首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hamelin FM  Castel M  Poggi S  Andrivon D  Mailleret L 《Ecology》2011,92(12):2159-2166
The coexistence of closely related plant parasites is widespread. Yet, understanding the ecological determinants of evolutionary divergence in plant parasites remains an issue. Niche differentiation through resource specialization has been widely researched, but it hardly explains the coexistence of parasites exploiting the same host plant. Time-partitioning has so far received less attention, although in temperate climates, parasites may specialize on either the early or the late season. Accordingly, we investigated whether seasonality can also promote phenotypic divergence. For plant parasites, seasonality generally engenders periodic host absence. To account for abrupt seasonal events, we made use of an epidemic model that combines continuous and discrete dynamics. Based on the assumption of a trade-off between in-season transmission and inter-season survival, we found through an "evolutionary invasion analysis" that evolutionary divergence of the parasite phenotype can occur. Since such a trade-off has been reported, this study provides further ecological bases for the coexistence of closely related plant parasites. Moreover, this study provides original insights into the coexistence of sibling plant pathogens which perform either a single or several infection cycles within a season (mono- and polycyclic diseases, or uni- and multivoltine life cycles).  相似文献   

2.
Grewell BJ 《Ecology》2008,89(6):1481-1488
Outbreaks of infectious agents in natural ecosystems are on the rise. Understanding host-pathogen interactions and their impact on community composition may be central to the conservation of biological diversity. Infectious agents can convey both exploitive and facilitative effects that regulate host populations and community structure. Parasitic angiosperms are highly conspicuous in many plant communities, and they provide a tractable model for understanding parasite effects in multispecies communities. I examined host identity and variation in host infectivity of a holoparasitic vine (Cuscuta salina) within a California salt marsh. In a two-year parasite removal experiment, I measured the effect of C. salina on its most frequent host, a rare hemiparasite, and the plant community. C. salina clearly suppressed the dominant host, but rare plant fitness and plant species diversity were enhanced through indirect effects. Priority effects played a role in the strength of the outcome due to the timing of life history characteristics. The differential influence of parasites on the fecundity of multiple hosts can change population dynamics, benefit rare species, and alter community structure. The continuum of negative to positive consequences of parasitic interactions deserves more attention if we are to understand community dynamics and successfully restore tidal wetlands.  相似文献   

3.
Plant responses to abiotic stress can alter their response to biotic stress. We examined changes in the activity of several defense proteins in response to powdery mildew infection of garlic mustard (Alliaria petiolata) in the greenhouse and in the field. Second, we examined the effects of water limitation on the same defense protein responses, as well as on total soluble protein and glucose concentration, plant growth, and powdery mildew disease development. Similar increases in the activity of peroxidase, chitinase, and β-1-3-glucanase were observed in leaves of plants with substantial powdery mildew disease in both greenhouse- and field-grown plants. In the greenhouse, activities of chitinase and peroxidase as well as total soluble protein and glucose concentrations generally increased with the degree of water limitation. In turn, leaf growth and powdery mildew symptom development decreased as the degree of water limitation increased. This study revealed that plant chemical responses to water limitation and powdery mildew disease can overlap to a large extent, which, in addition to changing microenvironmental conditions and other indicators of plant quality, may underlie the ability of water limitation to inhibit powdery mildew disease symptom development in this wild plant pathosystem.  相似文献   

4.
Summary We examined associations among parasite infections, secondary sexual traits and testosterone in male red-winged blackbirds sampled at the start of the breeding season. Parasites quantified included ectoparasitic lice and mites and endoparasitic blood protozoans, nematodes, trematodes and cestodes. Secondary sexual traits that we quantified included body size, epaulet size and color, song repertoire size and song switching rate, and behavioral responses to male and female models. Overall we found few significant associations between parasites and secondary sexual traits, between secondary sexual traits and testosterone, or between parasites and testosterone. In addition, most parasite taxa appeared to infect birds independently, although the low prevalence (<50%) of many of the parasites meant that our sample sizes were too small to detect weak associations. Our most promising results were obtained for ectoparasitic mites, which tended to occur on birds uninfected with other parasites, on birds with longer epaulets, and on birds with higher levels of testosterone. Epaulet length and testosterone are both probable correlates of dominance in this species. Further research will be required to determine whether there is a causal link between the immunosuppressive effects of testosterone and the mite infections, and between testosterone, epaulet length and male mating success. Correspondence to: P. Weatherhead  相似文献   

