首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
Atmospheric inputs of reactive nitrogen (N) to ecosystems are a particular concern in the northeastern USA, including New York State, where rates of atmospheric N deposition are among the highest in the nation. We calculate the seasonal and annual spatial variations of contemporary inorganic atmospheric N deposition loading to multi-scale watersheds across New York State using numerous monitoring datasets of precipitation and ambient atmospheric N concentrations. Our models build upon and refine previous efforts estimating the spatial distribution of N deposition. Estimates of total inorganic wet deposition (NH4-N + NO3-N) across New York ranged from 4.7 to 10.5 kg ha(-1) yr(-1) under contemporary conditions (averaged 2002-2004), and both seasonal and annual predicted rates of inorganic N deposition (NH4-N, NO3-N, and total) fit relatively well with that of observed measurements. Our results suggest that "hot spots" of N deposition are, for the most part, spatially distributed according to geographic positions (i.e., relative location from sources and the Great Lakes system) and elevation. We also detect seasonal variations in deposition, showing that total wet atmospheric inorganic N deposition inputs to watersheds (extracted from the four-digit HUC calculations) are highest during the spring (mean = 2.4 kg ha(-1), stddev = 0.29) and lowest during the winter months (mean = 1.4 kg ha(-1), stddev = 0.23). Results also suggest that wet NO3(-) consistently comprises a slightly higher proportion of wet N deposition than wet NH4+ throughout watersheds of New York, ranging from 2.5 to 6.1 kg NO3-N ha(-1) yr(-1) compared to NH4+, which ranges from 2.2 to 4.4 kg NH4-N ha(-1) yr(-1).  相似文献   

2.
Al, Cd, Cr, Cu, Fe, Mn, Pb, Zn, NH4+, Mg2+, Ca2+, Na+, K+, Cl-, NO3- and SO4(2-), along with pH were determined in wet and dry deposition samples collected at Al-Hashimya, Jordan. Mean trace metal concentrations were similar or less than those reported for other urban regions worldwide, while concentrations of Ca2+ and SO4(2-) were the highest. The high Ca2+ concentrations were attributed to the calcareous nature of the local soil and to the influence of the Saharan dust, while the high concentrations of SO4(2-) were attributed to the influence of anthropogenic sources and Saharan dust soil. Except for SO4(2-), NO3-, and Ca2+, dry deposition fluxes of measured metals and ions were higher than their corresponding wet deposition fluxes. The high annual average pH values recorded for wet and dry deposition samples were attributed to the neutralization of acidity by alkaline species. Cd, Cr, Cu, Pb, Zn, NO3- and SO4(2-) were enriched in wet and dry deposition samples relative to crustal material, and a significant anthropogenic contribution to these elements and ions is tentatively suggested. Finally, the possible sources and the main factors affecting the concentrations of the measured species are discussed.  相似文献   

3.
The paper describes an application of a statistical analysis for estimating long-term trends in pollutant concentrations of selected pollutants in the Danube river. The results show the changes of concentrations of NH(4)(+)-N, NO(3)(-)-N, PO(4)(3-)-P, total P, BOD(5) and COD(Cr) in a ten year period with the aim to find how the concentrations vary in the whole stretch of this river. The study was based on the data collected in the frame of Transnational Monitoring Network of the ICPDR. To obtain plausible results we have chosen statistical methods, such as tests based on the Spearman correlation coefficient and median regression, which are not sensitive to departures from normality as high skewness or outliers.  相似文献   

