首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Effects of Selective Logging on the Butterflies of a Bornean Rainforest   总被引:7,自引:0,他引:7  
Abstract: Selective logging has been the main cause of disturbance to tropical forests in Southeast Asia, so the extent to which biodiversity is maintained in selectively logged forest is of prime conservation importance. We compared the butterfly assemblages of Bornean primary rainforest to those of rainforest selectively logged 6 years previously. We sampled by means of replicated transects stratified into riverine and ridge forests and we included roads in the logged forest. There was a three-fold variation in species richness and abundance over the 8-month sampling period. More species and individuals were observed in the logged forest, although between-replicate variability was high. Rarefied species richness was positively correlated with canopy openness within the range of disturbance levels encountered at our forest sites. Within families, there was no significant difference in the number of species between primary and logged forest. There was a significant difference in the relative abundance of species, but this was due largely to the abundance of one or two species. Community ordination separated the sites along a gradient of disturbance and revealed strong differences between riverine and ridge-forest butterfly assemblages in primary forest that were obscured in logged forest. There was no evidence that logging has resulted in a change in the composition of the butterfly assemblages from species with a local distribution to more widespread species. We conclude that at a logged forest site in close proximity to primary forest, low intensities of logging do not necessarily reduce the species richness or abundance of butterflies, although assemblage composition is changed.  相似文献   

2.
Abstract:  The management of tropical forest in timber concessions has been proposed as a solution to prevent further biodiversity loss. The effectiveness of this strategy will likely depend on species-specific, population-level responses to logging. We conducted a survey (749 line transects over 3450 km) in logging concessions (1.2 million ha) in the northern Republic of Congo to examine the impact of logging on large mammal populations, including endangered species such as the elephant ( Loxodonta africana ), gorilla ( Gorilla gorilla ), chimpanzee ( Pan troglodytes ), and bongo ( Tragelaphus eurycerus ). When we estimated species abundance without consideration of transect characteristics, species abundances in logged and unlogged forests were not different for most species. When we modeled the data with a hurdle model approach, however, analyzing species presence and conditional abundance separately with generalized additive models and then combining them to calculate the mean species abundance, species abundance varied strongly depending on transect characteristics. The mean species abundance was often related to the distance to unlogged forest, which suggests that intact forest serves as source habitat for several species. The mean species abundance responded nonlinearly to logging history, changing over 30 years as the forest recovered from logging. Finally the distance away from roads, natural forest clearings, and villages also determined the abundance of mammals. Our results suggest that logged forest can extend the conservation estate for many of Central Africa's most threatened species if managed appropriately. In addition to limiting hunting, logging concessions must be large, contain patches of unlogged forest, and include forest with different logging histories.  相似文献   

3.
Effects of Selective Logging on Bat Communities in the Southeastern Amazon   总被引:2,自引:0,他引:2  
Abstract:  Although extensive areas of tropical forest are selectively logged each year, the responses of bat communities to this form of disturbance have rarely been examined. Our objectives were to (1) compare bat abundance, species composition, and feeding guild structure between unlogged and low-intensity selectively logged (1–4 logged stems/ha) sampling grids in the southeastern Amazon and (2) examine correlations between logging-induced changes in bat communities and forest structure. We captured bats in understory and canopy mist nets set in five 1-ha study grids in both logged and unlogged forest. We captured 996 individuals, representing 5 families, 32 genera, and 49 species. Abundances of nectarivorous and frugivorous taxa (Glossophaginae, Lonchophyllinae, Stenodermatinae, and Carolliinae) were higher at logged sites, where canopy openness and understory foliage density were greatest. In contrast, insectivorous and omnivorous species (Emballonuridae, Mormoopidae, Phyllostominae, and Vespertilionidae) were more abundant in unlogged sites, where canopy foliage density and variability in the understory stratum were greatest. Multivariate analyses indicated that understory bat species composition differed strongly between logged and unlogged sites but provided little evidence of logging effects for the canopy fauna. Different responses among feeding guilds and taxonomic groups appeared to be related to foraging and echolocation strategies and to changes in canopy cover and understory foliage densities. Our results suggest that even low-intensity logging modifies habitat structure, leading to changes in bat species composition.  相似文献   