5.
Yamamura N 《Ecology》2007,88(6):1593-1599
Leaf domatia are tiny structures in leaf vein axils that are typically inhabited by predatory and fungivorous mites. A recent article reported plant domatia specifically suited for herbivorous mites, which seems paradoxical, since the plant is thus supporting a natural enemy that can harm itself. The authors claimed that domatia are created to promote herbivorous mites as "fodder" for predatory mites that attack another herbivorous mite damaging the plant, and that the relationship among the plant, the fodder mite, and the predatory mite constitute a multiway mutualism because all three species benefit from the interaction. I formulate this system using two simple mathematical models of apparent competition, which differ in how domatia are modeled, and then assess when it is advantageous for the plant to create such space for a natural enemy. As a necessary condition for mutualism, the product of reproductive efficiency and nutritious value of the fodder prey should exceed that of the pest prey. This condition is also sufficient, if the direct costs for making the structure of domatia are negligible. If there are significant costs, however, the condition is broader for predators with lower reproductive efficiency and higher mortality, and for non-fodder prey with high consumption rate and low predation rate. I suggest that creating domatia is more effective when predators are less prolific and non-fodder prey are more severe as pests. Finally, I discuss how this mathematical model can apply to a wider range of tritrophic mutualistic relationships such as those among plants, aphids, and ants.  相似文献   

6.
Habitat corridors, a common management strategy for increasing connectivity in fragmented landscapes, have experimentally validated positive influences on species movement and diversity. However, long-standing concerns that corridors could negatively impact native species by spreading antagonists, such as disease, remain largely untested. Using a large-scale, replicated experiment, we evaluated whether corridors increase the incidence of plant parasites. We found that corridor impacts varied with parasite dispersal mode. Connectivity provided by corridors increased incidence of biotically dispersed parasites (galls on Solidago odora) but not of abiotically dispersed parasites (foliar fungi on S. odora and three Lespedeza spp.). Both biotically and abiotically dispersed parasites responded to edge effects, but the direction of responses varied across species. Although our results require additional tests for generality to other species and landscapes, they suggest that, when establishing conservation corridors, managers should focus on mitigating two potential negative effects: the indirect effects of narrow corridors in creating edges and direct effects of corridors in enhancing connectivity of biotically dispersed parasites.  相似文献   

7.
Philpott SM  Pardee GL  Gonthier DJ 《Ecology》2012,93(5):992-1001
Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.  相似文献   

8.
Underwood N  Halpern SL 《Ecology》2012,93(5):1026-1035
How insect herbivores affect plant performance is of central importance to basic and applied ecology. A full understanding of herbivore effects on plant performance requires understanding interactions (if any) of herbivore effects with plant density and size because these interactions will be critical for determining how herbivores influence plant population size. However, few studies have considered these interactions, particularly over a wide enough range of densities to detect nonlinear effects. Here we ask whether plant density and herbivores influence plant performance linearly or nonlinearly, how plant density affects herbivore damage, and how herbivores alter density dependence in transitions between plant size classes. In a large field experiment, we manipulated the density of the herbaceous perennial plant Solanum carolinense and herbivore presence in a fully crossed design. We measured plant size, sexual reproduction, and damage to plants in two consecutive years, and asexual reproduction of new stems in the second year, allowing us to characterize both plant performance and rates of transition between plant size classes across years. We found nonlinear effects of plant density on damage. Damage by herbivores and plant density both influenced sexual and asexual reproduction of S. carolinense; these effects were mostly mediated via effects on plant size. Importantly, we found that herbivores altered the pattern of linear density dependence in some transition rates (including survival and asexual reproduction) between plant size classes. These results suggest that understanding the ecological or evolutionary effects of herbivores on plant populations requires consideration of plant density and plant size, because feedbacks between density, herbivores, and plant size may complicate longer-term dynamics.  相似文献   

