首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三氯生在碳纳米管上的吸附   总被引:3,自引:2,他引:1  
胡翔  赵娜  魏杰 《环境工程学报》2009,3(8):1462-1464
药品和个人护理用品(PPCPs)已成为一个引起广泛关注的新的环境问题。采用碳纳米管(CNTs)对水溶液中的三氯生进行吸附处理,考察了碳纳米管粒径及用量、温度、pH、振荡时间等因素对三氯生去除率的影响。研究结果表明,碳纳米管能快速吸附水中的三氯生,粒径较小的碳纳米管可获得较高的三氯生去除率;低温有利于吸附反应的进行;pH在6.5~7.0时,三氯生的去除率可达97%。三氯生在碳纳米管上的吸附可以很好地用Langmuir和Freundlich吸附等温方程进行描述。  相似文献   

2.
厌氧产氢ASBR对氮的脱除   总被引:2,自引:0,他引:2  
祝静  袁林江  魏勃 《环境工程学报》2014,8(4):1273-1277
在厌氧序批式人工有机污水生物产氢反应器(ASBR)中发现氮"丢失"现象,并对此产氢系统发生脱氮作用的机理和主要影响因素进行了研究。结果表明,在以葡萄糖为发酵底物的厌氧产氢系统中,微生物分别以铵和硫酸盐为电子供体和电子受体发生了硫酸盐型厌氧氨氧化;进水有机物负荷和pH主要通过影响不同种微生物的活性而影响脱氮性能,氨氮和硫酸盐的浓度直接与氮素去除率有关。在最大产氢能力为16 m3/(m3·d)、氢气体积百分比为65%的生物制氢系统中,最大脱氮效率约为64%。产氢效率与氮脱除率呈现负相关关系。研究表明,在控制条件下,可以实现高有机物废水厌氧脱除氨态氮,为生活污水直接厌氧脱氮开辟一条新途径。  相似文献   

3.
尹航  胡翔 《环境工程学报》2013,7(2):608-612
微生物燃料电池在处理废水的同时可以产生电能,有希望同时解决废水再利用和能量再产生的问题。采用单室无膜空气阴极微生物燃料电池,处理模拟生活污水,探讨MFC处理模拟废水的效果。研究了以碳布(MFC1)、碳布负载碳纳米管(MFC2)、碳纳米管(MFC3)和泡沫镍(MFC4)作为4种不同的阳极材料,对MFC系统的启动、内阻和产电特性进行比较。结果表明,4种不同阳极MFC在水力停留时间24 h的条件下,对COD有很好的去除作用,其中MFC2的COD去除效率最大,为91.4%。在不影响MFC系统处理废水效果的前提下,实验得到4种阳极MFC系统中MFC2具有最小的内阻,为173.7Ω;并且其功率密度也大于其他3种MFC,达到401.2 mW/m2。  相似文献   

4.
碳基材料对污水厂尾水和太湖水体中CDOM的吸附特征   总被引:1,自引:0,他引:1  
采用颗粒活性炭、粉末活性炭和碳纳米管3种典型碳基材料来吸附太湖水和污水厂尾水中的有机物,考察碳基材料对水中有色可溶性有机物(CDOM)的吸附特征。基于荧光光谱和平行因子分析(PARAFAC),提取出C1(腐殖酸类)、C2(色氨酸类蛋白)和C3(酪氨酸类蛋白)3个PARAFAC荧光组分。粉末活性炭和碳纳米管具有发达的中孔孔隙结构,对水中大分子有机物具有较高的吸附容量,颗粒活性炭微孔结构发达反而不利于吸附水中腐殖酸等大分子有机物。粉末活性炭对水中有机物具有最高的吸附速率,对太湖水中荧光组分C1、C2和C3的吸附速率分别为0.278、0.358和0.359min-1,颗粒活性炭的吸附速率明显低于粉末活性炭和碳纳米管。研究结果揭示了水中复杂混合有机物的吸附特征,为吸附工艺参数的优化提供技术参考。  相似文献   

5.
采用H2SO4-HNO3混酸对多壁碳纳米管(MWCNTs)进行氧化处理,并详细研究了氧化后碳纳米管(OCNTs)对水中汞(Ⅱ)的吸附性能。结果表明,经氧化后的OCNTs对汞(Ⅱ)的最大吸附容量从氧化前的16.7 mg/g增至147 mg/g;溶液pH值对OCNTs的吸附性能有显著影响,最佳吸附pH值范围为3~6,较低或...  相似文献   

