共查询到19条相似文献,搜索用时 78 毫秒
1.
本实验以人工模拟废水为研究对象,采用3组SBR反应器(R_(15℃)、R_(25℃)、R_(35℃)),重点考察了温度对生物脱氮效能、胞外聚合物(EPS)含量及其组分[蛋白质(PN)、多糖(PS)和核酸(DNA)]的影响.结果表明,高温条件有利于促进亚硝酸型生物脱氮体系的建立,显著提高氨氮去除性能.温度对EPS及其组分具有显著影响.随着温度的升高,EPS和TB-EPS含量逐渐降低,而LB-EPS含量逐渐升高,EPS以TB-EPS为主(占69.0%~79.5%),但TB-EPS/LB-EPS比值随着温度升高逐渐降低[3.8(15℃)→3.6(25℃)→2.2(35℃)].在EPS,LB-EPS和TB-EPS中PN和DNA含量随着温度升高而降低,LB-EPS和EPS中PS含量随温度升高而增加.而TB-EPS中PS含量随温度升高而降低,且25℃是各组分浓度变化重要折点.在15℃和25℃时,PN为TB-EPS和LB-EPS的主要成分,PS次之,DNA最少,35℃时,PS成为主要成分,PN次之,DNA最少.此外,本研究也发现,在15℃和25℃时,EPS含量在硝化过程中逐渐增大,反硝化过程中逐渐降低. 相似文献
2.
3.
交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ.方法实现与控制 总被引:22,自引:1,他引:22
采用实时控制策略和曝气 搅拌交替运行方式在 ( 2 6± 1 )℃下开发了一种新型短程硝化反硝化生物脱氮工艺 :实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺 .并对其与实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮工艺进行了比较研究 .结果显示 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺无论从硝化速率、反硝化速率还是从硝化时间、反硝化时间上均优于实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮两种工艺 .其硝化速率和反硝化速率分别是预先设定时间控制交替好氧 缺氧短程硝化反硝化工艺的 1 3 8倍和 1 2 5倍 ,是实时控制传统SBR法短程硝化反硝化脱氮工艺的 1 82倍和 1 6 1倍 .因此 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺不但能够合理分配曝气和搅拌时间 ,而且还能提高硝化、反硝化速率 ,缩短反应时间 ,从而达到降低运行成本的目的 相似文献
4.
以人工模拟废水为研究对象,采用4组SBR反应器(R0,R5,R10和R15),重点考察了碳氮比(C/N)对胞外聚合物(EPS)含量及其组分(蛋白质(PN)、多糖(PS)和核酸(DNA))的影响.试验结果表明:C/N对EPS及其组分具有显著影响.随着C/N由0升高至15,EPS和紧密结合型胞外聚合物(TB-EPS)含量逐渐升高,而松散型胞外聚合物(LB-EPS)含量逐渐降低,EPS以TB-EPS为主(占77.4%~93.6%).EPS和TB-EPS中的PN、PS和DNA含量随着C/N值升高而升高,LB-EPS中的PN、PS和DNA含量随C/N升高而降低.此外,随着C/N的增大,毛细吸水时间(CST)和污泥比阻(SRF)值显著增大,污泥的脱水性能变差. 相似文献
5.
本研究系统考察了阶梯降温并恢复至室温(33→25→20→15→10→22℃)长期变化过程(361d)厌氧氨氧化反应器的动态脱氮效能和厌氧氨氧化活性变化,分析了厌氧氨氧化污泥胞外聚合物(EPS)的变化特性,计算获得了厌氧氨氧化反应的活化能.结果表明,在温度20~33℃下,序批式厌氧氨氧化反应器可稳定高效运行,总氮去除负荷维持在0.4gN/(L·d)左右,最大比厌氧氨氧化活性(SAA)大于0.32gN/(gVSS·d).10℃是厌氧氨氧化菌代谢活性的转折点:当温度降至10℃时,SAA为0.044gN/(gVSS·d),较33℃时下降91%.当温度恢复至22℃,厌氧氨氧化活性恢复至0.24gN/(gVSS·d).厌氧氨氧化反应的活化能Ea在10~33℃和10~20℃范围内分别为68.4,152.9kJ/mol.在本实验温度(33→15℃)范围内,EPS含量随着温度降低而升高;在10℃时,EPS含量显著下降,出水中悬浮物升高,造成部分厌氧氨氧化污泥流失. 相似文献
6.