9.
Plants engage in multiple, simultaneous interactions with other species; some (enemies) reduce and others (mutualists) enhance plant performance. Moreover, effects of different species may not be independent of one another; for example, enemies may compete, reducing their negative impact on a plant. The magnitudes of positive and negative effects, as well as the frequency of interactive effects and whether they tend to enhance or depress plant performance, have never been comprehensively assessed across the many published studies on plant-enemy and plant-mutualist interactions. We performed a meta-analysis of experiments in which two enemies, two mutualists, or an enemy and a mutualist were manipulated factorially. Specifically, we performed a factorial meta-analysis using the log response ratio. We found that the magnitude of (negative) enemy effects was greater than that of (positive) mutualist effects in isolation, but in the presence of other species, the two effects were of comparable magnitude. Hence studies evaluating single-species effects of mutualists may underestimate the true effects found in natural settings, where multiple interactions are the norm and indirect effects are possible. Enemies did not on average influence the effects on plant performance of other enemies, nor did mutualists influence the effects of mutualists. However, these averages mask significant and large, but positive or negative, interactions in individual studies. In contrast, mutualists ameliorated the negative effects of enemies in a manner that benefited plants; this overall effect was driven by interactions between pathogens and belowground mutualists (bacteria and mycorrhizal fungi). The high frequency of significant interactive effects suggests a widespread potential for diffuse rather than pairwise coevolutionary interactions between plants and their enemies and mutualists. Pollinators and mycorrhizal fungi enhanced plant performance more than did bacterial mutualists. In the greenhouse (but not the field), pathogens reduced plant performance more than did herbivores, pathogens were more damaging to herbaceous than to woody plants, and herbivores were more damaging to crop than to non-crop plants (suggesting evolutionary change in plants or herbivores following crop domestication). We discuss how observed differences in effect size might be confounded with methodological differences among studies.  相似文献   

10.
Parasite-induced alterations in host behaviour have been reported in a large number of taxa. However, some parasites are better than others to exploit the resources offered by their hosts. To date, our understanding of the extent to which some obligate parasites exploit social insect colonies is still limited. In this study, we examined parasite-mediated behavioural alterations of Polistes biglumis wasps parasitized by the obligate social parasite Polistes atrimandibularis by comparing host female-activity in parasitized and non-parasitized colonies. Host foundresses foraged more and rested less in parasitized than in non-parasitized colonies (controlling for the number of larvae in the nest, the time of day, and the day in the season). Next, we used short-term parasite removal experiments to investigate how social parasites manipulate their hosts. We found that parasitized hosts foraged more and rested less when social parasites were on the nest rather than after their removal, and we tested which kind of interactions occurred between parasites and hosts. P. atrimandibularis parasites may use mainly non-aggressive interactions (such as antennation and trophallaxis) to manipulate host activities, rather than visual, acoustic or chemical signals as other parasites do.  相似文献   

11.
沤肥浸渍液对3种黄瓜病害的防治作用   总被引:2,自引:0,他引:2  
从1992 年开始连续8 年研究马、牛和猪厩肥沤制并浸泡提取物对黄瓜病害的防治作用.盆栽试验表明,沤肥浸渍液对黄瓜霜霉病、黄瓜枯萎病、黄瓜白粉病具有良好的防治效果,对黄瓜霜霉病的防治效果可达46 .5 %67 .3 % ,对黄瓜枯萎病的防治效果可达72 .1 %92 .5 % ,对黄瓜白粉病的防治效果可达72 .3 %79 .7 % .对沤肥浸渍液的防病机理的研究表明,微生物代谢产物对病原菌孢子的抑制作用、沤肥中微生物对病原菌的拮抗作用和沤肥诱导的生理生化和组织形态方面的抗病性起着重要的作用  相似文献   

