首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用自行改造的20 L球形爆炸容器进行瓦斯抑爆研究,试验中采用分压法来制备混合气体,定量描述了爆炸压力、爆炸压力上升速率及抑爆效率等特征,分析了在3种惰性气体(CO2、N2和Ar)作用下CH4的最大爆炸压力和最大爆炸压力上升速率。结果表明,CO2的抑爆效果优于其他两种惰性气体,当CO2的体积分数达到6%时,CH4的最大爆炸压力和最大爆炸压力上升速率分别降为0.113 MPa和1.58 MPa/s,下降了78.6%和86.4%。通过试验可知,3种惰性气体均能延缓瓦斯爆炸的发生,降低爆炸的强度,但对于N2和Ar而言则需要增加惰性气体的体积分数以达到与CO2相同的抑爆效果。基于上述单相抑爆结果,选择3种惰性气体中抑爆效果最佳的CO2来进行惰性气体-水雾协同抑爆效率的研究。通过大量重复性试验得出,2%CO2-1 MPa水雾抑爆效率由单相体积分数为2%的CO2  相似文献   

2.
为从微观热力学及动力学角度更深入了解甲烷爆炸微观反应机理,应用Gaussian软件DFT理论,B3LYP-D3(BJ)/6-31+G*水平对利用敏感性分析方法得出的甲烷爆炸反应简化机理中各驻点进行结构优化与频率计算,在M06-2X/def2-tzvpp水平上计算单电能,得到反应物、中间体、过渡态、产物的稳定构型及其参数、热力学数据,并计算得到各反应的焓变、吉布斯自由能变及自由能垒。研究结果表明:甲烷爆炸微观反应机理中基元反应1,9无过渡态,其他反应存在过渡态;基元反应1,4等为反应体系提供热量,保证甲烷氧化反应不断进行,反应1放热最多,焓变为-433.7 kJ·mol-1;关键自由基OH·的生成是反应3 O2+H·→OH·+O·与反应4 O·+H2→OH·+H·相互协同与促进的结果;反应3 O2+H·→OH·+O·为该甲烷爆炸机理的决速步,自由能垒为312.4 kJ·mol-1。研究结论可为深入研究甲烷爆炸微观反应机理和化学抑爆机理提供借鉴。  相似文献   

3.
要有针对性地采取措施提高甲烷抑爆效果,深入分析尿素抑制甲烷爆炸的微观机理十分重要。采用光谱分析方法,利用试验获得的甲烷爆炸初期火焰发射光谱,分析了CHO、NO、HNO、C2、OH、CN、CO、HNO2和C3含量随时间的变化、随尿素粉体质量浓度的变化以及存在时长的变化规律。结果表明,NO、HNO、C2、CN、CO和C3自由基含量随时间呈现先上升后下降的趋势,CHO、OH和HNO2含量随时间基本保持在一定范围内波动。CHO、NO和HNO含量随加入尿素粉体质量浓度增大而增大,C2、OH和CN含量随加入尿素粉体质量浓度增大而降低,CO含量随加入尿素粉体质量浓度增大呈现先增大后降低的趋势。加入尿素后,CHO、NO、OH、CN、CO和HNO2自由基的存在时长会有明显的缩短,而尿素的加入对HNO、C2和C3自由基的存在时长基本没有影响。NO和HNO自由基是关键抑爆自由基,尿素在甲烷爆...  相似文献   

4.
为了预防蔗糖粉尘爆炸,利用1.2 L哈特曼管研究了NH4H2PO4与Al(OH4对蔗糖粉尘爆炸的抑制作用。在蔗糖粉尘质量分数一定的条件下,通过改变 NH4H2PO4与Al(OH)4的粒径和质量分数,测定其对蔗糖粉尘爆炸的抑制效果。结果表明:随着NH4H2PO4和Al(OH)4质量分数的增加,粒径的减小,蔗糖粉尘的最小点火能均逐渐增大,当惰性粉体增加到一定质量时,蔗糖粉尘被完全惰化,在蔗糖粉尘中分别加入粒径为48~74,38~47,25~37 μm的NH4H2PO4和Al(OH)4,3种粒径的NH4H2PO4使蔗糖粉尘完全惰化的质量分数分别为40%,35%,30%,3种粒径的Al(OH)3使蔗糖粉尘惰化的质量分数均为60%。因此(NH4)H2PO4抑制蔗糖粉尘爆炸的效果比Al(OH)3更显著。  相似文献   

