首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Summary Field observations and laboratory experiments demonstrate that in the Australian meat ant, Iridomyrmex purpureus, the modes of colony founding are remarkably diverse. New colonies can originate from single foundresses (haplometrosis), or foundress associations (pleometrosis), or by colony budding, or the adoption of newly-mated queens that dig founding chambers next to mature nests (probably their natal nests, as workers protect them and may help them dig). Readoption of foundresses and pleometrosis lead to the coexistence of several queens in one nest. We discovered a striking antagonistic behavior among coexisting queens in young colonies, in the form of ritualized antennation bouts. These interactions result in a reproductive rank order in which dominant queens inhibit egg-laying by subordinates, but escalation into physical fighting is rare. Workers ignore queen dominance interactions and treat all queens equally. The first quantitative ethogram of dominance display behavior between multiple ant queens, and its reproductive consequences, is presented. As a colony grows, queens become intolerant of each other's presence and permanently separate within the nest. Once separated, queens appear to be equal in status, laying approximately equal numbers of eggs. All queens continue to be tolerated by workers, even when the colony has reached a size of several thousand workers and begun to produce reproductives. Such mature nests of I. purpureus fulfill the criteria of oligogyny, defined by worker tolerance toward more than one queen and antagonism among queens, such that a limited number of fully functional queens are spaced far apart within a single colony. Oligogynous colonies can arise in this species by pleometrotic founding (primary oligogyny) or by adoption of queens into existing nests (secondary oligogyny). The adaptive significance of the complex system of colony founding, queen dominance and oligogyny in I. purpureus is discussed.  相似文献   

2.
Research on the evolution of cooperative groups tends to explore the costs and benefits of cooperation, with less focus on the proximate behavioral changes necessary for the transition from solitary to cooperative living. However, understanding what proximate changes must occur, as well as those pre-conditions already in place, is critical to understanding the origins and evolution of sociality. The California harvester ant Pogonomyrmex californicus demonstrates population-level variation in colony founding over a close geographic range. In adjacent populations, queens either found nests as single individuals (haplometrosis) or form cooperative groups of nonrelatives (pleometrosis). We compared aggregation, aggression, and tolerance of queens from one pleometrotic and two haplometrotic populations during nest initiation, to determine which behaviors show an evolutionary shift and which are present at the transition to pleometrosis. Surprisingly, within-nest aggregative behavior was equally present among all populations. In nesting boxes with multiple available brood-rearing sites, both queen types readily formed and clustered around a single common brood pile, suggesting that innate attraction to brood (offspring) facilitates the transition to social aggregation. In contrast, queens from the three populations differed in their probabilities of attraction on the ground to nest sites occupied by other queens and in levels of aggression. Our results suggest that some key behavioral mechanisms facilitating cooperation in P. californicus are in place prior to the evolution of pleometrosis and that the switch from aggression to tolerance is critical for the evolution of stable cooperative associations.  相似文献   

3.
The fate of queen foundress associations in ants varies across taxa: in some, lethal fighting results in survival of a single queen, while in others, queens coexist long term. One hypothesis for this difference is that selection favors fighting when group sizes are small and tolerance when groups are large. In an experiment with the ant Messor pergandei, we formed small, medium, and large groups with newly mated queens from field populations that have different mean group sizes and differ in whether multiple queens occur in older established colonies. We found that whether queens are eliminated by fighting depends upon region of origin and not group size: regardless of co-foundress number, queens from sites with single-queen adult field colonies displayed agonistic behaviors and their colonies reduced to a single queen, while queens from sites with multiple-queen colonies did not fight and co-foundresses coexisted long term. Worker aggression towards and elimination of queens were also correlated with region of origin. Where fighting occurred, queens were as likely to be killed by workers as by other queens. An aggressive display was the most common form of agonistic interaction among queens, while fighting was relatively rare. We hypothesize that queen displays evolved in response to worker attacks because they increase the probability that workers will eliminate competitor queens. Our results suggest that the evolutionary interests of workers, as well as queens, could be important in determining the evolution and maintenance of queen elimination in foundress associations.  相似文献   