4.
Water quality throughout south Florida has been a major concern for many years. Nutrient enrichment in the Indian River Lagoon (IRL) is a major surface water issue and is suggested as a possible cause of symptoms of ecological degradation. In 2005-06, water samples were collected weekly from seven sites along Ten Mile Creek (TMC), which drains into the Indian River Lagoon, to investigate and analyze spatial and temporal fluctuations of nutrients nitrogen (N) and phosphorus (P). The objective of this study was to understand the relationships among chlorophyll a concentration, nutrient enrichment and hydrological parameters in the surface water body.High median concentrations of total P (TP, 0.272 mg L(-1)), PO4-P (0.122 mg L(-1)), and dissolved total P (DTP, 0.179 mg L(-1)); and total N (TN, 0.988 mg L(-1)), NO3(-)-N (0.104 mg L(-1)), NH4+-N (0.103 mg L(-1)), and total Kjeldahl N (TKN, 0.829 mg L(-1)), were measured in TMC. The concentrations of TP, PO4-P, DTP, TN, NO3(-)-N, NH4+-N, and TKN were higher in summer and fall than in winter and spring. However, chlorophyll a and pheophytin concentrations during this period in TMC varied in the range of 0.000-60.7 and 0.000-17.4 microg L(-1), with their median values of 3.54 and 3.02 microg L(-1), respectively. The greatest mean chlorophyll a (10.3 microg L(-1)) and pheophytin (5.71 microg L(-1)) concentrations occurred in spring, while the lowest chlorophyll a (1.49 microg L(-1)) and pheophytin (1.97 mug L(-1)) in fall. High concentrations of PO4-P (>0.16 mg L(-1)), DTP (>0.24 mg L(-1)), NO3(-)-N (>0.15 mg L(-1)), NH4+-N (>0.12 mg L(-1)), and TKN (>0.96 mg L(-1)), occurred in the upstream of TMC, while high concentrations of chlorophyll a (>6.8 mug L(-l)) and pheophytin (>3.9 microg L(-l)) were detected in the downstream of TMC. The highest chlorophyll a (11.8 mug L(-l)) and pheophytin (6.06 microg L(-l)) concentrations, however, were associated with static and open water conditions. Hydrological parameters (total dissolved solid, electrical conductivity, salinity, pH, and water temperature) were positively correlated with chlorophyll a and pheophytin concentrations (P < 0.01) and these factors overshadowed the relationships between N and P concentrations and chlorophyll a under field conditions. Principal component analysis and the ratios of DIN/DP and TN/TP in the water suggest that N is the limiting nutrient factor for phytoplankton growth in the TMC and elevated N relative to P is beneficial to the growth of phytoplankton, which is supported by laboratory culture experiments under controlled conditions.  相似文献   

5.
The dry deposition of atmospheric nitrogen (including NO(2) and NH(3)) into a typical agro-ecosystem in Southeast China during 2006-2007 was estimated. Results indicated that the dry deposition velocities of NO(2) and NH(3) ranged from 0.04-0.24 cm s(-1) and 0.09-0.47 cm s(-1), respectively. The higher values appeared in the non-crop growing period. Concentrations of atmospheric NO(2) and NH(3) ranged from 24.64-104.10 μgN m(-3) and 14.40-389.6 μgN m(-3), respectively. Variation of the NH(3) mixing ratio showed a clear double-peak. NO(2) and NH(3) deposition fluxes were 74.68-80.75 kgN ha(-1), which was equivalent to 162.4 and 175.5 kg ha(-1) of urea applied in 2006-2007. The N deposition fluxes were 13.91-40.38 and 5.33-22.73 kgN ha(-1) in peanut and rice growing periods, accounting for 8.18%-40.38% and 2.13%-23.06% of N fertilizer usages, respectively. NO(2) and NH(3) deposition were significant for the red soil farmland.  相似文献   

6.
Monitoring the concentration of NO(3)-N from agricultural fields to the subsurface and shallow ground water resources have received considerable interest worldwide, since agriculture has been identified as a major source of nitrate-nitrogen (NO(3)-N) pollution of groundwater systems in intensively farmed watersheds. A study was conducted to quantify the impact of two tillage practices viz. chisel plow (CP) and no till (NT) with liquid swine manure application on nitrate leaching to the shallow ground water system under corn-soybean production system. This study is part of the long-term field experiments conducted at Iowa State University using completely randomized block design. The NO(3)-N concentrations in the shallow ground water were monitored at three depths viz., a network of subsurface drains at a depth of 1.2 m and piezometers at depths of 1.8 m and 2.4 m. Results of this study showed that the average NO(3)-N concentration during the study period was 16.1 mg l(-1), 14.4 mg l(-1) and 11.8 mg l(-1) at 1.2 m, 1.8 m and 2.4 m depths, respectively implying significant amount of NO(3)-N leaching past the subsurface drain depth of 1.2 m into the shallow groundwater but the NO(3)-N concentration decreases with the depth. The NO(3)-N concentrations in shallow groundwater were significantly higher under the chisel plow system in comparison with the no till method of tillage. Fall application of liquid swine manure caused more leaching in comparison with the spring application. Higher NO(3)-N concentration was observed under corn in comparison with the soybean plots. An in-depth analysis of the data showed a definite relationship between the NO(3)-N concentration in subsurface drain water at a depth of 1.2 m and shallow groundwater at depths of 1.8 m and 2.4 m depths.  相似文献   