5.
在20 L爆炸实验装置中,开展了3种不同中值粒径的EVA树脂粉尘/甲烷/空气所组成的杂混物爆炸特性研究,探究了甲烷浓度对粉尘爆炸下限、最大爆炸压力的影响。结果表明,尽管添加的甲烷气体浓度低于爆炸下限,仍使得粉尘爆炸下限得以降低,粒径较大的EVA III粉尘,当甲烷体积分数为1%时,爆炸下限降低约25%;粒径较小的EVA I粉尘,当混入甲烷体积分数为4%时,爆炸下限则降低80%;甲烷体积分数每增加1%,可燃粉尘最大爆炸压力上升约10%,但对于粒径较小的EVA I粉尘,当甲烷体积分数为4%时,最大爆炸压力的上升呈现突变趋势,上升近50%。  相似文献   

6.
为了确保合成气在工业生产与使用中的安全,通过自行搭建的试验系统研究了不同H2体积分数的H2/CO/空气预混气体爆炸压力振荡特性,同时利用理论计算了量纲一因素对压力振荡的影响。结果表明,在H2体积分数为70%时,合成气在密闭管道存在燃烧诱导快速相变现象。在开口管道中,当H2体积分数为50%和70%时,爆炸超压最大值发生在曲线后期高频振荡阶段。燃烧诱导快速相变发生在开口管道中,且H2体积分数的变化对超压峰值和超压振荡的变化起着重要作用。不同H2体积分数的振荡周期都属于10-4同一数量级,表明H2体积分数对振荡周期没有影响。随着H2体积分数的增加,振荡平均幅值逐渐增加,超压振荡现象更加明显。通过理论分析,燃烧诱导快速相变受量纲一因素的影响,是火焰传播阶段、水和壁面凝结阶段,以及火焰和冷壁面辐射热交换阶段三者共同驱动的。研究结果对于预防合成气爆炸故发生具有指导意义。  相似文献   

7.
利用自行研制的超细水雾抑制管内丙烷爆炸的小尺寸试验系统,研究超细水雾抑制管内丙烷爆炸的有效性.试验采用0.6m×0.09m的圆柱形透明玻璃管,研究体积分数为2.7%~3.7%的丙烷/空气预混气体在0~2 mL超细水雾作用下的爆炸火焰传播特性,测定超细水雾作用下丙烷爆炸下限及火焰传播速度的变化规律,探讨超细水雾对管内丙烷爆炸火焰的抑制机理及效果.结果表明:超细水雾可显著提高丙烷的爆炸下限,降低丙烷爆炸的危险性;超细水雾可有效抑制丙烷爆炸的传播速度,且随超细水雾添加量增大,传播速度不断降低;根据抑制率计算结果,在贫燃料情况下,超细水雾对丙烷爆炸的抑制效果随雾量增大和体积分数降低而增强.  相似文献   

8.
泄压点火不同端管道内甲烷爆炸特性数值模拟   总被引:1,自引:0,他引:1  
结合气体爆炸传播机理,利用FLACS软件对泄压点火不同端两种方式(泄压口通径为25 mm和泄压口完全开放)下甲烷的爆炸过程进行数值模拟,获得了5种体积分数甲烷的爆炸特性参数,分析得出:两种不同泄压方式下,10%,9.5%,11%体积分数的甲烷爆炸特性变化趋势接近,7%,8%的甲烷较前三者有所延迟;5种甲烷在管道中心处的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值都随甲烷体积分数的增大而逐渐上升,在10%时达到最大,继续增加甲烷体积分数则出现下降趋势,最大爆炸压力时间变化趋势与其相反;管道中心处的爆炸产物浓度随着甲烷体积分数的增大而增大,与泄压方式无关;增大管道泄压口面积有利于爆炸压力以及爆炸高温高压气体的释放,使得各体积分数甲烷的最大爆炸压力、最大爆炸压力上升速率、最大爆炸压力下降速率、温度峰值均下降,到达最大爆炸压力的时间均增大。  相似文献   