12.
Summary Contrary to the expectations of kin selection theory, intracolony relatedness in eusocial insects is often low. We examined the idea that associations of low relatedness (high genetic variability) may be advantageous because of negative frequency-dependent selection on common host phenotypes by rapidly evolving parasites and pathogens. Using the natural host-parasite system of the bumble bee Bombus terrestris and its intestinal trypanosome Crithidia bombi, we investigated the transmission properties of parasites in host groups. Within naturally infested nests and in artificially constructed groups of workers, prevalence of infestation increased with time of exposure (Table 1). The susceptibility of isolated groups of workers to the parasites to which they were exposed differed with identity and natural infestation of their nest of origin (Table 2). In addition, those workers that were related to the individual introducing an infection to their group were more likely to become infested than were unrelated workers (Table 3). Although the bumble bee workers in experimental boxes appeared to differ in behavior toward kin and non-kin, making more physical contacts with kin, we found no discernible relationship between number of physical contacts and prevalence of infestation in a group. Therefore, we conclude that differences in parasite transmission reflected interactions among different host and parasite phenotypes. This system thus demonstrates the factors necessary for negative frequency-dependent selection by parasites on common host phenotypes - variability for susceptibility and infectiousness in host and parasite populations and similarity for these traits among related individuals. If, as we show here, high genetic relatedness within groups enhances parasite transmission, kin directed altruism may increase the risk of contracting parasites and infectious diseases. Therefore, parasites and pathogens may be an important force moderating the genetic structure of social groups. Offprint requests to: J.A. Shykoff at the present address  相似文献   

13.
Brown seaweeds can serve as habitat and food for a number of mesoherbivore species, but the effect of mesoherbivore grazing on the fitness of individual seaweed plants is not well documented. Here we investigate how mechanical wounding, which mimics the grazing damage made by the herbivorous gastropod Littorina obtusata, affects the biomass change, apical growth, and individual shoot strength of the fucoid seaweed species Ascophyllum nodosum both in natural field populations and in the laboratory. We did not detect a significant effect of wounding on apical shoot growth in the laboratory, but wounding decreased the plant biomass in half of the studied A. nodosum populations in the field. Furthermore, we found that the strength of individual A. nodosum shoots was significantly lower when compared with unwounded control shoots initially after wounding. However, after 11 days incubation in the laboratory, the strength of the wounded shoots had increased almost to the level of the control shoots, although there was still a significant difference in the force required to break the shoots. These results indicate that wounding can increase the tissue loss (and thereby decrease the fitness) of A. nodosum plants in natural populations, probably through weakening of individual shoots. However, A. nodosum appears to have a mechanism to strengthen the shoots after mechanical wounding, and therefore, the timing of damage (e.g. prior to a storm) probably determines the amount of plant tissue lost through wave-induced forces.  相似文献   

14.
Seagrasses are threatened by multiple anthropogenic stressors, such as accumulating drift algae and increasing temperatures (associated with eutrophication and global warming, respectively). However, few seagrass experiments have examined whether exposure to multiple stressors causes antagonistic, additive, or synergistic effects, and this has limited our ability to predict the future health status of seagrass beds. We conducted a laboratory experiment to test whether abundance of Gracilaria comosa (3 levels; 0, 1.2, and 3.4 kg WW m−2), an algae that is resistant to wide environmental fluctuations (e.g. light, temperature, salinity, and oxygen levels), has negative effects on the small ephemeral seagrass, Halophila ovalis and whether the effects are exacerbated by high temperature (3 levels; 20, 25, and 30°C). We found an additive negative effect of the two stressors when tested simultaneously on 14 seagrass performance measures, with most data variability explained by the drift algae. For the individual plant performance measures (above- and below-ground growth and mortality, leaf area, internode distance, and root length and root volume), we found 5 additive effects, 4 synergistic effects, and 5 effects that were significant only for drift algae. We also documented a significant additive effect of drift algae and temperature on dissolved porewater sulphide (DS). A follow-up correlation analysis between DS and the 14 plant performance measures revealed significant or near-significant linear correlations on 9 of these responses (above- and below-ground growth, leaf area and weight, leaf mortality, and internode distance). In summary, we showed (a) that a stress-resistant drift algae can have strong negative effects on a small ephemeral seagrass, (b) this negative effect can increase both additively and synergistically with increasing temperature depending on performance measure, and (c) the negative effects may be mediated by a build-up of porewater DS. An implication of our findings is that resource managers aiming to preserve healthy seagrass beds in an almost certain future warmer world should increase efforts to keep drift algae populations low.  相似文献   

