首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
进水水量水质的负荷变化是影响污水处理厂运行调控的重要因素。污水处理厂的进水特性时刻在变化,但从长期来看,其存在一定的变化规律。为研究污水处理厂进水规律,并探究建立对应水质水量预测模型的方法,分析了季节、天气及日类型对大渡口污水处理厂进水各指标的影响,在此基础上构建进水数学模型,并引入校核系数η对水量、COD、BOD5、TN、NH+4-N和TP等参数进行校核,校核后各参数的模拟值与实测值相关性系数分别为80.6%~85.4%(2008年),83.3%~87.3%(2009年)。研究结果可为污水处理系统计算机仿真和调控策略研究提供数据基础。  相似文献   

2.
三峡库区城市污水处理厂工艺特征分析   总被引:1,自引:0,他引:1  
为了分析三峡库区(重庆)城市污水处理厂的工艺特性,对库区现有45座城市污水处理厂进行了调研。发现库区以5万m3/d以下规模的污水处理厂为主,占总数的89%。A/A/O系列工艺、氧化沟系列工艺和SBR及其变型工艺为主流主体工艺,其中占总数64%的污水处理厂选用了氧化沟系列工艺。水质参数的设置与工艺密切相关。污水中无机物含量较高,59%的污水处理厂的MLSS在4~6 g/L之间,71%的污水处理厂的MLVSS/MLSS在0.7以下。三峡库区城市污水处理厂进水水质波动大,碳源较充足,可生化性较好。另外,总结了污水处理厂运行中易出现的问题及建议措施。  相似文献   

3.
淄博市是我国重要的石油化工基地,工业废水与生活污水多混合排放到城市污水处理厂处理,污水成分复杂,处理难度大。根据淄博市某污水处理厂的长期运行数据,评价了悬浮性固体(SS)、化学需氧量(COD)、五日生化需氧量(BOD5)、氨氮(NH3-N)和总磷(TP)等水质指标的去除效果。结果表明:该厂实际水量高于设计水量,处于超负荷运行状态,且进水SS浓度较高,BOD5/COD0.4,可生化性一般;主体工艺采用改良A2O工艺,设计停留时间较长,并将二沉池污泥部分回流到初沉池,提高对污染物去除效果,使出水SS、COD、BOD5、NH3-N和TP等指标达到一级A排放标准。进水中偶尔含有冲击性高浓度挥发酚,使污水厂硝化菌功能受抑制,出水NH3-N浓度异常升高,此时该厂通过投加活性污泥进行硝化菌接种,帮助系统尽快恢复正常运行;同时,高盐度工业废水会加速污水厂设备腐蚀。  相似文献   

4.
采用四川省2座位于不同排水服务区域的城镇污水处理厂的样本数据,统计分析了日处理水量,COD、TN、TP浓度及负荷和C/N、C/P等统计量的累积频率分布规律,并分析了各统计量的分布特征对工艺运行稳定性的影响。结果表明,污水处理厂A进水污染物负荷的累积频率分布范围较大,其采用的周期循环活性污泥(CASS)工艺基本能适应进水水质的随机变化,但因存在碳源随机性不足情况,可能导致其脱氮稳定性降低;污水处理厂B进水污染物负荷的累积频率分布范围较小,虽然其采用的厌氧—缺氧—好氧(A2/O)工艺的调控能力较低,但也基本能适应其服务区域内进水水质的随机变化;2座污水处理厂的日处理水量累积频率分布与污染物浓度及负荷的累积频率分布之间均存在显著的差异,日处理水量的累积频率分布比较集中,而污染物浓度及负荷的累积频率分布的离散范围较大,这也潜在威胁到工艺运行的稳定性。总体来看,2座污水处理厂的处理工艺选择恰当,均能较好适应其服务区域的进水水质和水量的要求。  相似文献   

5.
根据国际水质协会推出的ASM3利用MATLAB建立模型,通过实验确定进水水质及模型初值,通过模拟结果与污水处理厂实测结果对比,确定重要模型参数范围,并用结果对其他污水处理厂进行模拟,模拟结果与实测结果吻合较好.  相似文献   