4.
In several species of ants, queens often form temporary cooperative associations during colony foundation. These associations end soon after the eclosion of the first workers with the death or expulsion of all but one of the queens. This study examined competition between foundress queens of the fire ant Solenopsis invicta. Although attacks by the workers contributed to queen mortality, queens gained no advantage by producing more workers than their co-foundresses. Restriction fragment length polymorphism analysis of mitochondrial DNA showed that the queen producing more workers during colony founding was no more likely to survive than the less productive queen. In experimentally manipulated colonies in which all the workers were daughters of only one of the queens, the mother of the workers was no more likely to survive than the unrelated queen. Queens producing diploid males reared fewer offspring but were as likely to survive as queens producing only workers. These results suggest that workers do not discriminate between related and unrelated queens within colonies. Aggressive encounters between queens were common. Queens were more likely to die or be expelled if paired with heavier queens or if they lost more weight than their co-foundress during the claustral period. Finally, when queens were separated by screens through which workers could pass, the workers usually attacked and killed the queen farther from the brood. These results suggest that queen survival is promoted by a high fighting ability relative to co-foundresses, rather than by increased worker production, and that workers respond to queen differences that are independent of kinship. Received: 8 September 1995/Accepted after revision: 5 March 1996  相似文献   

5.
In many polygynous ant species, established colonies adopt new queens secondarily. Conflicts over queen adoption might arise between queens and workers of established colonies and the newly mated females seeking adoption into nests. Colony members are predicted to base adoption decisions on their relatednesses to other participants, on competition between queens for colony resources, and on the effects that adopted queens have on colony survivorship and productivity. To provide a better understanding of queen-adoption dynamics in a facultatively polygynous ant, colonies of Myrmica tahoensis were observed in the field for 4 consecutive years and analyzed genetically using highly polymorphic microsatellite DNA markers. The extreme rarity of newly founded colonies suggests that most newly mated queens that succeed do so by entering established nests. Queens are closely related on average (rˉ = 0.58), although a sizable minority of queen pairs (29%) are not close relatives. An experiment involving transfers of queens among nests showed that queens are often accepted by workers to which they are completely unrelated. Average queen numbers estimated from nest excavations (harmonic mean = 1.4) are broadly similar to effective queen numbers inferred from the genetic relatedness of colony members, suggesting that reproductive skew is low in this species. Queens appear to have reproductive lifespans of only 1 or 2 years. As a result, queens transmit a substantial fraction of their genes posthumously (through the reproduction of related nestmates), in comparison to direct and indirect reproduction while they are alive. Thus queens and other colony members should often accept new queens when doing so will increase colony survivorship, in some cases even when the adopted queens are not close relatives. Received: 20 February 1996/Accepted after revision: 25 May 1996  相似文献   

6.
We document the variation in number of queens occurring naturally in founding, immature and mature nests of the ant Formica podzolica, and compare development of colonies and survivorship of queens in experimental nests started with 1–16 foundresses. Number of queens per nest was associated with stage of colony development. Most nests were monogynous, but 20% of immature nests (n = 66) and 25% of mature nests (n = 92) were oligogynous or polygynous. Colonies were usually established by single queens (i.e., haplometrosis), but colony establishment by multiple queens (i.e., pleometrotis) was also common, occurring in 27% of founding nests (n = 492). Foundress groups in the field were small ( = 1.47 ± 0.04 queens/nest), and large groups experienced high mortality and low productivity in artificial nests. Therefore, the many queens (up to 140) in some immature and mature colonies were probably secondarily pleometrotic. Experimental nests started with 1–4 queens were more successful than those initiated by 8 or 16 queens. Small groups (2–4 queens) produced more pupae before the first nests reared workers than single foundresses or larger groups (8 or 16 queens). Although single foundresses were less productive than queens in small groups, they experienced greater survivorship and less weight loss than queens in pleometrotic associations. Besides low productivity, queen mortality and weight loss were greatest in large groups.  相似文献   