15.
Straub CS  Snyder WE 《Ecology》2008,89(6):1605-1615
Concern over biodiversity loss, especially at higher trophic levels, has led to a surge in studies investigating how changes in natural enemy diversity affect community and ecosystem functioning. These studies have found that increasing enemy diversity can strengthen, weaken, and not affect prey suppression, demonstrating that multi-enemy effects on prey are context-dependent. Here we ask how one factor, plant species identity, influences multi-enemy effects on prey. We focused on two plant species of agricultural importance, potato (Solanum tuberosum), and collards (Brassica oleracea L.). These species share a common herbivorous pest, the green peach aphid (Myzus persicae), but vary in structural and chemical traits that affect aphid reproductive rates and which may also influence inter-enemy interactions. In a large-scale field experiment, overall prey exploitation varied dramatically among the plant species, with enemies reducing aphid populations by approximately 94% on potatoes and approximately 62% on collards. Increasing enemy diversity similarly strengthened aphid suppression on both plants, however, and there was no evidence that plant species identity significantly altered the relationship between enemy diversity and prey suppression. Microcosm experiments suggested that, on both collards and potatoes, intraspecific competition among natural enemies exceeded interspecific competition. Enemy species showed consistent and significant differences in where they foraged on the plants, and enemies in the low-diversity treatment tended to spend less time foraging than enemies in the high-diversity treatment. These data suggest that increasing enemy diversity may strengthen aphid suppression because interspecific differences in where enemies forage on the plant allow for greater resource partitioning. Further, these functional benefits of diversity appear to be robust to changes in plant species identity.  相似文献   

16.
D. Parker  A. J. Booth 《Marine Biology》2013,160(11):2943-2950
Cymothoa borbonica prevalence in the buccal cavity of Trachinotus botla was high, with 45 % of all fish sampled being infected. Smaller fish were more susceptible to infection with no parasites found in fish over 400 mm FL. The detrimental effects of parasite infection on their hosts include basihyal (the bone commonly known as the “tongue”) damage, a loss in buccal cavity volume as a result of female parasite attachment, and a severe impact on host growth. By combining short-term dietary analysis and medium-term stable isotope analysis, there was little evidence to suggest a modification in either the diet or feeding habits of infected fish where infected and uninfected fish occupied the same trophic niche. Inhibited growth in infected fish is hypothesized to be from respiratory distress from long-term oxygen deficiency through buccal obstruction.  相似文献   

17.
Salinity levels vary spatially in coastal areas, depending on proximity to freshwater sources, and may also be slowly decreasing as a result of anthropogenic climatic changes. The impact of salinity on host–parasite interactions is potentially a key regulator of transmission processes in intertidal areas, where trematodes are extremely common parasites of invertebrates and vertebrates. We investigated experimentally the effects of long-term exposure to decreased salinity levels on output of infective stages (cercariae) and their transmission success in the trematode Philophthalmus sp. This parasite uses the snail Zeacumantus subcarinatus as intermediate host, in which it asexually produces cercariae. After leaving the snail, cercariae encyst externally on hard substrates to await accidental ingestion by shorebirds, which serve as definitive hosts. We found that at reduced salinities (25 or 30 psu), the cercarial output of the parasite was lower, the time taken by cercariae to encyst was longer, fewer cercariae successfully encysted and encysted parasites had lower long-term survival than at normal seawater salinity (35 psu). The strong effect of salinity on the replication and transmission of this parasite suggests that there may be sources and sinks of transmission to birds along coastal areas, depending on local salinity conditions. Also, unless it evolves to adapt to changing conditions, the predicted reduction in salinity as a consequence of climate change may have negative impact on the parasite’s abundance.  相似文献   