9.
为提高惰性气体-细水雾的协同抑爆阻燃效率,基于光谱试验,采用理论分析和Fluent、CHEMKIN-PRO等数值模拟方法,研究N2-细水雾在不同喷射位置、不同喷射压力下,基元反应和典型自由基(H·和·OH)摩尔分数在抑爆阻燃过程中的变化。研究结果表明:交错喷射N2和细水雾比对流喷射和平行喷射具有更好的协同抑爆阻燃效果;在模拟管道条件下,N2和细水雾喷射压力分别达到4.5、2 MPa时才具备良好的抑爆阻燃效果,此时H·和·OH的摩尔分数最大值分别为0.006 4和0.006 9。根据尺度效应,喷射压力应用于实际甲烷爆炸火灾发生区域,H·和·OH摩尔分数可作为消防行业现行火灾自动灭火系统运作过程中的监测参数,以其数量变化作为灭火进程的参考。  相似文献   

10.
空气中水的存在会严重影响烷烃类扩散火焰中烟黑的生成,研究氧化剂流中水对烷烃类火焰的影响,对污染物控制及火灾扑救具有重要意义。模拟采用24步简化机理的有限速率化学反应模型、Moss-Brookes烟黑模型及Discrete Ordinates(DO)辐射模型,研究在空气中加入水对甲烷/空气层流伴流扩散火焰的影响,其中烟黑模型包括烟黑的成核、表面增长和氧化。结果表明,伴流空气中的水蒸气会降低火焰的温度、抑制烟黑的生成。这是因为:一方面,水蒸气降低了甲烷燃烧的温度,火焰温度的降低导致化学反应速率减慢,烟黑成核和表面生长速率随之降低,火焰中烟黑质量分数便减少;另一方面,由于水蒸气的加入使化学反应OH+H_2 H+H_2O(R(15))逆向反应加速,继而导致OH生成量增加。但由于氧气浓度降低使火焰体积增大,OH的浓度降低。从而导致烟黑的氧化速率降低,烟黑生成量增加。由于水蒸气的化学效应小于其温度效应,总体上烟黑质量分数降低。最后对比了模拟结果和试验结果。  相似文献   

11.
水蒸气抑制甲烷燃烧和爆炸实验研究与数值计算   总被引:3,自引:1,他引:2  
在爆炸激波管中对水蒸气抑制甲烷燃烧和爆炸进行较系统的实验研究,并对其抑燃、抑爆化学动力学作用机理进行数值计算分析。结果表明:加入一定量的水蒸气后,可以有效降低CH4-O2混合气体的燃烧速度和爆炸强度;当水蒸气量达到某临界值时,CH4-O2混合气体将不能被点燃。化学动力学数值计算结果表明:在混合气体中加入水蒸气后,增大了甲烷的点火延迟时间,降低了燃烧温度和H,O和OH等高活性自由基的浓度。水蒸气能有效抑制甲烷燃烧和爆炸,其作用效果源于其物理抑制和化学阻化的综合效应。  相似文献   

12.
为了预防化工场所合成氨工艺中混合气体爆炸事故,利用爆炸极限测试仪和CHEMKIN软件,研究了 NH3和CH4混合气体的爆炸极限和动力学过程.通过分析NH3和CH4混合气体的爆炸极限和爆炸传播火焰特征,以及爆炸过程中温度、压力和关键自由基·H和·OH的变化规律,探讨了不同体积分数的NH3对CH4爆炸极限的影响.结果表明:NH3的存在使混合气体的爆炸下限上升,在某种程度上抑制了 CH4爆炸,且体积分数越大,抑制作用越明显;爆炸下限时的火焰经历了半圆形向指尖形的转变,NH3体积分数越大,爆炸火焰颜色越亮;NH3主要通过影响CH4爆炸链式反应的关键自由基·H和·OH来抑制CH4爆炸.所得结论为有效预防NH3/CH4混合爆炸事故提供了理论依据.  相似文献   