7.
Although colonies of the fire ant Solenopsis invicta are often founded by small groups of queens, all but one of the queens are soon eliminated due to worker attacks and queen fighting. The elimination of supernumerary queens provides an important context for tests of discrimination by the workers, since the outcome of these interactions strongly affects the workers' inclusive fitness. To test whether workers in newly founded colonies discriminate among nestmate queens, paired cofoundresses were narrowly separated by metal screens that prevented direct fighting, but through which the workers could easily pass. Soon after the first workers completed development, they often attacked one of the queens; these attacks were strongly associated with queen mortality. When one queen's brood was discarded, so that the adult workers were all the daughters of just one queen, the workers were significantly less likely to bite their mother than the unrelated queen; however, this tendency was comparatively weak. Queens kept temporarily at a higher temperature to increase their rate of investment in brood-rearing lost weight more rapidly than paired queens and were subsequently more likely to be attacked and killed by workers. Workers were more likely to bite queens that had been temporarily isolated than queens that remained close to brood and workers. When queens were not separated by screens, the presence of workers stimulated queen fights. These results show that workers discriminate strongly among equally familiar queens and that discrimination is based more on the queens' condition and recent social environment than on kinship. Received: 9 June 1998 / Accepted after revision: 10 October 1998  相似文献   

8.
For primitively eusocial insects in which a single foundress establishes a nest at the start of the colony cycle, the solitary provisioning phase before first worker emergence represents a risky period when other, nestless foundresses may attempt to usurp the nest. In the primitively eusocial sweat bee Lasioglossum malachurum (Hymenoptera, Halictidae), spring foundresses compete for nests which are dug into hard soil. Nest-searching foundresses (‘floaters’) frequently inspected nests during this solitary phase and thereby exerted a usurpation pressure on resident queens. Usurpation has been hypothesised to increase across the solitary provisioning phase and favour closure of nests at an aggregation, marking the termination of the solitary provisioning phase by foundresses, before worker emergence. However, our experimental and observational data suggest that usurpation pressure may remain constant or even decrease across the solitary provisioning phase and therefore cannot explain nest closure before first worker emergence. Levels of aggression during encounters between residents and floaters were surprisingly low (9% of encounters across 2 years), and the outcome of confrontations was in favour of residents (resident maintains residency in 94% of encounters across 2 years). Residents were significantly larger than floaters. However, the relationship between queen size and offspring production, though positive, was not statistically significant. Size therefore seems to confer a considerable advantage to a queen during the solitary provisioning phase in terms of nest residency, but its importance in terms of worker production appears marginal. Factors other than intraspecific usurpation need to be invoked to explain the break in provisioning activity of a foundress before first worker emergence.  相似文献   

9.
How organisms allocate limited resources to reproduction is critical to their fitness. The size and number of offspring produced have been the focus of many studies. Offspring size affects survival and growth and determines offspring number in the many species where there is a trade-off between size and number. Many social insects reproduce by colony fission, whereby young queens and accompanying workers split off from a colony to form new colonies. The size of a new colony (number of workers) is set at the time of the split, and this may allow fine tuning size to local conditions. Despite the prevalence of colony fission and the ecological importance of social insects, little is known of colony fission except in honey bees. We studied colony fission in the ant Cataglyphis cursor. For clarity, "colony" and "nest" refer to colonies before and after colony fission, respectively (i.e., each colony fissions into several nests). The reproductive effort of colonies was highly variable: Colonies that fissioned varied markedly in size, and many colonies that did not fission were as large as some of the fissioning colonies. The mother queen was replaced in half of the fissioning colonies, which produced 4.0 +/- 1.3 (mean +/- SD) nests of markedly varied size. Larger fissioning colonies produced larger nests but did not produce more nests, and resource allocation among nests was highly biased. When a colony produced several nests and the mother queen was not replaced, the nest containing the mother queen was larger than nests with a young queen. These results show that the pattern of resource allocation differs between C. cursor and honey bees. They also suggest that C. cursor may follow a bet-hedging strategy with regard to both the colony size at which fission occurs and the partitioning of resources among nests. In addition, colony fission may be influenced by the age and/or condition of the mother queen, and the fact that workers allocating resources among nests have incomplete knowledge of the size and number of nests produced. These results show that the process of colony fission is more diverse than currently acknowledged and that studies of additional species are needed.  相似文献   