7.
Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.  相似文献   

8.
The concentrations of ammonium NH4+, nitrate NO3-, and nitrite NO2- ions were recorded along with ammonia (NH(3)) emission from a fertilized rice field located in the Kwangju province in South Korea over a period of 4 months (June to October 2006). The highest magnitude of NH(3) flux was 20,754 microg m(-2) h(-1), while the average flux value over the entire sampling period was 2,395 microg m(-2) h(-1). The highest ionic concentrations were 1.67, 0.44, and 0.71 ppm for NH4+, NO3-, and NO2- ions, respectively. Possible effects of soil pH on NH(3) fluxes were detected, as they concurrently exhibited a gradual and periodic change during the sampling period. Positive correlations existed between concentrations of NH4+ and NO2- ions and the soil pH. Positive correlations also existed between NH(3) emission flux and ambient (and water) temperatures. Results indicated that fertilizer application to rice can lead to significant emission of NH(3) along with NH4+ and NO3- ions.  相似文献   

9.
The atmospheric deposition of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) was investigated at four locations in different suburban and urban functional districts of Guangzhou City. The annual deposition fluxes of total PBDD/Fs (eight 2,3,7,8-substituted tetra- to hexa-BDD/Fs) were in the range of 36-51 (mean 46) pg m(-2) day(-1), and the corresponding TEQ fluxes were estimated to range between 7.9 and 11.3 (mean 10.3) pg I-TEQ m(-2) day(-1), indicating a noticeable pollution level. The deposition fluxes of PBDD/Fs during the wet season were 2-4 times as high as those during the dry season. Both rainfall and temperature positively correlated with PBDD/F deposition fluxes. Ambient gas/particle partition coefficients (K(p)) were predicted with SPARC. It appears seasonal variations of PBDD/F deposition fluxes were influenced by meteorological parameters and the local usage of brominated flame retardants (BFRs). The congener profiles of PBDD/Fs at four locations were similar either spatially or temporally, indicating that the main PBDD/F emission sources were similar to one another. Seasonal variations and congener patterns of PBDD/Fs indicated the possible sources included electronic waste recycling, industrial waste incinerators and products containing BFRs.  相似文献   

10.
Long-term fluxes of ozone (O(3)) were measured over a mixed temperate forest using the aerodynamic gradient method. The long-term average O(3) flux (F) was -366 ng m(-2) s(-1) for the period 2000-2010, corresponding to an average O(3) concentration of 48 μg m(-3) and a deposition velocity v(d) of 9 mm s(-1). Average nocturnal ozone deposition amounted to -190 ng m(-2) s(-1), which was about one third of the daytime flux. Also during the winter period substantial O(3) deposition was measured. In addition, total O(3) fluxes were found to differ significantly among canopy wetness categories. During the day, highest deposition fluxes were generally measured for a dry canopy, whereas a rain-wetted canopy constituted the best sink at night. Flux partitioning calculations revealed that the stomatal flux (F(s)) contributed 20% to the total F but the F(s)/F fraction was subject to seasonal and diurnal changes. The annual concentration-based index AOT40 (accumulated dose over a threshold of 40 ppb) and the Phytotoxic Ozone Dose (POD(1) or accumulated stomatal flux above a threshold of 1 nmol m(-2) s(-1)) were related in a curvilinear way. The O(3) deposition was found to be largely controlled by non-stomatal sinks, whose strength was enhanced by high friction velocities (u(*)), optimizing the mechanical mixing of O(3) into the canopy and the trunk space. The long-term geometrical mean of the non-stomatal resistance (R(ns)) was 136 s m(-1) but lower R(ns) values were encountered during the winter half-year due to higher u(*). The R(ns) was also subject to a marked diurnal variability, with low R(ns) in the morning hours, when turbulence took off. We speculate that non-stomatal deposition was largely driven by scavenging of ozone by biogenic volatile organic compounds (BVOCs) and especially NO emitted from the crown or the forest floor.  相似文献   