13.
氢气对预混甲烷/空气燃爆过程的影响   总被引:1,自引:0,他引:1  
为研究氢气的加入对不同体积分数甲烷/空气预混爆炸过程影响的规律,在尺寸为150 mm×150 mm×1 000 mm的管道中通入体积分数为8%、9.5%和11.5%的甲烷/空气预混气体,然后加入一定体积分数的氢气。氢气所占体积分数分别为0、0.74%、1.48%、2.95%、4.40%。分别对加入不同体积分数的甲烷爆炸过程中爆炸压力、火焰图像和爆炸温度进行测量、分析。结果表明:只有在8%纯甲烷爆炸时能够形成完整的郁金香火焰。8%和9.5%甲烷体积分数试验中,氢气的加入使火焰面由上下对称变得不对称,火焰阵面上移,火焰速度加快;爆炸中的最大超压增大并且最大超压时刻点提前。在11.5%的甲烷加氢试验中,随加氢量增加,爆炸压力、温度、火焰速度分别略微降低。这表明氢气的加入在体积分数为8%的爆炸反应中较大地促进了反应,而体积分数为11.5%时加氢后爆炸反应减弱。通过理论分析计算了半封闭管道中体积分数为9.5%甲烷爆炸温度和实测温度之间的差异。爆炸压力和温度的变化能很好地反映加入氢气对甲烷爆炸的影响。  相似文献   

14.
许宁  杨锦  成俊平  杨健  郝永梅 《安全》2023,(3):36-42
为掌握不同因素和不同条件对H2/空气管道预混气体火焰传播的作用和影响,应用FLACS软件在不同的当量比、燃料中的CO2体积分数、障碍物数量和阻塞率等条件下,分别以火焰传播速度、超压、升压速率和温度等特征参数为表征,对半开口管道中H2/空气预混火焰传播过程及其参数影响进行模拟研究。结果表明:当量比为1.2时,半开口管道中H2/空气预混火焰最高温度最大,当量比为1时,H2/空气爆炸压力的最大超压和最大升压速率最大;CO2对H2/空气预混火焰的传播具有明显的抑制作用,且随着燃料中CO2体积分数的增加,抑制效果越突出,预混火焰最高温度、最大超压和最大升压速率也就越小;障碍物的存在对预混火焰的传播具有激励作用,且激励效果在一定程度内随着障碍物数量和阻塞率的增大而增大。  相似文献   

15.
为研究含NaCl添加剂超细水雾对甲烷爆炸的影响,在自制的半封闭透明管道内,进行含NaCl添加剂超细水雾抑制甲烷爆炸试验,通过检测和分析在不同NaCl浓度情况下超细水雾的粒径和甲烷爆炸的平均火焰传播速度、爆炸超压以及平均升压速率,探究NaCl浓度对超细水雾粒径及其对抑制甲烷爆炸有效性的影响。研究结果表明:NaCl浓度对超细水雾粒径影响较小;对于体积分数为9.5%的甲烷,相比于纯甲烷爆炸,其平均火焰传播速率、最大爆炸超压以及平均升压速率分别下降了53.7%,63.4%和60.7%,相比于超细纯水雾,其平均火焰传播速率、最大爆炸超压以及平均升压速率分别下降了38.6%,58%,56%;在通雾量相同的条件下,浓度为2.5%NaCl超细水雾对体积分数为9.5%的甲烷爆炸抑制性能最佳;含NaCl添加剂超细水雾的物理化学共同作用可以有效抑爆甲烷。  相似文献   

16.
为研究高原低压环境下固液混合燃料的燃爆特性及反应机制,利用20 L爆炸球测试系统,以铝粉-乙醚和铝粉-乙醚-硝基甲烷2种固液混合燃料为研究对象,开展环境初始压力对爆炸峰值压力、爆炸质量浓度下限及爆炸产物的影响趋势研究。研究表明:2种固液混合燃料的最佳爆炸质量浓度、爆炸压力和爆炸危险性随环境压力的降低而降低;与零海拔相比,在模拟海拔4 500 m处(57.4 kPa),450 g/m3固液混合燃料的爆炸压力降低了26.84%~30.80%,爆炸质量浓度下限提高了5~10 g/m3;随着环境压力降低,爆炸气体产物一氧化碳(CO)体积分数增加,二氧化碳(CO2)、一氧化氮(NO)和二氧化氮(NO2)体积分数降低;爆炸固体残余物主要为α-氧化铝(α-Al2O3)和铝(Al)。  相似文献   

