首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Using the closed-can technique, radon exhalation rate measurements have been carried out for shale and coal samples collected from various mines located in the Chakwal and Makarwal areas of Pakistan. For the two areas, the measured average values of the exhalation rates from shale are 1.45±0.13 and 0.67±0.25 Bq m−2 h−1 and for coal are 1.0±0.03 and 0.65±0.32 Bq m−2 h−1, respectively. These values are much lower than the measured exhalation rates from alum-shale-based Nordic concrete which has values in the 50–200 Bq m−2 h−1 range. The lower values of the measured exhalation rates from the shale and coal deposits in the Chakwal and Makarwal areas are indicative of their lower uranium contents and mine workers in these areas do not face any abnormal health hazard due to radon since the exhalation rates have been found to be on the low side.  相似文献   

2.
Radon and gamma dose rate measurements were performed in 512 schools in 8 of the 13 regions of Greece. The distribution of radon concentration was well described by a lognormal distribution. Most (86%) of the radon concentrations were between 60 and 250 Bq m−3 with a most probable value of 135 Bq m−3. The arithmetic and geometric means of the radon concentration are 149 Bq m−3 and 126 Bq m−3 respectively. The maximum measured radon gas concentration was 958 Bq m−3. As expected, no correlation between radon gas concentration and indoor gamma dose rate was observed. However, if only mean values for each region are considered, a linear correlation between radon gas concentration and gamma dose rate is apparent. Despite the fact that the results of radon concentration in schools cannot be applied directly for the estimation of radon concentration in homes, the results of the present survey indicate that it is desirable to perform an extended survey of indoor radon in homes for at least one region in Northern Greece.  相似文献   

3.
One of the essential parameters influencing of the dose conversion factor is the ratio of unattached short-lived radon progeny. This may differ from the value identified for indoor conditions when considering special workplaces such as mines. Inevitably, application of the dose conversion factors used in surface workplaces considerably reduces the reliability of dose estimation in the case of mines.This paper surveyed the concentration of radon and its short-lived radon progeny and identified the unattached fraction of short-lived radon progeny. As well equilibrium factor during the month of August was calculated simultaneously at two extraction faces in a manganese ore mine.During working hours the average radon concentrations were 220 Bq m−3 and 530 Bq m−3 at Faces 1 and 2; the average short-lived progeny concentration was 90 Bq m−3 and 190 Bq m−3, the average equilibrium factors were 0.46 and 0.36, and the average unattached fractions were 0.21 and 0.17, respectively. The calculated dose conversion factor was between 9 and 27 mSv WLM−1, but higher values could also be possible.  相似文献   

4.
Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m−3 in summer to about 800-1400 Bq m−3 in winter, indicating winter ventilation rates varying from 0.6 to 2.5 × 10−6 s−1. Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from −7 to −26 Bq m−3 hPa−1. This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes.  相似文献   

5.
Radon exhalation from building materials for decorative use   总被引:2,自引:0,他引:2  
Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m−2 d−1. Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m−2 d−1 for slate tiles and 42 Bq m−2 d−1 for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m−2 d−1, it would contribute only 18 Bq m−3 to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange.  相似文献   

6.
Galicia (NW Spain) is a radon-prone area in the Iberian Peninsula. Measurements were carried out at a rural dwelling, with an annual average of radon concentration over 4000 Bq m−3 and a maximum of 9000 Bq m−3, found during a radon screening campaign held in the Autonomous Community of Galicia. We performed a detailed study to identify the main contamination source and the behaviour of the radon concentration, in which a linear dependence with temperature was verified, once corrected for relative humidity. We used different passive methods (charcoal canisters and two types of etched track detectors) as well as a radon concentration monitor that provided continuous measurement. Subsequent to this characterization, and in order to reduce the high radon concentration, a remedial action was developed using different passive and forced ventilation methods. A modified subslab depressurization technique was found to be the most effective remedy, providing a radon concentration reduction of around 96%. This method also has the advantages of being inexpensive and reliable over time.  相似文献   