11.
The long-term behaviour of (137)Cs activity concentrations in air and fallout has been studied in the city of Zagreb for the post-Chernobyl period (1986-2006) as a part of an extended monitoring program of radioactive contamination of human environment in Croatia. Annual mean (137)Cs activity concentrations in air and annual total deposition fluxes (wet plus dry) decreased from 2.8 x 10(-4) Bq m(-3) in September 1986 to 3.0 x 10(-6) Bq m(-3) in last quarter of 2006 and from 6,410 Bq m(-2) year(-1) in 1986 to 2 Bq m(-2) year(-1) in 2006 respectively. By fitting the measured (137)Cs activity concentrations to the theoretical curve the ecological half-lives of (137)Cs in air and fallout were estimated with respective values of 0.46 and 0.54 years for immediate post-Chernobyl period, increasing to 5.52 and 3.97 years afterwards. Using the data on (137)Cs activity concentrations in air and fallout total caesium deposition velocity of (3.34 +/- 3.13) x 10(-2) ms(-1) was estimated with median value being 2.13 x 10(-2) ms(-1). Such relatively high (137)Cs deposition velocities compared with pre-Chernobyl ones, are characteristic for the post-Chernobyl period and, according to Stokes' settling law, indicate that the diameters of aerosol particles associated with (137)Cs originated from the Chernobyl accident are pretty large, i.e. >1 microm. (134)Cs/(137)Cs activity ratio in fallout and in air has been found to be similar to the theoretically predicted values, initial value being about 0.5 and decreasing according to differential radioactive decay. The similar ratio has been observed in most of the other environmental samples.  相似文献   

12.
The characteristics of Hg wet deposition were investigated in a rural area of Korea from August 2006 to July 2008. The volume weighted mean (VWM) Hg(T) concentration and cumulative Hg(T) flux were 8.8 ng L(-1) and 9.4 μg m(-2) per year, respectively. The VWM Hg(T) concentration varied seasonally, similar to the seasonal pattern in atmospheric Hg(p) concentration. The enhancement of both VWM Hg(T) and atmospheric Hg(p) concentrations in spring and winter was likely caused by the long-range transport of Hg from China. Monthly VWM Hg(T) and atmospheric Hg(p) concentrations were well correlated (R(2) = 0.36); however, there was no correlation between VWM Hg(T) and RGM (reactive gaseous mercury) concentrations, suggesting that Hg(p) was responsible for the majority of the Hg in wet deposition at this site. The VWM Hg(T) concentration in snow was statistically higher than in rain. In addition, the atmospheric Hg(p) concentration appeared to be elevated for snow events as well. This suggests that both elevated Hg(p) concentrations and the enhanced scavenging efficiency of snow for Hg(p) were responsible for the elevated VWM Hg(T) concentrations measured during snow events.  相似文献   

13.
Atmospheric deposition of the major elements was estimated from throughfall and bulk deposition measurements on 13 plots of the Swiss Long-Term Forest Ecosystem Research (LWF) between 1995 and 2001. Independent estimates of the wet and dry deposition of nitrogen (N) and sulfur (S) on these same plots were gained from combined simplified models. The highest deposition fluxes were measured at Novaggio (Southern Switzerland), exposed to heavy air pollution originating from the Po Plain, with throughfall fluxes averaging 29 kg ha–1 a–1 for N and 15 kg ha–1 a–1 for S. Low deposition fluxes were measured on the plots above 1800 m, with throughfall fluxes lower than 4.5 kg ha–1 a–1 for N and lower than 3 kg ha–1 a–1 for S. The wet deposition of N and S derived from bulk deposition was close to the modeled wet deposition, but the dry deposition derived from throughfall was significantly lower than the modeled dry deposition for both compounds. However, both the throughfall method and the model yielded total deposition estimates of N which exceeded the critical loads calculated on the basis of long-term mass balance considerations. These estimates were within or above the range of empirical critical loads except above 1800 m.  相似文献   

14.
在人工消解使水中N元素转化为NO3-N的基础上,利用Bran Luebbe AutoAnalyzer 3流动分析仪NO3-N NO2-N分析模块测定水中TN,这样,既充分利用了仪器资源,又实现了大批量样品分析.实验结果显示,相对标准偏差均<2%,回收率在92.4%~106.8%之间,检出限较低,且系统运行稳定.  相似文献   