6.
对山东省徒骇河—马颊河流域内某具有代表性的县级城市污水处理厂的进水特征、运行效果和处理费用进行了分析。结果表明:(1)该污水处理厂进水污染物浓度远低于设计指标。(2)该污水处理厂2012年单位水处理平均耗电量为0.267kW·h/m3,略低于国内单位水处理平均耗电量水平,略高于发达国家单位水处理平均耗电量水平,仍具有节能潜力。该污水处理厂单位水处理耗电量与单位水处理COD削减量呈线性相关,可通过COD进出水浓度及耗电量—污染物削减量线性关系式近似估算污水处理的耗电量。(3)该污水处理厂单位水处理总费用约0.58元/m3,其中电费和设备折旧费分别占单位水处理总费用的53.99%和33.67%,为污水处理厂运行费用的主要构成部分。  相似文献   

7.
污水处理工程--两段式活性污泥工艺   总被引:1,自引:0,他引:1  
我国中小城市的污水处理通常有如下特点(1 )工业废水所占比重较大,甚至超过50 %,致使要处理的城市污水的污染物浓度较高,污染物负荷变化较大 ;(2)城市财政状况比较紧张,可用于建设污水处理厂的资金有限.两段式活性污泥工艺是对传统活性污泥工艺的改进,在好氧处理之前采用一个缺氧或厌氧段,用于有机物的水解酸化或生物除磷.两段式工艺有以下优点处理效率高、工程投资和日常运行费用低,更适合我国国情.本文以两个工程项目为例,论述了两段式活性污泥工艺的工程设计与实际应用.山东省招远市污水处理厂于1999年7月投入运行,处理后排放水中的污染物指标低于设计值.蓬莱市污水处理厂工程即将竣工,设计处理能力20000m3 /d,工程总投资约1200万元,远远低于目前国内的平均水平.  相似文献   

8.
应用GPS-X软件模拟CAST污水处理厂及优化化学除磷   总被引:1,自引:0,他引:1  
利用GPS-X软件模拟某污水处理厂循环式活性污泥法(CAST)工艺的处理效果,同时对其化学除磷过程提出改进措施。结合实测进水COD组分(SS,XSandSA),对ASM2模型参数(μh、Ks、kh、Kx)进行了校核,参数优化结果为:μh=4.36 d-1,Ks=1.6 g COD/m3,kh=2.01 d-1,Kx=0.01 g COD/m3。经模型组分和参数校正后出水COD、NH4+-N以及TN的模拟结果与实测值的误差小于10%。根据进水TP浓度和流量变化,实时灵活地调整化学药品投加量,模拟结果显示可以节约50%左右的消耗量。  相似文献   

9.
污水处理工程——两段式活性污泥工艺   总被引:5,自引:1,他引:4  
我国中小城市的污水处理通常有如下特点:(1)工业废水所占比重较大,甚至超过50%,致使要处理的城市污水的污染物浓度较高,污染负荷变化较大;(2)城市财政状况比较紧张,可用于建设污水处理厂的资金有限,两段式活性污泥工艺是对传统活性污泥工艺的改进,在好氧处理之前采用一个缺氧或厌氧段,用于有机物的水解酸化或生物除磷。两段式工艺有以下优点:处理效率高、工程投资和日常运行费用低,更适合我国国情。本文以两个工程项目为例,论述了两段式活性污泥工艺的工程设计与实际应用。山东省招远市污水处理厂于1999年7月投入运行,处理后排放水中的污染物指标低于设计值。蓬莱市污水处理厂工程即将竣工,设计处理能力20000m^3/d,工程总投资约1200万元,远远低于目前国内的平均水平。  相似文献   

10.
以包头市污水处理厂2015年全年进水实测数据为基础,应用统计学方法分析了包头市城市污水中6个水质指标(COD、BOD5、SS、氨氮、TN和TP)的概率分布、变化规律和相关关系。结果表明,包头市污水处理厂进水中,除COD呈正态分布外其他5个水质指标均服从偏态分布,COD、BOD5、SS、氨氮、TN和TP全年中间值分别为428.00、288.00、155.00、67.35、89.85、9.57mg/L,各水质指标均随季节变化明显。COD和BOD5、COD和SS、BOD5和SS、氨氮和TN间存在较明显的一元线性关系。进水BOD5/COD(质量比)平均值高于0.45,BOD5/COD0.45的累积分布概率为96.6%,说明包头市城市污水可生化性较好。BOD5/TN(质量比)平均值为3.32,BOD5/TN4.00的累积分布概率为59.7%,说明有污水反硝化碳源不足的现象存在。进水BOD5/TP(质量比)平均值为31,且全年BOD5/TP20的累积分布概率为93.0%,满足生物除磷要求。  相似文献   

11.