《环境科学与技术》2021,44(7):140-144
为探究生物炭对活性污泥特征及脱氮除磷的影响,该文在中温条件下,采用序批式反应器,考察了不同类型基质生物炭对活性污泥处理城镇低C/N废水的影响。结果表明,生物炭降低了污泥体积指数,提高了混合液挥发性悬浮固体,利于微生物的增殖。此外,生物炭提高了活性污泥胞外聚合物(EPS)含量,在鸡粪生物炭、玉米秸秆生物炭和污泥生物炭存在的组别内,EPS的含量分别升高至41.3、46.5和39.8 mg/g,显著高于对照组。生物炭主要提高了EPS内蛋白质(PN)的含量,而对多糖(PS)含量影响不显著,进而提高了PN/PS。生物炭强化了活性污泥对氨氮及总磷的去除,而对化学需氧量的影响不显著。生物炭作为载体微生物提供良好附着进而提高微生物活性,此外,生物炭能吸附氨氮与总磷。 相似文献
7.
为解决传统活性污泥法处理市政污水效率较低的问题,借助复合絮凝剂加速污泥沉降的特性,考察了常规运行模式(M1,阶段Ⅰ)、原水与部分出水混合进水的运行模式(M2,阶段Ⅱ~Ⅳ)、缺氧回流型运行模式(M3,阶段Ⅴ)对SBR反应器脱氮除磷的影响.实验结果表明,M2模式的阶段Ⅲ(水力停留时间(HRT)为16 h)~阶段Ⅳ(HRT为8 h,复合絮凝剂投加量均为20μL·L-1),控制组与实验组的TP去除负荷分别从8.0、12.3 g·m-3·d-1上升到21.9、26.4 g·m-3·d-1,表明高水力负荷有利于聚磷菌发挥作用,投加复合絮凝剂进一步提升了磷的去除能力.在3种模式中,M3模式处理效率最高,实验组沉淀时间为5 min,其出水COD、NH+4-N、TN、TP的平均浓度分别为21.6、0.28、15.7、0.18 mg·L-1,相应平均去除率分别为93%、99%、67%、98%,除TN外,均可达到《城镇污水处理厂污染物... 相似文献
8.
胞外聚合物对活性污泥吸附生活污水碳源的影响 总被引:3,自引:0,他引:3
为探索活性污泥中不同层胞外聚合物(SB-EPS、LB-EPS和TB-EPS)对污泥吸附性能的影响,以培养污泥、污水厂污泥为研究对象,采用加热法分层提取EPS,研究不同层EPS对生活污水中COD的吸附特征,并采用Lagergern单层吸附动力学模型、Ritchie双层吸附模型和颗粒内扩散模型方程进行动力学数据分析.结果表明:两种污泥的原污泥、-SB污泥和培养-LB污泥与Lagergern单层吸附模型和Ritchie双层吸附模型的拟合效果均比较好,说明污泥吸附过程既存在单层的物理吸附过程,又存在多层的物理化学吸附过程.污泥从外层到内层,EPS含量逐步增加,蛋白质与多糖比值均为外层小于内层,但培养污泥LB-EPS中蛋白质与多糖比值大于TB-EPS.两种污泥单位SB-EPS的吸附量分别为0.650 mg·mg~(-1)、3.37 mg·mg~(-1),吸附速率比原污泥分别增加了0.0997 min-1、0.0390 min-1,因此,SB-EPS可吸附有机污染物,但吸附速率较小.两种污泥单位TB-EPS的吸附量分别为1.06 mg·mg~(-1)、0.443 mg·mg~(-1),吸附速率比原污泥分别增加了10.7 min-1、0.183 min-1,因此,TB-EPS结构紧密,导致吸附速率减慢,但其能很好地将吸附上的污染物保存在菌体细胞壁外而不被释放.而LB-EPS对污染物没有储存能力,只有快速传递污染物的能力. 相似文献
9.