15.
This study presents the chemical composition of dry deposition by using dry deposition plate and water surfaces sampler during daytime and nighttime sampling periods at a near highway traffic sampling site. In addition, the characterization for mass and water soluble species of total suspended particulate (TSP), PM2.5 and PM10 were also studied at this sampling site during August 22 to October 31 of 2006 around central Taiwan. The samples collected were analyzed by using Ion Chromatography (DIONEX 100) for the ionic species analysis. Results of the particulate dry deposition fluxes are higher in the water surfaces sampler than that of the dry deposition plate. In other words, the results also indicated that water surface can absorb more ambient dry deposition inorganic pollutants than that of dry deposition plate in this study. The results obtained in this study indicated that the ionic species of Cl(-), NO3(-) and SO4(2-) occupied about average 60-70% downward flux out of total ionic species for either dry deposition plate or water surfaces sampler during August to October of 2006 at this near highway traffic sampling site.  相似文献   

16.
Peat cores from three bogs in southern Ontario provide a complete, quantitative record of net rates of atmospheric Hg accumulation since pre-industrial times. For comparison with modern values, a peat core extending back 8000 years was used to quantify the natural variations in Hg fluxes for this region, and their dependence on climatic change and land use history. The net mercury accumulation rates were separated into "natural" and "excess" components by comparing the Hg/Br ratios of modern samples with the long-term, pre-anthropogenic average Hg/Br. The average background mercury accumulation rate during the pre-anthropogenic period (from 5700 years BC to 1470 AD) was 1.4 +/- 1.0 microg m(-2) per year (n = 197). The beginning of Hg contamination from anthropogenic sources dates from AD 1475 at the Luther Bog, corresponding to biomass burning for agricultural activities by Native North Americans. During the late 17th and 18th centuries, deposition of anthropogenic Hg was at least equal to that of Hg from natural sources. Anthropogenic inputs of Hg to the bogs have dominated continuously since the beginning of the 19th century. The maximum Hg accumulation rates decrease in the order Sifton Bog, in the City of London, Ontario (141 microg Hg m(-2) per year), Luther Bog in an agricultural region (89 microg Hg m(-2) per year), and Spruce Bog which is in a comparatively remote, forested region (54 microg Hg m(-2) per year). Accurate age dating of recent peat samples using the bomb pulse curve of 14C shows that the maximum rate of atmospheric Hg accumulation occurred during AD 1956 and 1959 at all sites. In these (modern) samples, the Hg concentration profiles resemble those of Pb, an element which is known to be immobile in peat bogs. The correlation between these two metals, together with sulfur, suggests that the predominant anthropogenic source of Hg (and Pb) was coal burning. While Hg accumulation rates have gone into strong decline since the late 1950's, Hg deposition rates today still exceed the average natural background values by 7 to 13 times.  相似文献   

17.
This paper considers the spatial and temporal variability in concentrations of the potentially acidifying ions in precipitation in Lithuania during the 1981-2004 period. Chemical analysis of precipitation included measurements of pH, conductivity, sulfate (SO4(2-)), nitrate (NO3-), chloride (Cl-), ammonium (NH4+), sodium (Na+), potassium (K+), and calcium (Ca2+). Temporal trends in the potentially acidifying ion concentrations in precipitation and wet deposition were evaluated using the non-parametric Mann-Kendall test and Sen's slope estimator. A statistically significant decline was observed in non-sea salt sulfate (nssSO4(2-)) and hydrogen (H+) ions concentrations (82% and 79%, respectively) and wet depositions (88% and 74%, respectively). Temporal trends both in concentration and wet deposition of nitrate and ammonium were not as pronounced as trends in sulfate concentration. Analysis of air mass backward trajectories was applied to reveal the influence of air mass originating in different regions on wet deposition of acidifying species in Lithuania. Sector analysis clearly showed that wet deposition of sulfur and nitrogen in Lithuania is to a large extent anthropogenic and the main source regions of acidifying species contributing to wet deposition in Lithuania are in South and Central Europe.  相似文献   