4.
There is a lack of quantitative information on the effectiveness of selective‐logging practices in ameliorating effects of logging on faunal communities. We conducted a large‐scale replicated field study in 3 selectively logged moist semideciduous forests in West Africa at varying times after timber extraction to assess post logging effects on amphibian assemblages. Specifically, we assessed whether the diversity, abundance, and assemblage composition of amphibians changed over time for forest‐dependent species and those tolerant of forest disturbance. In 2009, we sampled amphibians in 3 forests (total of 48 study plots, each 2 ha) in southwestern Ghana. In each forest, we established plots in undisturbed forest, recently logged forest, and forest logged 10 and 20 years previously. Logging intensity was constant across sites with 3 trees/ha removed. Recently logged forests supported substantially more species than unlogged forests. This was due to an influx of disturbance‐tolerant species after logging. Simultaneously Simpson's index decreased, with increased in dominance of a few species. As time since logging increased richness of disturbance‐tolerant species decreased until 10 years after logging when their composition was indistinguishable from unlogged forests. Simpson's index increased with time since logging and was indistinguishable from unlogged forest 20 years after logging. Forest specialists decreased after logging and recovered slowly. However, after 20 years amphibian assemblages had returned to a state indistinguishable from that of undisturbed forest in both abundance and composition. These results demonstrate that even with low‐intensity logging (≤3 trees/ha) a minimum 20‐year rotation of logging is required for effective conservation of amphibian assemblages in moist semideciduous forests. Furthermore, remnant patches of intact forests retained in the landscape and the presence of permanent brooks may aid in the effective recovery of amphibian assemblages. Recuperación de Ensambles de Anfibios en Dos Etapas Después de la Tala Selectiva de Bosques Tropicales  相似文献   

5.
Natural forest regrowth is a cost-effective, nature-based solution for biodiversity recovery, yet different socioenvironmental factors can lead to variable outcomes. A critical knowledge gap in forest restoration planning is how to predict where natural forest regrowth is likely to lead to high levels of biodiversity recovery, which is an indicator of conservation value and the potential provisioning of diverse ecosystem services. We sought to predict and map landscape-scale recovery of species richness and total abundance of vertebrates, invertebrates, and plants in tropical and subtropical second-growth forests to inform spatial restoration planning. First, we conducted a global meta-analysis to quantify the extent to which recovery of species richness and total abundance in second-growth forests deviated from biodiversity values in reference old-growth forests in the same landscape. Second, we employed a machine-learning algorithm and a comprehensive set of socioenvironmental factors to spatially predict landscape-scale deviation and map it. Models explained on average 34% of observed variance in recovery (range 9–51%). Landscape-scale biodiversity recovery in second-growth forests was spatially predicted based on socioenvironmental landscape factors (human demography, land use and cover, anthropogenic and natural disturbance, ecosystem productivity, and topography and soil chemistry); was significantly higher for species richness than for total abundance for vertebrates (median range-adjusted predicted deviation 0.09 vs. 0.34) and invertebrates (0.2 vs. 0.35) but not for plants (which showed a similar recovery for both metrics [0.24 vs. 0.25]); and was positively correlated for total abundance of plant and vertebrate species (Pearson r = 0.45, p = 0.001). Our approach can help identify tropical and subtropical forest landscapes with high potential for biodiversity recovery through natural forest regrowth.  相似文献   

6.
Abstract: The recent advent of carbon crediting has led to a rapid rise in biosequestration projects that seek to remove carbon from the atmosphere through afforestation and forest rehabilitation. Such projects also present an important potential opportunity to reverse biodiversity losses resulting from deforestation and forest degradation, but the biodiversity benefits of different forms of biosequestration have not been considered adequately. We captured birds in mist nets to examine the effects of rehabilitation of logged forest on birds in Sabah, Borneo, and to test the hypothesis that rehabilitation restores avian assemblages within regenerating forest to a condition closer to that seen in unlogged forest. Species richness and diversity were similar in unlogged and rehabilitated forest, but significantly lower in naturally regenerating forest. Rehabilitation resulted in a relatively rapid recovery of populations of insectivores within logged forest, especially those species that forage by sallying, but had a marked adverse effect on frugivores and possibly reduced the overall abundance of birds within regenerating forest. In view of these results, we advocate increased management for heterogeneity within rehabilitated forests, but we strongly urge an increased role for forest rehabilitation in the design and implementation of a biodiversity‐friendly carbon‐offsetting market.  相似文献   

7.
Animal‐mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal‐mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal‐mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal‐mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy‐fruited tree species. We carried out a meta‐analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal‐mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed‐dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large‐seeded than of small‐seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large‐seeded plant species is that large frugivores, as the predominant seed dispersers for large‐seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal‐mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large‐ and small‐seeded tree species underpinned case studies that showed disrupted plant‐frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. Meta Análisis de los Efectos de la Perturbación Humana sobre la Dispersión de Semillas por Animales  相似文献   