采用序批式生物反应器(SBR)处理垃圾渗滤液,以投加Na Cl固体的方式改变体系盐度,考察盐度变化对SBR运行过程中污泥胞外聚合物(EPS)及污泥特性的影响。结果表明:盐度的增加(5~15 g/L)对SBR去除COD效果的影响不显著,而对氨氮的去除率则从92%下降至50%;污泥松散型胞外聚合物(LB-EPS)的含量从13.26 mg/g增加至31.75 mg/g,紧密型胞外聚合物(TB-EPS)从19.12 mg/g增至25.75 mg/g。对LB-EPS、TB-EPS中蛋白质(PN)与多糖(PS)进行分析可知,两类EPS中的PN与PS含量均随盐度的增加而增加,但PS的增加量大于PN。进一步将EPS含量的变化与污泥的相关特性进行分析发现,污泥体积指数(SVI)总体上随着EPS含量的增加而增加,污泥的疏水性呈现下降趋势。此外,还发现污泥的Zeta电位受到EPS与盐度的共同影响,呈现先负向减小后增大的趋势,污泥絮体结构随着盐度的增加更为松散。 相似文献
10.
采用SBR工艺,研究不同生物质原料制成的生物炭粉末对活性污泥中的溶解性微生物产物(SMP)、胞外聚合物(EPS)的组成[蛋白质(PN)、多糖(PS)]及其含量的影响;分析活性污泥MLVSS/MLSS的变化以及污水氮、磷的含量。结果表明:添加的生物炭起到连接污泥絮体的作用,菌胶团尺寸增大,污泥中微生物量明显增多。添加生物炭的活性污泥溶解性微生物产物(SMP)中蛋白质的含量减少了62.3%~76.6%。胞外聚合物(EPS)中蛋白质的含量增加了17.8%~32.8%,含有更多的氨基酸或蛋白质中的色氨酸、酪氨酸以及苯丙氨酸。猪粪生物炭(PMB)对活性污泥影响最大,污泥EPS的冻干物中含有更多的芳香族化合物及核酸类物质。添加生物炭后,活性污泥对氮的转化效率提高,氨氮更快地转化为亚硝态氮并使其达到较高的浓度,并且对磷也有更好的去除效果。 相似文献
11.
活性污泥胞外多聚物提取方法的比较 总被引:15,自引:0,他引:15
活性污泥胞外多聚物(EPS)的定量与其提取方法密切相关。基于文献报道的提取方法,采用超声、加热、甲醛加碱等6种方法对活性污泥的EPS进行提取。测定了其中多糖、蛋白质及DNA含量,以评价提取效率及对细胞的破坏程度。结果表明,各种方法提取活性污泥EPS中的蛋白质均多于多糖,且对细胞破坏程度均较小。加热法,甲醛加碱法和超声提取法的提取效率较高,所得多糖和蛋白质含量之和分别为94.30,72.33和56.55mg/gVSS(挥发性悬浮物);通过对不同超声功率和时间的比较,表明在较低功率(25 ̄50W)超声,提取效率变化不大,最佳超声提取时间为4min。 相似文献
12.
活性污泥胞外聚合物提取方法的研究 总被引:1,自引:0,他引:1
对两种不同来源的活性污泥中EPS的提取效率进行了研究,采用的提取方法有NaOH法,阳离子交换树脂法(CER法),加热法和离心法。结果表明,CER法是两种污泥EPS提取中最有效的方法。经过16h的提取,EPS中DNA的含量分别为0.73%和1.61%,这表明EPS的提取没有受到胞内物质的污染。两种污泥EPS的提取量分别为74mg/gVSS和80mg/gVSS,其中多糖和蛋白质是EPS的主要成分。在研究中,CER法最佳提取时间为8h,高搅拌强度和CER投加量都有利于EPS提取量的增加。 相似文献
13.