10.
Division of labor is a key factor in the ecological success of social groups. Recent work suggests that division of labor can emerge even without specific adaptations for task specialization and that it can appear in incipient social groups as a self-organizational property. We investigated experimentally how selection and self-organization may interact during the evolution of division of labor by examining task performance in groups of normally solitary versus normally social ant queens. We created social pairs of colony-founding queens from two populations of the ant Pogonomyrmex californicus, one in which queens are normally solitary and one in which queens form foundress groups, and observed their behavior during nest excavation. In both populations, one of the two queens usually performed most of the excavation, becoming the excavation specialist. We could predict which queen would become the specialist based on their relative propensities to perform the task in other contexts, consistent with a variance-based model of task specialization. The occurrence of specialization even when group members were not adapted to social life suggests that division of labor may well have been present in incipient queen groups. However, division of labor can result in cost skew among group members, and thus, paradoxically, within-group selection may constrain or even reduce specialization. Consistent with this effect, pairs of normally solitary queens were significantly more asymmetrical in their task performance than normally social pairs, in which both queens nearly always performed the behavior to some degree.Communicated by J. Heinze  相似文献   

11.
Establishment of new groups is an important step in the life history of a social species. Fissioning is a common mode not only in group proliferation, for instance, as a regular part of the life cycle in the honey bee, but also when multiple females reproduce in the same group, as in multiple-queen ant societies. We studied the genetic consequences of fissioning in the ant Proformica longiseta, based on DNA microsatellites. In P. longiseta, new nests arise by fissioning from the old ones when they grow large, and the daughter nests consist of workers and queens or queen pupae but never both. Our results show that fissioning is not entirely random with respect to kinship. Workers tend to segregate along kin lines, but only when the initial relatedness in the parental nests is low. Workers in a daughter nest also tend to be associated with closely related adult queens, whereas such an association is not detected between workers and queen pupae. Most queens and workers are carried to the daughter nest by a specialized group of transporting workers, suggesting active kin discrimination by them. Fissioning pattern in P. longiseta is different from that found in other social insects with regular fission (e.g., the honey bee, swarm-founding wasps), where no fissioning along kin lines has been found. It does, however, resemble fissioning in another group of social animals: primates.  相似文献   

12.
In most social insect species, individuals recognize and behave aggressively towards non-nestmate conspecifics to maintain colony integrity. However, introduced populations of the invasive Argentine ant, Linepithema humile, exhibit pronounced variation in intraspecific aggression denoting diversity in nestmate recognition behavior, which possibly shapes their social structure and the varying levels of unicoloniality observed among these populations. One approach to better understand differential aggression behaviors towards conspecifics and recognition cue perception and response in L. humile is to examine variation in nestmate discrimination capability among genetically distinct colonies under different social contexts. Consequently, we investigated the dynamics of queen and worker recognition in southeastern US L. humile queenless and queenright colonies by measuring rates of non-nestmate worker and queen adoption and intercolony genetic similarity. Aggression levels between colony pairs differed and were associated with non-nestmate worker, but not queen adoption. Adoption of queens and workers was a function of host colony origin, while colony queen number affected adoption of queens, but not workers, with queens more readily accepted by queenless hosts. Fecundity of adopted non-nestmate queens was comparable to that of rejected non-nestmate and host colony queens, suggesting that queen fecundity did not affect adoption decisions. Genetic similarity between colonies ranged from 30 to 77% alleles shared, with more genetically similar colonies showing lower levels of intraspecific aggression. Non-nestmate queens and workers that were more genetically similar to host colony workers were more likely to be adopted. We provide the first evidence for the role of L. humile colony queen number on queen discrimination and suggest an effect of resident queens on worker conspecific acceptance thresholds. Our findings indicate a role for genetically based cues in L. humile nestmate recognition. However, subtle discrimination capability seems to be influenced by the social context, as demonstrated by more frequent recognition errors in queenless colonies.  相似文献   

