitation Estimator‐derived Quantitative Precipitation Estimate for the same duration and location were used to analyze the success of the system. Typically, the six‐hour duration was characterized by higher probability of detection values than the three‐hour duration, which highlights the difficulty of hydrologic process estimation for shorter time scales. The current system does not take into account physical characteristics such as land use, including irrigated agricultural farm and urban areas, hence, overly dry soil moisture estimates over these areas can lower the success rate of the GFFG product.  相似文献   

19.
Major coastal flooding events over the last decade have led decision makers in the United States to favor structural engineering solutions as a means to protect vulnerable coastal communities from the adverse impacts of future storms. While a resistance‐based approach to flood mitigation involving large‐scale construction works may be a central component of a regional flood risk reduction strategy, it is equally important to consider the role of land use and land cover (LULC) patterns in protecting communities from floods. To date, little observational research has been conducted to quantify the effects of various LULC configurations on the amount of property damage occurring across coastal regions over time. In response, we statistically examine the impacts of LULC on observed flood damage across 2,692 watersheds bordering the Gulf of Mexico. Specifically, we analyze statistical linear regression models to isolate the influence of multiple LULC categories on over 372,000 insured flood losses claimed under the National Flood Insurance Program per year from 2001 to 2008. Results indicate that percent increase in palustrine wetlands is the equivalent to, on average, a $13,975 reduction in insured flood losses per year, per watershed. These and other results provide important insights to policy makers on how protecting specific types of LULC can help reduce adverse impacts to local communities.  相似文献   

20.
This article presents the methods and results of visual interpretation of NOAA AVHRR imagery for mapping flood areas in Bangladesh. Color composites of channels 1 and 2 for 18 August 1987 and 10, 15, and 24 September 1988 were interpreted visually for delineating flood boundaries. On such imagery flood areas appear in dark tones and are separated from land (light tones) owing to the absorption of near infrared by water and its reflectance by land and non-waterbodies. Visual interpretation was aided by the use of ground information, such as physiographic and river maps, previous flood maps, newspaper reports, and other published and unpublished documents on the 1987 and 1988 floods. Interpreted flood areas on selected images ranged from 31% to 43% of the total area of Bangladesh. Visual interpretation overestimated flood areas by 5%–10%, compared to the digitally analyzed data. The main advantage of visual analysis lies in the cost effectiveness of AVHRR photographic products, which make them more accessible than the digital image analysis of computer-compatible tapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号