为了提高含盐废水的生物脱氮除磷效率和生物絮凝性,考察NaCl盐度对A~2/O工艺缺氧区脱氮除磷效率的影响,结合傅里叶变换红外光谱(fourier transform infrared spectroscopy,FTIR)与X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)分析缺氧区活性污泥胞外聚合物(extracellular polymeric substances,EPS)组分与结构变化,以期揭示盐度对生物絮凝性的影响.结果表明,当NaCl盐度为0~5 g·L~(-1)时,A~2/O缺氧区生物絮凝性良好,重絮凝性(flocculation ability,FA)约为44%,污泥粒径约为45.5μm,EPS含量为52.3~62 mg·L~(-1),PN/PS维持在2.1左右;当NaCl盐度由10 g·L~(-1)增加至40g·L~(-1)时,A~2/O缺氧区生物絮凝性显著降低,FA由40%下降至22%,污泥粒径由43.7μm减小至32.1μm,EPS含量由76.5 mg·L~(-1)增加至101.0 mg·L~(-1),PN/PS由1.5下降至1.3.随着NaCl盐度的增加,通过FTIR分析可知,EPS主要组成基团未发生明显变化,以氨基、酰胺Ⅰ和羧基为主;由XPS分析可知,EPS和Na+相互作用过程中部分基团(如C、O、N基团)发生电荷转移,但其存在形态未发生变化. 相似文献
14.
15.
活性污泥胞外多聚物提取方法的比较 总被引:1,自引:0,他引:1
活性污泥污水处理系统中胞外多聚物(extracellular polymeric substances,EPS)对污染物的去除及污泥的絮凝、沉降和脱水性能都有着重要作用,影响活性污泥工艺的运行稳定性,然而不同的提取方法可能导致EPS组分、数量有显著差异,直接影响相关实验结果.本文采用离心法提取溶解型和疏松型EPS后,采用文献经常报道的8种物理、化学方法提取紧密型EPS(tightly bound EPS,TB-EPS),研究TB-EPS数量及多糖、蛋白质、核酸等成分含量并进一步分析TB-EPS的基团组成,也分析了TB-EPS中15种元素含量.结果表明,8种方法中,加热法提取TB-EPS组分数量较多,对污泥微生物细胞破坏程度低,且在EPS提取过程不引入外源物质,是一种较为合适的EPS提取方法.阳离子树脂法对TB-EPS中芳香族蛋白质和腐殖酸类物质有较好的提取效果,Na OH法对富里酸类物质提取效果较好.物理法对TB-EPS红外光谱的官能团种类无明显影响,但化学法对TB-EPS官能团种类影响较显著,TB-EPS具有不同的特征吸附峰.总体上,化学法提取的TB-EPS中元素含量高于物理法.研究者应根据实验目的,选取适宜的EPS提取方法;或者建立EPS提取的标准方法,有助于实验结果间的比较. 相似文献
16.
SBR中除磷颗粒污泥的培养和A/O及A/A/O颗粒污泥工艺除磷特性研究 总被引:6,自引:1,他引:5
以絮状活性污泥为接种污泥,乙酸钠为碳源,在SBR反应器内采用水力筛选的方法进行生物除磷颗粒污泥培养,然后诱导为反硝化聚磷颗粒污泥,探讨2种颗粒污泥除磷特性.结果表明,在厌氧/好氧(A/O)交替运行条件下,82d后培养出生物除磷颗粒污泥,污泥颜色呈淡黄色,粒径为0.5~1.5 mm,沉速为20~30 m/h,含水率为94%,密度为1.043 9,SVI在50 mL/g以下;437d时污泥最大比释磷速率(SRPR)为67.7 mg/(g.h),最大比吸磷速率(SUPR)为43.2 mg/(g.h),污泥中总磷的含量(TP/SS)为6.5%;448 d时改变运行条件为厌氧/缺氧/好氧(A/A/O)进行反硝化聚磷试验,653 d时反硝化聚磷颗粒污泥最大SRPR为30mg/(g.h),最大缺氧SUPR为27.9 mg/(g.h),TP/SS为6.3%.生物除磷颗粒污泥和反硝化聚磷颗粒污泥具有较强的除磷能力. 相似文献
17.