8.
A key driver of rain forest degradation is rampant commercial logging. Reduced-impact logging (RIL) techniques dramatically reduce residual damage to vegetation and soils, and they enhance the long-term economic viability of timber operations when compared to conventionally managed logging enterprises. Consequently, the application of RIL is increasing across the tropics, yet our knowledge of the potential for RIL also to reduce the negative impacts of logging on biodiversity is minimal. We compare the impacts of RIL on birds, leaf-litter ants, and dung beetles during a second logging rotation in Sabah, Borneo, with the impacts of conventional logging (CL) as well as with primary (unlogged) forest. Our study took place 1-8 years after the cessation of logging. The species richness and composition of RIL vs. CL forests were very similar for each taxonomic group. Both RIL and CL differed significantly from unlogged forests in terms of bird and ant species composition (although both retained a large number of the species found in unlogged forests), whereas the composition of dung beetle communities did not differ significantly among forest types. Our results show little difference in biodiversity between RIL and CL over the short-term. However, biodiversity benefits from RIL may accrue over longer time periods after the cessation of logging. We highlight a severe lack of studies investigating this possibility. Moreover, if RIL increases the economic value of selectively logged forests (e.g., via REDD+, a United Nations program: Reducing Emissions from Deforestation and Forest Degradation in Developing Countries), it could help prevent them from being converted to agricultural plantations, which results in a tremendous loss of biodiversity.  相似文献   

9.
Abstract:  Small-scale, local disturbance of tropical forests, for example from selective logging, is widespread, but its effects on biodiversity and ecosystem function have rarely been studied. In 3 East African tropical rainforests, we investigated the effect of different levels of local forest disturbance on the frugivore community and on tree visitation and fruit removal rates of the small-seeded tree Celtis durandii. We quantified birds and primates in little and heavily disturbed sites, distinguishing between forest specialists, forest generalists, and forest visitors. We quantified frugivorous tree visitors and seed removal rates of C. durandii trees in the same sites. Forest disturbance reduced the species richness and density of the frugivore community and of forest specialists. Frugivorous species and individuals visiting the study trees were reduced significantly, which led to a marginally significant decline in fruit removal by all frugivores and a significant reduction in removal by forest specialists. Reduction in fruit removal by forest specialists was not compensated for by increases in removal by forest generalists or visitors. Results did not differ among the 3 rainforests, which suggests they were consistent at a regional scale. So local forest disturbance led to a loss of frugivores and their seed removal services. This suggests that large-seeded tree species and trees with small fruits are losing seed dispersers. Thus, local forest disturbance appears to have a more general negative impact on frugivores and their seed dispersal services than anticipated previously.  相似文献   

10.
The impacts of land‐use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low‐intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low‐intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low‐intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land‐use classes, but only 4 species were unique to primary forests. Low‐, medium‐, and high‐intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low‐intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land‐use intensity increased, especially in high‐intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification—especially increased grazing—will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low‐intensity agricultural lands are not extensively converted to high‐intensity pastures.  相似文献   

11.
Abstract: There is an intense debate about the effects of postfire salvage logging versus nonintervention policies on regeneration of forest communities, but scant information from experimental studies is available. We manipulated a burned forest area on a Mediterranean mountain to experimentally analyze the effect of salvage logging on bird–species abundance, diversity, and assemblage composition. We used a randomized block design with three plots of approximately 25 ha each, established along an elevational gradient in a recently burned area in Sierra Nevada Natural and National Park (southeastern Spain). Three replicates of three treatments differing in postfire burned wood management were established per plot: salvage logging, nonintervention, and an intermediate degree of intervention (felling and lopping most of the trees but leaving all the biomass). Starting 1 year after the fire, we used point sampling to monitor bird abundance in each treatment for 2 consecutive years during the breeding and winter seasons (720 censuses total). Postfire burned‐wood management altered species assemblages. Salvage logged areas had species typical of open‐ and early‐successional habitats. Bird species that inhabit forests were still present in the unsalvaged treatments even though trees were burned, but were almost absent in salvage‐logged areas. Indeed, the main dispersers of mid‐ and late‐successional shrubs and trees, such as thrushes (Turdus spp.) and the European Jay (Garrulus glandarius) were almost restricted to unsalvaged treatments. Salvage logging might thus hamper the natural regeneration of the forest through its impact on assemblages of bird species. Moreover, salvage logging reduced species abundance by 50% and richness by 40%, approximately. The highest diversity at the landscape level (gamma diversity) resulted from a combination of all treatments. Salvage logging may be positive for bird conservation if combined in a mosaic with other, less‐aggressive postfire management, but stand‐wide management with harvest operations has undesirable conservation effects.  相似文献   