7.
The indoor radon (222Rn) activity concentration was measured between January and June in the schools of two geothermal areas in Tuscany, central Italy. One of these areas (the Larderello area) is characterized by a large number of geothermal power plants, covering about 9% of the world’s geothermal power production. In contrast, the other area, Monte Pisano, has not any such facilities. About 250 measurements were made using track etch detectors. Only a slight difference in the concentrations between the two major sampling areas (98 Bq m−3 for Larderello area and 43 Bq m−3 for Monte Pisano area) was found, and this was related to different geological characteristics of the ground and not the presence of the geothermal plants. The measured radon concentrations were always well below the intervention levels in both areas, and health risks for students and personnel in the examined schools were excluded.  相似文献   

8.
Radon-222 was measured in groundwater sources of Extremadura (Spain), analyzing 350 samples from private and public springs, wells, and spas by liquid scintillation counting (LSC) and gamma spectrometry. The 222Rn activity concentrations ranged from 0.24 to 1168 Bq L−1. The statistical analysis showed a log-normal distribution with a mean of (111 ± 7) Bq L−1 and a median of (36 ± 3) Bq L−1. A hydrogeological study revealed correlations between the activity concentration and the aquifer material's characteristics. A map of 222Rn in groundwater was elaborated and compared with the natural gamma radiation map for this region. About 35% of the samples showed 222Rn activity concentrations above the Euratom recommended limit of 100 Bq L−1. Three uranium series radionuclides (238U, 234U, and 226Ra) were also assayed by alpha-particle spectrometry, estimating the annual effective dose due to the presence of these natural radionuclides in drinking water.  相似文献   

9.
Monitoring of 239,240Pu in surface air of Prague started in 1986 in connection with the Chernobyl accident. Measurable activities of 10–28 μBq m−3 were found from 29 April 1986 to 5 May 1986. In the most of the monitoring periods of 1987–1996, activities of 239,240Pu in air were not measurable. Positive values for 239,240Pu and 238Pu in air could be obtained after installation of an aerosol sampler with higher flow-rate in 1997. Activity concentrations of 239,240Pu and 238Pu in Prague air in the most of quarters of 1997–2006 were in the range 0.53–5.06 and <0.16–1.10 nBq m−3, respectively. Seasonal fluctuations can be found in content of 239,240Pu in air. Activity ratios of 238Pu/239,240Pu in air are higher than those in top soil, so it can be supposed that 238Pu is coming to air of Prague also from other sources than resuspension of fallout from atmospheric nuclear tests.  相似文献   

10.
Indoor radon distribution of subway stations in a Korean major city   总被引:1,自引:0,他引:1  
The overall survey on indoor radon concentration was conducted at all subway stations in a major city, Daejeon in the central part of Korea. It was quarterly performed from September 2007 to August 2008. The annual arithmetic mean of indoor radon concentration of all the stations was 34.1 ± 14.7 Bq m−3, and the range of values was from 9.4 to 98.2 Bq m−3. The radon concentrations in groundwater (average 31.0 ± 0.8 Bq m−3) were not significantly high in most stations, but the concentration (177.9 ± 2.3 Bq L−1) of one station was over the level of 148 Bq L−1 in drinking water proposed by U.S. EPA. Based on indoor survey results, the approximate average of the annual effective dose by radon inhalation to the employees and passengers were 0.24 mSv y−1, and 0.02 mSv y−1, respectively. Although the effective dose based on the UNSCEAR report was potentially estimated, for more accurate assessment, the additional survey on the influence by indoor radon will be necessary.  相似文献   

11.
Plants are unique in their ability to serve as in situ monitors for environmental genotoxins. We have used the alkaline comet assay for detecting induced DNA damage in Allium cepa to estimate the impact of high levels of natural radiation in the soils of inhabited zones of Ramsar. The average specific activity of natural radionuclides measured in the soil samples for 226Ra was 12,766 Bq kg−1 whereas in the control soils was in the range of 34–60 Bq kg−1. A positive strong significant correlation of the DNA damage in nuclei of the root cells of A. cepa seeds germinated in the soil of high background radiation areas with 226Ra specific activity of the soil samples was observed. The results showed high genotoxicity of radioactively contaminated soils. Also the linear increase in the DNA damage indicates that activation of repair enzymes is not triggered by exposure to radiation in HBRA.  相似文献   