13.
Summary There is high within-nest relatedness for functional queens (with corpora lutea), nonfunctional queens (without corpora lutea), and workers in polygynous nests of Leptothorax acervorum. The high functional queen relatedness suggests that young mated queens are adopted back to their mother nest. Functional queen relatedness does not change with the number of queens present in the nest, suggesting that the number of generations of queens, on average two to three, is rather stable. Worker relatedness decreases with increasing number of functional queens per nest (Tables 5, 6). The number of queens contributing offspring to the nest (mothers), estimated from worker and functional queen relatedness, is lower than the number of functional queens, particularly in highly polygynous nests. Estimates of number of mothers in monogynous nests indicate that these nests previously were polygynous (Table 7). There is no correlation between nest relatedness and distance between nests, and budding-off, if present, thus appears to be a rare mode of nest founding (Table 8). There are no indications of inbreeding in the two populations studied since the frequency of heterozygotes is as high as expected from random mating (Table 4). Most likely, polygyny is the rule in L. acervorum and serves to secure the presence of queens in the nest.  相似文献   

14.
Models based on the kin selection theory predict that in social hymenopterans, queens may favor a lower investment in the production of sexuals than workers. However, in perennial colonies, this conflict may be tuned down by colony-level selection because of the trade off between colony survival and reproductive allocation. In this study, we present a survey of sexual production in colonies of Aphaenogaster senilis, a common species of ant in the Iberian Peninsula. Similar to most species that reproduce by fission, males were found in large excess compared to gynes (172:1). Sexuals were more likely to be found in queenless than in queenright (QR) field colonies. However, we also found a few gynes and numerous males in very large QR colonies. We compared these data with those available in the literature for A. rudis, a congeneric species from North America that has independent colony founding. The sex ratio in this species was only five males for each female, and sexuals were mostly found in QR nests, irrespective of colony size. We confirmed queen inhibition of sexual production in A. senilis in laboratory experiments and provide evidence that this inhibition is mediated by a nonvolatile pheromone. To seek the potential source of such a queen pheromone, we analyzed the secretions of two conspicuous exocrine glands, the Dufour’s and postpharyngeal glands (DG and PPG, respectively) in both queens and workers. Both secretions were composed of hydrocarbons, but that of DG also contained small quantities of tetradecanal and hexadecanal. The hydrocarbon profile of the DG and PPG showed notable caste specificity suggesting a role in caste-related behavior. The PPG secretions also differed between colonies suggesting its role in colony-level recognition. We suggest that in A. senilis, there are two modes of colony fission: First, in very large colonies, gynes are produced, probably because of the dilution of the queen pheromone, and consequently one or more gynes leave the mother colony with workers and brood to found a new nest. This is beneficial at the colony level because it avoids the production of costly sexuals in small colonies. However, because the queen and workers have different optima for sexual production, we hypothesize that queens tend to overproduce the pheromone to delay their production. This in turn may drive workers to leave the mother colony during nest relocation and to produce sexuals once they are away from the queen’s influence, creating a second mode of colony fission.  相似文献   

15.
In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move freely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests. Received: 8 February 1999 / Received in revised form: 15 June 1999 / Accepted: 19 June 1999  相似文献   

16.
Abstract: Factors that contribute to the successful establishment of invasive species are often poorly understood. Propagule size is considered a key determinant of establishment success, but experimental tests of its importance are rare. We used experimental colonies of the invasive Argentine ant (   Linepithema humile ) that differed both in worker and queen number to test how these attributes influence the survivorship and growth of incipient colonies. All propagules without workers experienced queen mortality, in contrast to only 6% of propagules with workers. In small propagules (10–1,000 workers), brood production increased with worker number but not queen number. In contrast, per capita measures of colony growth decreased with worker number over these colony sizes. In larger propagules ( 1,000–11,000 workers), brood production also increased with increasing worker number, but per capita brood production appeared independent of colony size. Our results suggest that queens need workers to establish successfully but that propagules with as few as 10 workers can grow quickly. Given the requirements for propagule success in Argentine ants, it is not surprising how easily they spread via human commerce.  相似文献   

17.
Summary Augochlorella striata was studied at the northern limit of its range. The study population contained a mixture of solitary and social nest foundresses. Eusocial foundresses produced 1 or 2 workers before switching to a male biased brood. Solitary foundresses produced males first. Cells vacated by eclosed offspring were reused late in summer. A female biased brood resulted from cell reuse in both solitary and eusocial nests. Workers were slightly smaller than their mothers and were sterile although most of them mated. In comparison to published data from a Kansas population of this species, the Nova Scotia population had i) a lower proportion of multiple foundress nests, ii) a smaller worker brood and iii) a briefer period of foraging activity but iv) comparable overall nest productivity.  相似文献   