18.
Summary We describe the results of two studies of parasitic infection in the black grouse (Tetrao tetrix). The first deals with our own observations of lekking black grouse in which the parasite levels of two blood parasites, the protozoan Leucocytozoon lovati and microfilaria, probably produced by a nematode worm Splendidofilaria tuvensis, were scored. We also obtained measures of age, survival, number of copulations, body mass and length of the ornamental tail feathers (the lyre) of the lekking males. The second study analysed the data from Lund (1954) which involved eight gut parasites obtained from birds which were killed. In the first study we found higher levels of infection of Leucocytozoon in adults relative to young birds. Parasites had no effect on male survival and there was no correlation in infection between the two types of parasites. Birds infected with microfilaria had shorter tail ornaments. There was no relationship between parasitic infection and mating success. However, the data indicated that such a trend indeed may exist for Leucocytozoon and the most successful males on the leks were less often infected by Leucocytozoon than other males. Results of the second study showed a negative relationship between parasite load (a combined measure of all parasites) and both ornamental tail feather length and body mass. These observations are compatible with, but not conclusive evidence for, the hypothesis of Hamilton and Zuk (1982) on the evolution of secondary sexual characters, where females choose to mate with genetically resistant males which show their resistance by expressing larger and more showy secondary sexual characters. Alternative explanations for the observed patterns are: females avoid infected males for some immediate benefit; and/or parasite loads are indicators of general stress rather than genetical resistance. Under the latter hypothesis females could mate with more vigorous males for reasons unrelated to parasite resistance.  相似文献   

19.
Jolles AE  Ezenwa VO  Etienne RS  Turner WC  Olff H 《Ecology》2008,89(8):2239-2250
Epidemiological studies typically focus on single-parasite systems, although most hosts harbor multiple parasite species; thus, the potential impacts of co-infection on disease dynamics are only beginning to be recognized. Interactions between macroparasites, such as gastrointestinal nematodes, and microparasites causing diseases like TB, AIDS, and malaria are particularly interesting because co-infection may favor transmission and progression of these important diseases. Here we present evidence for strong interactions between gastrointestinal worms and bovine tuberculosis (TB) in free-ranging African buffalo (Syncerus caffer). TB and worms are negatively associated at the population, among-herd, and within-herd scales, and this association is not solely the result of demographic heterogeneities in infection. Combining data from 1362 buffalo with simple mechanistic models, we find that both accelerated mortality of co-infected individuals and TB transmission heterogeneity caused by trade-offs in immunity to the two types of parasites likely contribute to observed infection patterns. This study is one of the first to examine the relevance of within-host immunological trade-offs for understanding parasite distribution patterns in natural populations.  相似文献   

20.
Russell FL  Louda SM  Rand TA  Kachman SD 《Ecology》2007,88(2):413-423
Theory predicts that damage by a shared herbivore to a secondary host plant species may either be higher or lower in the vicinity of a preferred host plant species. To evaluate the importance of ecological factors, such as host plant proximity and density, in determining the direction and strength of such herbivore-mediated indirect effects, we quantified oviposition by the exotic weevil Rhinocyllus conicus on the native wavyleaf thistle Cirsium undulatum in midgrass prairie on loam soils in the upper Great Plains, USA. Over three years (2001-2003), the number of eggs laid by R. conicus on C. undulatum always decreased significantly with distance (0-220 m) from a musk thistle (Carduus nutans L.) patch. Neither the level of R. conicus oviposition on C. undulatum nor the strength of the distance effect was predicted by local musk thistle patch density or by local C. undulatum density (<5 m). The results suggest that high R. conicus egg loads on C. undulatum near musk thistle resulted from the native thistle's co-occurrence with the coevolved preferred exotic host plant and not from the weevil's response to local host plant density. Mean egg loads on C. undulatum also were greater at sites with higher R. conicus densities. We conclude that both preferred-plant proximity and shared herbivore density strongly affected the herbivore-mediated indirect interaction, suggesting that such interactions are important pathways by which invasive exotic weeds can indirectly impact native plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号