12.
Least squares (LS), Theil’s (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated 226Ra in the <2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m−3 whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m−3 for a moderately permeable geological unit to about 40 Bq m−3 for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m−3 is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil 226Ra ratio shows that whereas the published data are generally clustered with no obvious correlation, the data from this study have substantially different relationships depending largely on the permeability of the underlying geology. Models for the relatively impermeable geological units plot parallel to the average indoor radon: soil 226Ra model but with lower indoor radon: soil 226Ra ratios, whilst the models for the permeable geological units plot parallel to the average indoor radon: soil 226Ra model but with higher than average indoor radon: soil 226Ra ratios.  相似文献   

13.
Health hazard from natural radioactivity in Brazilian granites, covering the walls and floor in a typical dwelling room, was assessed by indirect methods to predict external gamma-ray dose rates and radon concentrations. The gamma-ray dose rate was estimated by a Monte Carlo simulation method and validated by in-situ measurements with a NaI spectrometer. Activity concentrations of 232Th, 226Ra, and 40K in an extensive selection of Brazilian commercial granite samples measured by using gamma-ray spectrometry were found to be 4.5-450 Bq kg−1, 4.9-160 Bq kg−1 and 190-2029 Bq kg−1, respectively. The maximum external gamma-ray dose rate from floor and walls covered with the Brazilian granites in the typical dwelling room (5.0 m × 4.0 m area, 2.8 m height) was found to be 120 nGy h−1, which is comparable with the average worldwide exposure to external terrestrial radiation of 80 nGy h−1 due to natural sources, proposed by United Nations Scientific Committee on the Effects of Atomic Radiation. Radon concentrations in the room were also estimated by a simple mass balance equation and exhalation rates calculated from the measured values of 226Ra concentrations and the material properties. The results showed that the radon concentration in the room ventilated adequately (0.5 h−1) will be lower than 100 Bq m−3, value recommended as a reference level by the World Health Organization.  相似文献   

14.
In Finland the deposition of strontium-89 (90Sr) and strontium-90 (90Sr) has been monitored since the early 1960s. The measured cumulative 90Sr deposition in 1963-2005 is on average 1200 Bq m−2, of which 150 Bq m−2 originates from the Chernobyl accident. Adding to this the deposition in 1945-1962 produces a value of 2040 Bq m−2 for the cumulative deposition in Finland. The nuclear explosion-derived deposition up to 1985 obtained in this study, 1850 Bq m−2, is in good agreement with the zonal 90Sr deposition of 1740 Bq m−2 in the 60°N-70°N latitude band estimated by UNSCEAR. The regional deposition patterns of 89Sr and 90Sr following the Chernobyl accident resemble those of the refractory nuclides such as 239,240Pu and 95Zr. The total deposition of Chernobyl-derived 90Sr in Finland was about 5.3 × 1013 Bq. This activity corresponds to 0.027% of the reactor core inventory and 0.66% of the atmospheric emissions from the accident. The corresponding figures for 89Sr are 4.5 × 1014 Bq, 0.023% and 0.56%, respectively.  相似文献   

15.
Radioiodine (131I) in air and rainwater as high as 497 μBq m−3 and 0.7 Bq L−1, respectively, as well as 137Cs and 134Cs in air as high as 145 μBq m−3 and 126 μBq m−3, respectively were recorded in Thessaloniki, Northern Greece (40°38′N, 22°58′E) from March 24, 2011 through April 09, 2011, after a nuclear accident occurred at Fukushima, Japan (37°45′N, 140°28′E) on March 11, 2011.  相似文献   

16.
In this paper, a simple model for analysing variability in radon concentrations in homes is tested. The approach used here involves two error components, representing additive and multiplicative errors, together with variation between-houses. We use a Bayesian approach for our analysis and apply this model to two datasets of repeat radon measurements in homes; one based on 3-month long measurements for which the original measurements were close to the current UK Radon Action Level (200 Bq m−3), and the other based on 6-month measurement data (from regional and national surveys), for which the original measurements cover a wide range of radon concentrations, down to very low levels. The model with two error components provides a better fit to these datasets than does a model based on solely multiplicative errors.  相似文献   