18.
Summary Three experiments were performed to determine whether brood care in honey bee colonies is influenced by colony genetic structure and by social context. In experiment 1, there were significant genotypic biases in the relative likelihood of rearing queens or workers, based on observations of individually labeled workers of known age belonging to two visually distinguishable subfamilies. In experiment 2, no genotypic biases in the relative likelihood of rearing drones or workers was detected, in the same colonies that were used in experiment 1. In experiment 3, there again were significant genotypic differences in the likelihood of rearing queens or workers, based on electrophoretic analyses of workers from a set of colonies with allozyme subfamily markers. There also was an overall significant trend for colonies to show greater subfamily differences in queen rearing when the queens were sisters (half- and super-sisters) rather than unrelated, but these differences were not consistent from trial to trial for some colonies. Results of experiments 1 and 3 demonstrate genotypic differences in queen rearing, which has been reported previously based on more limited behavioral observations. Results from all three experiments suggest that genotypic differences in brood care are influenced by social context and may be more pronounced when workers have a theoretical opportunity to practice nepotism. Finally, we failed to detect persistent interindividual differences in bees from either subfamily in the tendency to rear queen brood, using two different statistical tests. This indicates that the probability of queen rearing was influenced by genotypic differences but not by the effect of prior queen-rearing experience. These results suggest that subfamilies within a colony can specialize on a particular task, such as queen rearing, without individual workers performing that task for extended periods of time.  相似文献   

19.
Summary ecological aspects of monogyny and polygyny in social insect colonies are important in comparing individual queen reproductive success. Inseminated, fecund, multiple foundresses are common in some groups of ants and eusocial wasps, but true polygyny in termites has not previously been studied. One third of Nasutitermes corniger (Isoptera: Termitidae) colonies sampled in areas of young second growth in Panama contained from 2–33 primary queens (not supplementary or neotenic reproductives). All queens in polygynous associations were fully pigmented, physogastric egg layers within a single royal cell. Multiple kings were found less frequently; true polyandry is apparently restricted to immature polygynous colonies.Data on queen weight and morphological features, and on colony composition, show that queens in polygynous nests are young and that a transition from polygyny to monogyny probably occurs after several years. The escalated growth rate of multiple queen colonies removes them from the vulnerable incipient colony size class more rapidly than colonies initiated by a single foundress, and gives them sufficient neuter support staff (workers and soldiers) to enable earlier production of fertile alates. Using a population model (Leslie matrix) I construct isoclines of equal population growth which show values of early age class probability of survival and reproductive output favoring monogyny or polygyny under individual selection. This model of queen mutualism accounts for the risk of a female in a polygynous group not succeeding as the final surviving queen.Multiple primary queens are considered rare in termites, but a review of the literature demonstrates that they may be more widespread than is currently recognized. Polygyny in termites has received scant attention but is of significance as an example of a further ecological and evolutionary convergence between the phylogenetically independent orders Isoptera and Hymenoptera.  相似文献   

20.
Facultatively solitary and eusocial species allow for direct tests of the benefits of group living. We used the facultatively social sweat bee Megalopta genalis to test several benefits of group living. We surveyed natural nests modified for observation in the field weekly for 5 weeks in 2003. First, we demonstrate that social and solitary nesting are alternative behaviors, rather than different points on one developmental trajectory. Next, we show that solitary nests suffered significantly higher rates of nest failure than did social nests. Nest failure apparently resulted from solitary foundress mortality and subsequent brood orphanage. Social nests had significantly higher productivity, measured as new brood cells provisioned during the study, than did solitary nests. After accounting for nest failures, per capita productivity did not change with group size. Our results support key predictions of Assured Fitness Return models, suggesting such indirect fitness benefits favor eusocial nesting in M. genalis. We compared field collections of natural nests to our observation nest data to show that without accounting for nest failures, M. genalis appear to suffer a per capita productivity decrease with increasing group size. Calculating per capita productivity from collected nests without accounting for the differential probabilities of survival across group sizes leads to an overestimate of solitary nest productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号