6.
碳纳米管由于其独特的物理化学性质在有机分离膜技术中引起了极大关注。综述了碳纳米管的形貌、物理化学性质、碳纳米管的功能化及与其他材料的复合对有机分离膜性能改进的研究进展。碳纳米管形貌产生的快速传输效应有效提高了有机分离膜的过滤通量;碳纳米管良好的物理化学性质为改进有机分离膜的分离性能、机械稳定性、抗污染能力均提供了有利条件;碳纳米管的功能化更是为解决有机分离膜通量和选择性的权衡效应问题发挥了重要作用;碳纳米管和其他材料的复合进一步拓宽了碳纳米管对有机分离膜性能改进的范围。  相似文献   

7.
采用强酸表面氧化法对碳纳米管表面进行处理,促进碳纳米管在水中的分散,制备碳纳米管溶胶,用于去除水中低浓度持久性有机污染物异狄氏剂.扫描电镜观测表明,氧化后的碳纳米管团簇被分散开,碳纳米管被打断.碳纳米管溶胶对异狄氏剂的吸附性能研究表明,制备的碳纳米管溶胶对异狄氏剂吸附去除效能优于原始碳纳米管,优化的pH值为6,此时碳纳米管溶胶对18μg/L异狄氏剂去除率达到100%;水中的腐殖质提高了吸附去除效能;碳纳米管溶胶对异狄氏剂的吸附等温线呈线性,碳纳米管溶胶的吸附性能优于原始碳纳米管吸附性能.吸附去除后,溶胶态碳纳米管以0.05 mmol/L氯化铝从水中沉淀分离.  相似文献   

8.
低温等离子体再生法是一种低温、快速和高效的吸附材料再生新方法。运用管式单介质阻挡放电反应器产生的低温等离子体对吸附了苯的ZSM-5分子筛进行再生处理,分析了湿度对低温等离子体放电状态的影响,研究了湿度对材料吸附性能及低温等离子体再生效果的影响,考察了特定湿度条件下低温等离子体再生吸附材料的可重复性。实验结果表明,当相对湿度小于60%时,吸附材料的脱附效率和再生效率随湿度增加而升高;当相对湿度由60%升高至80%时,吸附材料的脱附效率和再生效率开始下降;但通过对比不同湿度条件再生后吸附材料的饱和吸附容量可以发现,湿度越低,再生后吸附材料的饱和吸附容量越大;在相对湿度30%的条件下,重复再生效率稳定,且重复再生后吸附材料仍有较好的吸附效果。  相似文献   

9.
研究人员一直在寻找一种能够吸收二氧化碳的理想物质,以安装在烟窗中,阻止温室气体进入大气中。目前用于吸收二氧化碳的材料多是海绵,但它们价昂、耗能多、吸收能力不强、稳定性也不高。最近,美国佐治亚州理工学院的化学家发明了一种吸收能力强、作用时间长的新型固态吸收剂。这种材料的主要成分是多孔硅,表面附有胺类物质,是一种富含氮元素的化合物。胺具有碱性,可以中和酸性的二氧化碳气体,如果将这种材料加热,还可将二氧化碳释放出来,以便进一步储存。  相似文献   

10.
以实际垃圾渗滤液作为厌氧发酵基质,研究了初始pH为7.0、中温(37℃)条件下的发酵产氢、产甲烷特性。结果表明,利用垃圾渗滤液作为基质发酵产氢或甲烷时,氢气的最大累积产量为24.33mL(以每克COD计,下同),甲烷的最大累积产量为91.59mL,产氢发酵在初期存在明显的迟滞期,但是产甲烷发酵不存在明显迟滞期;产氢发酵的液相末端产物中含有大量的挥发性有机酸和乙醇,乙醇、乙酸、丁酸质量浓度分别为487.23、1 175.21、1 225.78mg/L,相比产氢发酵,产甲烷发酵的液相末端产物中乙醇、乙酸、丁酸质量浓度均较低,分别为256.38、106.73、107.42mg/L;产甲烷发酵的最终pH是6.32,接近中性,而产氢发酵的最终pH为4.21,呈明显酸性;产甲烷发酵对COD的去除率(41.78%)高于产氢发酵对COD的去除率(32.14%),可能是产氢发酵液相末端产物中的乙酸能被产甲烷菌利用,而被进一步降解。  相似文献   