17.
Motivated by the detection of 131I in river sediment in routine long-term surveillance samples, a systematic short-term study of the wastewater treatment chain was planned and conducted. Inflow, effluent and primary sludge were collected on a daily basis during two weeks at a regional wastewater treatment plant. Samples were investigated by gamma spectroscopy. Four medically used isotopes could be identified (131I and 99mTc regularly, 153Sm and 123I sporadically). The concentration levels coincide well with literature data for 131I, and with our own long-term data for 131I and 99mTc for the same plant. Cosmogenic 7Be activity in primary sludge correlated well with rainfall intensity. Surface sediment was sampled at low tide at both shores of the river, up- and downstream of the plant. 131I was identified in all samples, with a sharp maximum (about 100 Bq kg−1 d.m.) at the discharge point of the plant and lower levels elsewhere, decreasing monotonically in downstream direction. 7Be and 137Cs showed the same behaviour, but no peak at the discharge point. Predictions from simple equilibrium models for the transport and sedimentation of 131I show good agreement with the experimental data and suggest that the wastewater treatment plant is the main source for this isotope.  相似文献   

18.
This paper presents a novel approach of measuring radon in-water in the field by inserting a MEDUSA gamma-ray detector into a 210 L or 1000 L container. The experimental measurements include investigating the effect of ambient background gamma-rays on in-field radon measurement, calibrating the detector efficiency using several amounts of KCl salt dissolved in tap water, and measuring radon in borehole water. The results showed that there is fairly good agreement between the field and laboratory measurements of radon in water, based on measurements with Marinelli beakers on a HPGe detector. The MDA of the method is 0.5 Bq L−1 radon in-water.  相似文献   

19.
Samples of pasture vegetation, mainly Trifolium pratensis, were collected at the Botanic Garden of the University of Bologna during the period 1998-2000 and measured by gamma-spectrometry for determining thoron progeny. Concentrations of 212Pb were between 1.5 and 20 Bq m−2, with individual peaks up to 70 Bq m−2. Soil samples were collected at the same location and physically characterised. Their chemical composition (particularly Th and U) was determined by X-ray fluorescence spectroscopy. Lead-212 on plants mainly originates from dry and wet deposition of this isotope generated in the lower atmosphere by the decay of its short-lived precursor 220Rn, which is produced in the upper soil layers as a member of the natural thorium decay chain and exhales into the atmosphere. Concentrations of 220Rn in the atmosphere depend on (1) the amount of Th present in soil, (2) the radon fraction which escapes from the soil minerals into the soil pore space, (3) its transport into the atmosphere, and (4) its redistribution within the atmosphere. The mobility of radon in soil pore space can vary by orders of magnitude depending on the soil water content, thus being the main factor for varying concentrations of 220Rn and 212Pb in the atmosphere. We present a simple model to predict concentrations of thoron in air and its progeny deposited from the atmosphere, which takes into account varying soil moisture contents calculated by the OPUS code. Results of this model show close agreement with our observations.  相似文献   

20.
Several natural and anthropogenic radionuclides (210Pb, 226Ra and 137Cs) in guano-phosphatic coral sediments and pure guano particles collected from Ganquan, Guangjin, Jinqing and Jinyin Islands of the Xisha archipelago, South China Sea, were analyzed. The Constant Initial Concentration (CIC) model and the Constant Rate of Supply (CRS) model were applied for age calculation. The average supply rate of 210Pb was 126 Bq m−2 a−1, very close to the flux of northern hemisphere average (125 Bq m−2 a−1). The activities of anthropogenic radionuclides in the sediments were very low, indicating that human nuclear tests did not notably impact this region. The main source of radionuclides in the sediments was from atmospheric precipitation, and the organic matter derived from plant and produced by nutrient-rich guano could further enhance them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号