12.
Tropical forest ecosystems are threatened by habitat conversion and other anthropogenic actions. Timber production forests can augment the conservation value of primary forest reserves, but studies of logging effects often yield contradictory findings and thus inhibit efforts to develop clear conservation strategies. We hypothesized that much of this variability reflects a common methodological flaw, simple pseudoreplication, that confounds logging effects with preexisting spatial variation. We reviewed recent studies of the effects of logging on biodiversity in tropical forests (n = 77) and found that 68% were definitively pseudoreplicated while only 7% were definitively free of pseudoreplication. The remaining proportion could not be clearly categorized. In addition, we collected compositional data on 7 taxa in 24 primary forest research plots and systematically analyzed subsets of these plots to calculate the probability that a pseudoreplicated comparison would incorrectly identify a treatment effect. Rates of false inference (i.e., the spurious detection of a treatment effect) were >0.5 for 2 taxa, 0.3–0.5 for 2 taxa, and <0.3 for 3 taxa. Our findings demonstrate that tropical conservation strategies are being informed by a body of literature that is rife with unwarranted inferences. Addressing pseudoreplication is essential for accurately assessing biodiversity in logged forests, identifying the relative merits of specific management practices and landscape configurations, and effectively balancing conservation with timber production in tropical forests. Pseudoreplicación en Bosques Tropicales y Efectos Resultantes Sobre la Conservación de Biodiversidad  相似文献   

13.
Humans influence tropical rainforest animals directly via exploitation and indirectly via habitat disturbance. Bushmeat hunting and logging occur extensively in tropical forests and have large effects on particular species. But how they alter animal diversity across landscape scales and whether their impacts are correlated across species remain less known. We used spatially widespread measurements of mammal occurrence across Malaysian Borneo and recently developed multispecies hierarchical models to assess the species richness of medium‐ to large‐bodied terrestrial mammals while accounting for imperfect detection of all species. Hunting was associated with 31% lower species richness. Moreover, hunting remained high even where richness was very low, highlighting that hunting pressure persisted even in chronically overhunted areas. Newly logged sites had 11% lower species richness than unlogged sites, but sites logged >10 years previously had richness levels similar to those in old‐growth forest. Hunting was a more serious long‐term threat than logging for 91% of primate and ungulate species. Hunting and logging impacts across species were not correlated across taxa. Negative impacts of hunting were the greatest for common mammalian species, but commonness versus rarity was not related to species‐specific impacts of logging. Direct human impacts appeared highly persistent and lead to defaunation of certain areas. These impacts were particularly severe for species of ecological importance as seed dispersers and herbivores. Indirect impacts were also strong but appeared to attenuate more rapidly than previously thought. The lack of correlation between direct and indirect impacts across species highlights that multifaceted conservation strategies may be needed for mammal conservation in tropical rainforests, Earth's most biodiverse ecosystems. Correlación y Persistencia de los Impactos de la Caza y la Tala sobre los Mamíferos de los Bosques Tropicales  相似文献   

14.
Stand-replacing natural disturbances in mature forests are traditionally seen as events that cause forests to revert to early stages of succession and maintain species diversity. In some cases, however, such transitions could be an artifact of salvage logging and may increase biotic homogenization. We present initial (two-year) results of a study of the effects of tornado damage and the combined effects of tornado damage and salvage logging on environmental conditions and ground cover plant communities in mixed oak-pine forests in north central Mississippi. Plots were established in salvage-logged areas, adjacent to plots established before the storm in unlogged areas, spanning a gradient of storm damage intensity. Vegetation change directly attributable to tornado damage was driven primarily by a reduction in canopy cover but was not consistent with a transition to an early stage of succession. Although we observed post-storm increases of several disturbance indicators (ruderals), we also observed significant increases in the abundance of a few species indicative of upland forests. Increases in flowering were just as likely to occur in species indicative of forests as in species indicative of open woodlands. Few species declined as a result of the tornado, resulting in a net increase in species richness. Ruderals were very abundant in salvage-logged areas, which contained significantly higher amounts of bare ground and greater variance in soil penetrability than did damaged areas that were not logged. In contrast to unlogged areas severely damaged by the tornado, most upland forest indicators were not abundant in logged areas. Several of the forest and open-woodland indicators that showed increased flowering in damaged areas were absent or sparse in logged areas. Species richness was lower in salvage-logged areas than in adjacent damaged areas but similar to that in undamaged areas. These results suggest that salvage logging prevented positive responses of several forest and open-woodland species to tornado damage. Anthropogenic disturbances such as salvage logging appear to differ fundamentally from stand-level canopy-reducing disturbances in their effects on ground cover vegetation in the forests studied here and are perhaps more appropriately viewed as contributing to biotic homogenization than as events that maintain diversity.  相似文献   