11.
以5种典型农业废弃物(猪粪、鸡粪、秸秆、餐饮垃圾和厨余垃圾)为研究对象,采用干式厌氧发酵产氢技术,研究不同初始pH、温度对产氢潜力和代谢途径的影响。结果表明,当中温、初始pH为7.0时,餐饮垃圾产氢效果最佳,最大累积产氢量为261.96mL,最大产氢速率为15.18mL/h,氢气体积分数最大值为64.61%;当中温、初始pH为6.0时,秸秆产氢效果最好,最大累积产氢量为254.41mL,最大产氢速率为24.50mL/h,氢气体积分数最大值为65.54%。5种农业废弃物干式厌氧发酵产氢的代谢途径均以丁酸型发酵为主。  相似文献   

12.
尿液源分离技术是现阶段国际研究热点,但其收集贮存过程中的尿素水解与磷沉淀问题影响该技术的推广应用。为了考察新鲜尿液的储存变化,对稀释、酸化和稀释酸化等储存控制条件对尿液尿素水解过程中pH、氨氮和磷酸盐的影响进行了研究。结果表明:稀释储存时,尿素会发生水解,pH值升高至9.19~9.25,氨氮量会升高,磷酸盐会减少20%~36%,而稀释因子1增加到6,沉淀减少了450~650 mg。初始酸化储存时,在初始pH小于4.00条件下,尿素水解会受到控制,磷沉淀损失会减少。稀释酸化储存时,在pH小于3.00及稀释因子2或3的条件下,尿素水解会受抑制且不发生磷沉淀。  相似文献   

13.
剩余污泥中重金属的电动力学修复研究   总被引:1,自引:1,他引:0  
主要研究了电极材料和电极间距对氢析出电压和电压梯度的影响,以及电极材料、阴极液pH、修复时间对不同形态重金属去除率的影响.实验结果表明,在相同条件下,氢的析出电压和电压梯度受电极材料和电极间距的影响.阳极均为高纯石墨电极,阴极分别为高纯石墨电极、铜电极和铁电极,电极间距在32.5 cm时,高纯石墨为阴极的氢的析出电压最...  相似文献   

14.
为提高微生物电解池(MEC)利用氢发酵废水产氢速率,以丁酸为底物在微生物燃料电池(MFC)中驯化富集阳极产电微生物,采用单室双阳极MEC处理玉米秸秆的氢发酵废水,通过对关键过程参数的优化,实现氢发酵废水高效产氢。结果表明,当外加电压为0.8 V时,产氢速率和玉米秸秆氢发酵废水中COD的去除率分别达到(5.31±0.13)m~3·(m~3·d)~(-1)和(58±2)%。其中,乙酸、丁酸、丙酸、乙醇的去除率分别达到(95±2)%、(76.2±0.8)%、(93±3)%、(98±1)%。与单室单阳极MEC相比,单室双阳极MEC利用玉米秸秆氢发酵废水进行深度产氢的速率提高了1.22倍。此外,MEC生物阳极驯化方式对MEC利用玉米秸秆氢发酵废水产氢具有重要影响。与利用乙酸为底物驯化富集的生物阳极相比,以丁酸为底物驯化富集的生物阳极去除COD的能力和MEC产氢速率都有提高。  相似文献   

15.
在相同接种配比(接种污泥占餐厨垃圾的质量分数为30%)条件下,研究了4种不同来源污泥(压滤污泥、厌氧污泥、曝气污泥和河底淤泥)添加或不添加缓冲剂时对餐厨垃圾厌氧发酵产氢效果的影响.结果发现,在不添加缓冲剂时.4种污泥接种餐厨垃圾厌氧发酵平均产氢量依次为厌氧污泥>河底淤泥>压滤污泥>曝气污泥,接种厌氧污泥的餐厨垃圾平均产氢量最高,达10.11mL(以每克挥发性固体(VS)计,下同);而添加缓冲剂时.4种污泥接种餐厨垃圾厌氧发酵平均产氢量依次为厌氧污泥>曝气污泥>压滤污泥>河底淤泥,接种厌氧污泥的餐厨垃圾平均产氢量也最高,为33.72 mL,且体系pH得以缓冲.  相似文献   