pH值对活性污泥胞外聚合物分子结构和表面特征影响研究 总被引:14,自引:6,他引:14
为明确胞外聚合物(extracellular polymeric substances,EPS)对污水污泥性质的影响机制,通过改变pH值,考察了市政废水和饮料废水2种活性污泥胞外聚合物组分变化,采用红外光谱对比分析了pH值对EPS分子结构的影响,并通过胶体滴定测定其表面电荷,最终结合活性污泥提取EPS前后扫描电子显微镜观察,从宏观上佐证了表面特性和分子结构分析.结果表明,强酸条件下(pH 3),可提取EPS比中性条件下时下降50%,其中多糖下降约30%,蛋白质下降约65%~70%;在强碱条件下(pH 11),可提取EPS比pH 7时升高20%~30%,其中多糖升高约15%,蛋白质升高20%~50%.红外光谱分析表明,羟基在强酸强碱条件下均发生了变化,羧酸、多聚糖、酚类和蛋白质肽键在强酸条件下(pH 3)消失;胶体滴定结果表明,2种污泥提取EPS表面负电荷随pH上升而下降;扫描电镜分析表明,相对于碱性条件下,酸性条件使活性污泥中微生物细胞更易于破碎.pH值可改变活性污泥EPS组分、浓度以及其中基团组成,从而改变EPS表面特性,最终导致污泥状态改变. 相似文献
18.
取厌氧氨氧化EGSB反应器中颗粒污泥,根据粒径筛分为R1(0. 5~1. 4 mm)、R2(1. 4~2. 8 mm)和R3( 2. 8 mm)这3组.提取不同粒径厌氧氨氧化颗粒污泥EPS,分析EPS特性及其对厌氧氨氧化聚集体表面特性的影响.随着厌氧氨氧化颗粒污泥粒径的增加,PS含量介于(10. 69±0. 11)~(12. 28±0. 15) mg·g~(-1)之间,而PN含量从(56. 88±0. 86) mg·g~(-1)增加到(98. 59±2. 10) mg·g~(-1),且PN/PS从5. 32提高到9. 05.不同粒径厌氧氨氧化颗粒污泥EPS官能团及三维荧光组分含量不同.随着颗粒污泥粒径增大,蛋白质二级结构α-螺旋/(β-折叠+无规卷曲)值从0. 60逐渐降低到0. 43,这种变化有利于污泥表面疏水性的表达.随着颗粒污泥粒径的增大,污泥表面疏水性由54. 2%提高到63. 1%,Zeta电位由-41. 2 m V增加到-31. 5 m V,疏水性的增强和表面电荷的增大有利于颗粒污泥的聚集.厌氧氨氧化颗粒污泥EPS可以增强污泥疏水性和提高Zeta电位,EPS中的PN发挥着重要的作用. 相似文献
19.
硫酸盐还原菌活性污泥胞外聚合物对环丙沙星的吸附机制 总被引:1,自引:0,他引:1
胞外聚合物(extracellular polymeric substances,EPS)是微生物污泥的重要组成部分,在废水生物处理过程中起着至关重要的作用.通过上流式硫酸盐还原反应器(sulfate-reducing up-flow sludge bed,SRUSB)的连续运行和批次实验评价了硫酸盐还原菌(sulfate-reducing bacteria,SRB)活性污泥对环丙沙星(ciprofloxacin,CIP)的去除以及EPS在CIP去除过程中所起的重要作用.结果表明,SRB污泥可通过吸附和生物降解有效去除CIP,其中吸附是主要去除途径,EPS在吸附过程中起到重要作用.采用三维荧光光谱结合平行因子分析探究了SRB活性污泥的EPS与CIP结合的机制;采用傅里叶红外光谱分析鉴定了EPS中参与CIP结合的主要官能团.EPS主要通过静态猝灭与CIP结合形成EPS-CIP复合物,其中色氨酸和酪氨酸类蛋白质是EPS中主要参与CIP结合的物质,结合常数分别为1.43×104L·mol~(-1)和1.02×104L·mol~(-1);红外分析表明,羟基、氨基和羧基是EPS中主要参与CIP结合的基团.实验结果揭示了SRB污泥的EPS与CIP结合的机制,有助于更好地理解EPS在SRB污泥系统去除CIP,以及其他有机微污染物的过程中所起的重要作用. 相似文献