The concentrations and distribution of β-blockers, lipid regulators, and psychiatric and cancer drugs in the influent and effluent of the municipal wastewater treatment plant (WWTP) and the effluent of 16 hospitals that discharge into the wastewater treatment plant mentioned in this study at two sampling dates in summer and winter were examined. The pharmaceutical contribution of hospitals to municipal wastewater was determined. The removal of target pharmaceuticals was evaluated in a WWTP consisting of conventional biological treatment using activated sludge. Additionally, the potential environmental risk for the aquatic receiving environments (salt lake) was assessed. Beta-blockers and psychiatric drugs were detected in high concentrations in the wastewater samples. Atenolol (919 ng/L) from β-blockers and carbamazepine (7008 ng/L) from psychiatric pharmaceuticals were detected at the highest concentrations in hospital wastewater. The total pharmaceutical concentration determined at the WWTP influent and effluent was between 335 and 737 ng/L in summer and between 174 and 226 ng/L in winter. The concentrations detected in hospital effluents are higher than the concentrations detected in WWTP. The total pharmaceutical contributions from hospitals to the WWTP in summer and winter were determined to be 2% and 4%, respectively. Total pharmaceutical removal in the WWTP ranged from 23 to 54%. According to the risk ratios, atenolol could pose a high risk (risk quotient > 10) for fish in summer and winter. There are different reasons for the increase in pharmaceutical consumption in recent years. One of these reasons is the COVID-19 pandemic, which has been going on for 2 years. In particular, hospitals were operated at full capacity during the pandemic, and the occurrence and concentration of pharmaceuticals used for the therapy of COVID-19 patients has increased in hospital effluent. Pandemic conditions have increased the tendency of people to use psychiatric drugs. It is thought that beta-blocker consumption has increased due to cardiovascular diseases caused by COVID-19. Therefore, the environmental risk of pharmaceuticals for aquatic organisms in hospital effluent should be monitored and evaluated.

  相似文献   

12.
The occurrence and removal of six pharmaceuticals and personal care products (PPCPs) including caffeine (CF), N, N-diethyl-meta-toluamide (DEET), carbamazepine, metoprolol, trimethoprim (TMP), and sulpiride in a municipal wastewater treatment plant (WWTP) in Shanghai, China were studied in January 2013; besides, grab samples of the influent were also taken every 6 h, to investigate the daily fluctuation of the wastewater influent. The results showed the concentrations of the investigated PPCPs ranged from 17 to 11,400 ng/L in the WWTP. A low variability of the PPCP concentrations in the wastewater influent throughout the day was observed, with the relative standard deviations less than 25 % for most samples. However, for TMP and CF, the slight daily fluctuation still reflected their consumption patterns. All the target compounds except CF and DEET, exhibited poor removal efficiencies (<40 %) by biological treatment process, probably due to the low temperature in the bioreactor, which was unfavorable for activated sludge. While for the two biodegradable PPCPs, CF, and DEET, the anaerobic and oxic tank made contributions to their removal while the anoxic tank had a negative effect to their elimination. The tertiary UV treatment removed the investigated PPCPs by 5–38 %, representing a crucial polishing step to compensate for the poor removal by the biologic treatment process in winter.  相似文献   

13.

Wastewater treatment plants (WWTP) are highly non-linear operations concerned with huge disturbances in flow rate and concentration of pollutants with uncertainties in the composition of influent wastewater. In this work, the activated sludge process model with seven reactor configuration in the ASM3bioP framework is used to achieve simultaneous removal of nitrogen and phosphorus. A total of 8 control approaches are designed and implemented in the advanced simulation framework for assessment of the performance. The performance of the WWTP (effluent quality index and global plant performance) and the operational costs are also evaluated to compare the control approaches. Additionally, this paper reports a comparison among proportional integral (PI) control, fuzzy logic control, and model-based predictive control (MPC) configurations framework. The simulation outcomes indicated that all three control approaches were able to enhance the performance of WWTP when compared with open loop operation.