15.
Abstract:  Plantation forests and second-growth forests are becoming dominant components of many tropical forest landscapes. Yet there is little information available concerning the consequences of different forestry options for biodiversity conservation in the tropics. We sampled the leaf-litter herpetofauna of primary, secondary, and Eucalyptus plantation forests in the Jari River area of northeastern Brazilian Amazonia. We used four complementary sampling techniques, combined samples from 2 consecutive years, and collected 1739 leaf-litter amphibians (23 species) and 1937 lizards (30 species). We analyzed the data for differences among forest types regarding patterns of alpha and beta diversity, species-abundance distributions, and community structure. Primary rainforest harbored significantly more species, but supported a similar abundance of amphibians and lizards compared with adjacent areas of second-growth forest or plantations. Plantation forests were dominated by wide-ranging habitat generalists. Secondary forest faunas contained a number of species characteristic of primary forest habitat. Amphibian communities in secondary forests and Eucalyptus plantations formed a nested subset of primary forest species, whereas the species composition of the lizard community in plantations was distinct, and was dominated by open-area species. Although plantation forests are relatively impoverished, naturally regenerating forests can help mitigate some negative effects of deforestation for herpetofauna. Nevertheless, secondary forest does not provide a substitute for primary forest, and in the absence of further evidence from older successional stands, we caution against the optimistic claim that natural forest regeneration in abandoned lands will provide refuge for the many species that are currently threatened by deforestation .  相似文献   

16.
The ecological consequences of logging have been and remain a focus of considerable debate. In this study, we assessed bird species composition within a logging concession in Central Kalimantan, Indonesian Borneo. Within the study area (approximately 196 km2) a total of 9747 individuals of 177 bird species were recorded. Our goal was to identify associations between species traits and environmental variables. This can help us to understand the causes of disturbance and predict whether species with given traits will persist under changing environmental conditions. Logging, slope position, and a number of habitat structure variables including canopy cover and liana abundance were significantly related to variation in bird composition. In addition to environmental variables, spatial variables also explained a significant amount of variation. However, environmental variables, particularly in relation to logging, were of greater importance in structuring variation in composition. Environmental change following logging appeared to have a pronounced effect on the feeding guild and size class structure but there was little evidence of an effect on restricted range or threatened species although certain threatened species were adversely affected. For example, species such as the terrestrial insectivore Argusianus argus and the hornbill Buceros rhinoceros, both of which are threatened, were rare or absent in recently logged forest. In contrast, undergrowth insectivores such as Orthotomus atrogularis and Trichastoma rostratum were abundant in recently logged forest and rare in unlogged forest. Logging appeared to have the strongest negative effect on hornbills, terrestrial insectivores, and canopy bark-gleaning insectivores while moderately affecting canopy foliage-gleaning insectivores and frugivores, raptors, and large species in general. In contrast, undergrowth insectivores responded positively to logging while most understory guilds showed little pronounced effect. Despite the high species richness of logged forest, logging may still have a negative impact on extant diversity by adversely affecting key ecological guilds. The sensitivity of hornbills in particular to logging disturbance may be expected to alter rainforest dynamics by seriously reducing the effective seed dispersal of associated tree species. However, logged forest represents an increasingly important habitat for most bird species and needs to be protected from further degradation. Biodiversity management within logging concessions should focus on maintaining large areas of unlogged forest and mitigating the adverse effects of logging on sensitive groups of species.  相似文献   