17.
为了研究N2、CO2及其混合气体对丙烯爆炸特性的影响,使用可燃气体爆炸极限试验装置,将气体按一定比例进行混合,从爆炸极限与危险度、临界氧体积分数和惰化效果3个方面研究了N2/CO2混合气体对丙烯爆炸的影响。结果表明:1)N2和体积比分别为2∶1、1∶1、1∶2的N2/CO2混合气体,以及CO2的添加对丙烯的爆炸均有抑制作用,且使丙烯的爆炸范围缩小,爆炸危险度减小,变化趋势近似为线性;2)随着惰性气体体积分数的增加,爆炸极限对应的氧体积分数呈下降趋势,CO2惰化丙烯比N2惰化丙烯时的临界氧体积分数提高了约1.87个百分点;3)结合爆炸三角形图,对比发现,在5种不同的比例下,CO2惰化丙烯时的爆炸区域面积最小,表明CO2对丙烯的抑爆效果更好。  相似文献   

18.
针对采空区充填浆液因发生物化反应后产生干扰气体,引起矿用电化学CO传感器误报警的问题,基于浆液的氧化周期、产气特性、反应后成分的X射线衍射(XRD)及充填产生气体对矿用电化学CO传感器的交叉干扰等测试,研究煤矸石、粉煤灰、普通硅酸盐水泥和矿井水以65.5∶4.5∶10∶20比例配置成的充填浆液的产气特性,探究充填产生气体对矿用电化学CO传感器的影响特征。结果表明:采空区充填浆液在物化反应过程中会消耗O2和CO2,且会产生H2、CO和CH4;其中O2和CO的体积分数变化与煤矸石氧化有关,CH4的体积分数变化与煤矸石中甲烷解吸有关,CaO和CO2的反应会导致CO2体积分数的降低,粉煤灰中的铝粉在碱性环境中反应会产生H2,且H2是造成矿用电化学CO传感器误报警的主要因素,并对矿用电化学CO传感器检测结果呈正交叉干扰。  相似文献   

19.
为深入了解超细水雾对甲烷爆炸的抑制作用,搭建小尺寸半封闭可视化试验平台并开展试验,研究超细水雾喷施量、甲烷体积分数、通入甲烷位置和预混时间4个因素对甲烷与空气的混合物的爆炸的影响。结果表明:超细水雾能有效抑制甲烷爆炸,其中对9. 5%甲烷的抑制作用最明显;随着超细水雾喷施量的增大,抑制作用增强;甲烷体积分数对甲烷爆炸最大爆炸超压ΔP_(max)有显著影响,超细水雾喷施量对甲烷爆炸ΔP_(max)有一定影响;超细水雾喷施量对甲烷爆炸火焰传播时间有显著影响,甲烷体积分数对甲烷爆炸火焰传播时间有一定影响。  相似文献   

20.
利用自主搭建的易爆气体爆炸试验平台,研究了甲烷体积分数为8%、9%、9.5%、10%、11%的甲烷-空气混合气体的爆炸特性。结果表明:爆炸火焰在管道内经历了层流火焰传播加速、郁金香火焰传播速度变慢和湍流火焰传播速度增大3个特征阶段;爆炸管道压力表现出升压、振荡和反向冲击3个变化阶段;爆炸感应期、火焰最大传播加速度和最大爆炸升压速率等特征参数能更好地反映易爆气体的爆炸能力和爆炸强度。结合爆炸火焰图片、光电传感信号和压力传感信号发现,在一端开口的管道内,爆炸压力出现变化的时间总是先于火焰传播速度的变化时间,表明爆炸压力的变化是导致火焰传播速度变化的原因。因此,抑爆过程中,减小爆炸压力和降低升压速率是达到良好抑爆效果的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号