16.
以流化床为反应器 ,探讨了一些主要参数如 :反应器温度 ,水蒸气 ,当量比ER以及催化剂对气体成分、氢产率和潜在氢产率的影响。实验所用催化剂为白云石和镍基催化剂。在实验条件范围内 ,氢产率为 2 2— 83g/kg生物质 (湿基 ) ,潜在氢产率为 115— 2 2 3g/kg生物质 (湿基 )。结果表明 ,较高的反应器温度 ,适当的水蒸气添加量可以有效提高氢的产出 ;白云石和镍基催化剂可使产品气中的氢含量提高 10 %以上。  相似文献   

17.
光合细菌利用沼液废水制氢的影响因素   总被引:1,自引:0,他引:1  
沼液资源化利用将是未来热点问题,首次尝试研究利用光合细菌处理沼液废水的产氢工艺条件,探讨反应预处理时间、光照度、温度、沼液的pH值和接种量因素对光合细菌产氢过程的影响。结果表明,在光照厌氧的条件下,光合细菌产氢的最佳工艺条件为:温度35℃,光照度1 000 lux,pH值9,接种量50%,反应预处理时间24 h,最大产氢量达到500mL/(200 mL沼液),对进一步研究开发光合细菌处理沼液废水和产氢有重要的参考价值。  相似文献   

18.
采用干发酵技术以餐厨垃圾为底物进行产氢实验,比较不同TS(20%、22%、24%和30%)条件下的产氢情况,修正的Gompertz模型能够较好地拟合餐厨垃圾干发酵过程中的产氢情况(R20.97),获得最佳的TS为22%。反应1.5 d后,累积产氢量出现下降,发现反应体系内存在耗氢现象,微生物群落结构显示TS 22%组优势菌属为Lactobacillus。随后,在TS含量为22%的条件下,添加氯仿对耗氢进行抑制。结果表明:添加0.05%的氯仿能够显著提高产氢量,最大累积产氢量为29.66 mL·g~(-1)(TS),是对照组的1.29倍;氯仿添加量为0.05%时,碳水化合物的降解率最高,达到43.07%;氯仿不仅会对耗氢产生抑制,同时也会抑制产氢,适宜浓度的氯仿能够提高餐厨垃圾干发酵产氢,最佳添加量为0.05%;餐厨垃圾干发酵产氢过程为丁酸型发酵,主要的液相末端发酵产物为乙酸和丁酸。  相似文献   

19.
在厌氧序批式人工有机污水生物产氢反应器(ASBR)中发现氮“丢失”现象,并对此产氢系统发生脱氮作用的机理和主要影响因素进行了研究。结果表明,在以葡萄糖为发酵底物的厌氧产氢系统中,微生物分别以铵和硫酸盐为电子供体和电子受体发生了硫酸盐型厌氧氨氧化;进水有机物负荷和pH主要通过影响不同种微生物的活性而影响脱氮性能,氨氮和硫酸盐的浓度直接与氮素去除率有关。在最大产氢能力为16m3/(m3·d)、氢气体积百分比为65%的生物制氢系统中,最大脱氮效率约为64%。产氢效率与氮脱除率呈现负相关关系。研究表明,在控制条件下,可以实现高有机物废水厌氧脱除氨态氮,为生活污水直接厌氧脱氮开辟一条新途径。  相似文献   

20.
电动力学去除剩余污泥中重金属受到多种因素的影响,其中电解电压、电极面积、电极材料等都有较大的影响,很有必要进行条件优化研究。针对存在的问题,系统的研究了电解电压、电极面积、电极材料对电动力学修复过程的影响。研究表明,影响污泥中重金属Cu和Zn去除率的因素大小顺序为:电压电极面积电极材料;采用等于或低于氢析出电压进行电动力学修复时,更有利于提高污泥中重金属去除率;增大电极面积,提高了电流强度,有利于污泥中重金属的转化、迁移,从而提高污泥中重金属去除率;研究表明,采用低于氢析出电压和惰性电极可以有效避免电极被腐蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号