17.
Increasing the density of natural reserves in the forest landscape may provide conservation benefits for biodiversity within and beyond reserve borders. We used 2 French data sets on saproxylic beetles and landscape cover of forest reserves (LCFR) to test this hypothesis: national standardized data derived from 252 assessment plots in managed and reserve stands in 9 lowland and 5 highland forests and data from the lowland Rambouillet forest, a forested landscape where a pioneer conservation policy led to creation of a dense network of reserves. Abundance of rare and common saproxylic species and total saproxylic species richness were higher in forest reserves than in adjacent managed stands only in highland forests. In the lowland regional case study, as LCFR increased total species richness and common species abundance in reserves increased. In this case study, when there were two or more reserve patches, rare species abundance inside reserves was higher and common species richness in managed stands was higher than when there was a single large reserve. Spillover and habitat amount affected ecological processes underlying these landscape reserve effects. When LCFR positively affected species richness and abundance in reserves or managed stands, >12‐20% reserve cover led to the highest species diversity and abundance. This result is consistent with the target of 17% forested land area in reserves set at the Nagoya biodiversity summit in 2010. Therefore, to preserve biodiversity we recommend at least doubling the current proportion of forest reserves in European forested landscapes.  相似文献   

18.
Recovery of Faunal Communities During Tropical Forest Regeneration   总被引:14,自引:0,他引:14  
Abstract:  As mature tropical forests are cleared, secondary forests may play an important role in the conservation of animal species, depending on how fast animal communities recover during forest regeneration. I reviewed published studies on the recovery of animal species richness and composition during tropical forest regeneration. In 38 of the 39 data sets I examined, conversion of forest to agriculture or pasture substantially reduced species richness. Given suitable conditions for forest recovery, the species richness of the animal taxa considered can be predicted to resemble that of mature forests roughly 20–40 years after land abandonment. At least for ants and birds, however, recovery of species composition appears to take substantially longer than recovery of species richness. Because species richness for many taxa appears to recover relatively rapidly in secondary forests, conservation of secondary forests may be an effective investment in future diversity. The slower recovery of species composition indicates, however, that some species will require stands of mature forest to persist.  相似文献   

19.
Abstract: In Canada and the United States pressure to recoup financial costs of wildfire by harvesting burned timber is increasing, despite insufficient understanding of the ecological consequences of postfire salvage logging. We compared the species richness and composition of deadwood‐associated beetle assemblages among undisturbed, recently burned, logged, and salvage‐logged, boreal, mixed‐wood stands. Species richness was lowest in salvage‐logged stands, largely due to a negative effect of harvesting on the occurrence of wood‐ and bark‐boring species. In comparison with undisturbed stands, the combination of wildfire and logging in salvage‐logged stands had a greater effect on species composition than either disturbance alone. Strong differences in species composition among stand treatments were linked to differences in quantity and quality (e.g., decay stage) of coarse woody debris. We found that the effects of wildfire and logging on deadwood‐associated beetles were synergistic, such that the effects of postfire salvage logging could not be predicted reliably on the basis of data on either disturbance alone. Thus, increases in salvage logging of burned forests may have serious negative consequences for deadwood‐associated beetles and their ecological functions in early postfire successional forests.  相似文献   

20.
Abstract: Epiphytes are diverse and important elements of tropical forests, but as canopy‐dwelling organisms, they are highly vulnerable to deforestation. To assess the effect of deforestation on epiphyte diversity and the potential for epiphyte conservation in anthropogenically transformed habitats, we surveyed the epiphytic vegetation of an Ecuadorian cloud forest reserve and its surroundings. Our study was located on the western slopes of the Andes, a global center of biodiversity. We sampled vascular epiphytes of 110 study plots in a continuous primary forest; 14 primary forest fragments; isolated remnant trees in young, middle‐aged, and old pastures; and young and old secondary forests. It is the first study to include all relevant types of habitat transformation at a single study site and to compare epiphyte diversity at different temporal stages of fragmentation. Epiphyte diversity was highest in continuous primary forest, followed by forest fragments and isolated remnant trees, and lowest in young secondary forests. Spatial parameters of habitat transformation, such as fragment area, distance to the continuous primary forest, or distance to the forest edge from inside the forest, had no significant effect on epiphyte diversity. Hence, the influence of dispersal limitations appeared to be negligible or appeared to operate only over very short distances, whereas microclimatic edge effects acted only in the case of completely isolated trees, but not in larger forest fragments. Epiphyte diversity increased considerably with age of secondary forests, but species assemblages on isolated remnant trees were impoverished distinctly with time since isolation. Thus, isolated trees may serve for recolonization of secondary forests, but only for a relatively short time. We therefore suggest that the conservation of even small patches of primary forest within agricultural landscape matrices is essential for the long‐term maintenance of the high epiphyte diversity in tropical cloud forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号