  相似文献   

14.
Chen HC  Kuo HW  Ding WH 《Chemosphere》2009,74(4):508-514
Two complementary LC-MS ionization methods, electrospray (ESI) and atmospheric pressure photoionization (APPI), have been optimized to determine three natural estrogenic compounds (estrone, 17beta-estradiol and estriol) and two synthetic estrogenic compounds (17alpha-ethynylestradiol and diethylstilbestrol) in the influent and effluent of wastewater treatment plants (WWTPs). The wastewater samples were first subjected to solid-phase extraction coupled with desalting extraction to remove matrix interference. The analytes were then detected using liquid chromatography-tandem mass spectrometry (LC-MS-MS) with ESI and dopant-assisted (DA) APPI to evaluate the ion suppression effect and to complement the detection and quantification of estrogenic compounds in complex wastewater samples. The average ion suppression factors for the extracts of the WWTP influent analyzed using ESI and APPI were 52+/-5% and 27+/-7%, respectively. The sensitivity and ionization efficiency of the LC-ESI-MS-MS system decreased dramatically when a complex matrix was present in the WWTP influent sample. Estrogenic compounds could be detected in the WWTP influent and effluent samples at concentrations below the parts-per-billion level. The lower detection limits obtained when using ESI and the higher matrix tolerance of the APPI method allowed the complete quantification of estrogenic compounds in very complex samples in a complementary manner.  相似文献   

15.
In this study, the occurrence of trace amounts of natural and synthetic steroid estrogens in the aquatic environment was studied using liquid chromatography coupled with electrospray mass spectrometry, following solid-phase extraction (SPE). The SPE was performed with C18 and NH2 cartridges. The first objective was to develop a reliable method for analyzing steroid estrogens (resulting from human and animal excretions) in different matrices. The method developed was then applied to quantify the occurrence of natural and synthetic hormones (estrone [E1], 17beta-estradiol [betaE2], 17alpha-estradiol [alphaE2], estriol [E3], and 17alpha-ethinylestradiol [EE2]) in environmental samples in surface water and wastewater treatment plant (WWTP) influent and effluent. In the WWTP influents, betaE2, alphaE2, and E3 were identified as ranging up to 72.6 ng/L in WWTP influent and to 16 ng/L in WWTP effluent. Analysis o f surface wa ter sampled upstream from the WWTP revealed the presence of all five estrogens, at levels up to 19.8 ng/L. These concentrations of estrogens pose an issue for large and small communities, because they are higher than the recommended guidelines for estrogen-active compounds and because a lot of communities use surface water as drinking-water sources.  相似文献   

16.
The effect of a full-scale municipal wastewater treatment plant (WWTP) and each of the treatment units within the stream on the removal of endocrine-disrupting compounds was evaluated by tracking 17-beta-estradiol (E2), estrone (E1), and 17-alpha-ethinylestradiol (EE2). The overall performance of the WWTP compared well with other plants, as 90.5% removal of E1+E2 and 74.9% removal of EE2 were observed. A larger fraction of EE2 entered the plant in particulate form than E1 and E2, while a lower fraction of EE2 left the plant in particulate form than soluble form. The activated sludge units reduced the concentration of E1+E2 and EE2 in the liquid phase by 88.2% and 44.6%, respectively. The UV treatment process did not reduce the amount of estrogens. The aqueous phase of the tertiary lagoon solids contained higher levels of estrogens compared with the lagoon influent.  相似文献   

17.
Zeng X  Sheng G  Gui H  Chen D  Shao W  Fu J 《Chemosphere》2007,69(8):1305-1311
The occurrence and distributions of six polycyclic musks were studied in influent, primary and effluent waters from a municipal wastewater treatment plant (WWTP) in Guangdong. Five polycyclic musk compounds, 1,2,3,5,6,7-hexahydro-1,1,2,3,3-pentamethyl-4H-inden-4-one (DPMI), 4-acetyl-1,1-dimethyl-6-tert-butylindan (ADBI), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI), 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) were found in wastewater in the WWTP. DPMI, HHCB and AHTN were measured at 0.38-0.69, 11.5-146, 0.89-3.47 microg/l, respectively, in influents. Meanwhile 0.06-0.10 microg/l DPMI, 0.95-2.05 microg/l HHCB, 0.10-0.14 microg/l AHTN were detected in effluents, ADBI and AHMI were also detected in some primary waters and effluents. The results suggested that wastewater from cosmetic plants cause high loadings of polycyclic musks to this WWTP. Under the currently applied treatment technology, the removal efficiencies achieved were 61-75% for DPMI, 86-97% for HHCB and 87-96% for AHTN by transfer to sludge as the main removal route.  相似文献   

18.
Elimination of alkylphenol ethoxylates (APEO) and their degradation products (alkylphenols and alkylphenoxy carboxylates), as well as linear alkylbenzene sulfonates (LAS) and coconut diethanol amides (CDEA), was studied in a pilot plant membrane bioreactor (MBR) working in parallel to a full-scale wastewater treatment plant (WWTP) using conventional activated sludge (CAS). In the CAS system 87% of parent long ethoxy chain NPEOs were eliminated, but their decomposition yielded persistent acidic and neutral metabolites which were poorly removed. The elimination of short ethoxy chain NPEOs (NP(1)EO and NP(2)EO) averaged 50%, whereas nonylphenoxy carboxylates (NPECs) showed an increase in concentrations with respect to the ones measured in influent samples. Nonylphenol (NP) was the only nonylphenolic compound efficiently removed (96%) in the CAS treatment. On the other hand, MBR showed good performance in removing nonylphenolic compounds with an overall elimination of 94% for the total pool of NPEO derived compounds (in comparison of 54%-overall elimination in the CAS). The elimination of individual compounds in the MBR was as follows: 97% for parent, long ethoxy chain NPEOs, 90% for short ethoxy chain NPEOs, 73% for NPECs, and 96% for NP. Consequently, the residual concentrations were in the low mug/l level or below it. LAS and CDEA showed similar elimination in the both wastewater treatment systems that were investigated, and no significant differences were observed between the two treatment processes. Nevertheless, for all studied compounds the MBR effluent concentrations were consistently lower and independent of the influent concentrations. Additionally, MBR effluent quality in terms of chemical oxygen demand (COD), NH(4)(+) concentration and total suspended solids (TSS) was always superior to the ones of the CAS and also independent of the influent quality, which demonstrates high potential of MBRs in the treatment of municipal wastewaters.  相似文献   

19.
建立了一种基于超高效液相色谱/串联质谱的方法,实现了对北京3个污水处理厂污水中12种全氟化合物(PFCs)的快速、灵敏地定量分析.结果表明,城市污水处理厂进水和出水中短链的全氟丁酸(PFBA)、全氟戊酸(PFPA)和全氟丁磺酸(PFBS)是主要污染物,其中出水中PFBs的质量浓度高达253 ng/L.污水生物处理后,出...  相似文献   

20.
The occurrence, behavior, and release of five acidic pharmaceuticals, including ibuprofen (IBP), naproxen (NPX), ketoprofen (KEP), diclofenac (DFC), and clofibric acid (CA), have been investigated along the different units in a tertiary-level domestic wastewater treatment plant (WWTP) in hyper-urbanization city of China (Shanghai). IBP was the most abundant chemicals among the measured in raw wastewater. The loads of the acidic pharmaceuticals in the WWTP influent ranged from 7.5 to 414 mg/day/1,000 inh, which were lower than those reported in the developed countries suggesting a less per capita consumption of pharmaceuticals in Shanghai. IBP obtained by highest removal (87 %); NPX and KEP were also significantly removed (69–76 %). However, DFC and CA were only moderately removed by 37–53 %, respectively. Biodegradation seemed to play a key role in the elimination of the studied pharmaceuticals except for DFC and CA. An annual release of acidic pharmaceuticals was estimated at 1,499 and 61.7 kg/year through wastewater and sludge, respectively, from Shanghai. Highest pharmaceuticals concentrations were detected in the effluent discharge point of the WWTP, indicating that WWTP effluent is the main source of the acidic pharmaceuticals to its receiving river. Preliminary results indicated that only DFC in river had a high risk to aquatic organisms. Nevertheless, the joint toxicity effects of these chemicals are needed to further investigate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号