18.
Contents of inorganic nitrogen (NH4(+)-N and NO3(-)-N) in soil profiles were measured in five typical zones ( including permanently flooded floodplain(B), 1-year floodplain (O), 5-year floodplain (F),10-year floodplain (T), and 100-year floodplain (H) )from Huolin River floodplain in Erbaifangzi, Jilin Province of China, in the soil-defrosted period (Mayof 1999). Contour maps and profile maps were constructed to describe the spatial distributions of NH4(+)-N and NO3(-)-N) in order to identify the influences of flood frequencies on them. Results showed that NH4(+)-N generally increased with depth in soil profiles from the five areas, but NH4(+)-N contents in T or H areas significantly differed from those in other areas. For NO3(-)-N, with the exception that there was a significant cumulative peak (6.77 +/- 0.08 mg kg(-1)) at 15-cm depth (10-20 cm) in B area, no significant difference was observed between NO3(-)-N contents in soil profiles from the other four areas. The horizontal distributions of NH4(+)-N and NO3(-)-N in top soils (0-10 cm) were different in the five areas,which were greatly influenced by flood frequencies. The highest content of NH4(+)-N or NO3(-)-N did not appear in B area but in the floodplain with certain flood frequency. For example, NH4(+)-N content (16.81 mg kg-(1)) in 5-year floodplain wetland was highest, and the highest content of NO3(-)-N(1.69 mg kg(-1)) appeared in 1-year floodplain wetland. In addition, NH4(+)-N contents were significantly correlated with soil pH, and NO3(-)-N contents had significant correlation with inorganic carbon, but there were no significant correlations between inorganic nitrogen and other selected soil properties.  相似文献   

19.
To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO4), inorganic nitrogen (NO3-N; NH4-N), calcium (Ca), magnesium (Mg) and potassium (K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available (14 regions, 17 sites). Annual average SO4 deposition during the 1990s ranged between 7.3 and 28.4 kg ha−1 per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha−1 per year, of which 41–67% was nitrate (NO3-N). Over the period of record, SO4 concentration in deposition decreased in 13/14 (13 out of 14 total) regions and SO4 in runoff decreased at 14/17 catchments. In contrast, NO3-N concentrations in deposition decreased in only 1/14 regions, while NH4-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH4-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% (median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% (median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition (31–100%; median 94%) was retained in the catchments, although there was a tendency for greater NO3-N leaching at sites receiving higher (<7 kg ha-1 per year) bulk inorganic N deposition. Mass balance calculations show that export of Ca and Mg in runoff exceeds input at all 21 catchments, but K export only exceeds input at 16/21 sites. Estimates of base cation weathering were available for 18 sites. When included in the mass balance calculation, Ca, Mg and K exports exceeded inputs at 14, 10 and 2 sites respectively. Annual Ca and Mg losses represent appreciable proportions of the current exchangeable soil Ca and Mg pools, although losses at some of the sites likely occur from weathering reactions beneath the rooting zone and there is considerable uncertainty associated with mineral weathering estimates. Critical loads for sulphur (S) and N, using a critical base cation to aluminium ratio of 10 in soil solution, are currently exceeded at 7 of the 18 sites with base cation weathering estimates. Despite reductions in SO4 and H+ deposition, mass balance estimates indicate that acid deposition continues to acidify soils in many regions with losses of Ca and Mg of primary concern. The U.S. Government's right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

20.
Soil dust particles transported from loess regions of the Asian continent, called Asian dust, highly influences the air quality of north-eastern Asia and the northern Pacific Ocean. In order to investigate the effects of these dust storms on the chemical composition of atmospheric aerosol particles with different size, measurements of size distributions of total aerosol and major ion species were carried out on Jeju Island, Korea during April 2001. Juju Island was chosen for the study because the levels of emissions of anthropogenic air pollutants are very low. A 5-stage cascade impactor was used to sample size-fractionated aerosol particles. Samples were analyzed for major water-soluble ions using Dionex DX-120 ion chromatograph. The average mass concentration of total aerosol was found to be 24.4 and 108.3 microg m(-3) for non-Asian dust and Asian dust periods, respectively. The total aerosol size distribution, measured during the non-Asian dust period, was bimodal, whereas the coarse particles dominated the size distribution of total aerosol during the Asian dust period. It was found that SO4(2-), NH4+ and K+ were mainly distributed in fine particles, while Cl-, NO3-, Na+, Mg2+ and Ca2+ were in coarse particles. Although SO4(2-) was mainly distributed in fine particles, during the Asian dust period, the concentrations in coarse particles were significantly increased. This indicates heterogeneous oxidation of SO2 on wet surfaces of basic soil dust particles. The NH4+ was found to exist as (NH4)2SO4 in fine particles, with a molar ratio of NH4+ to SO4(2-) of 2.37 and 1.52 for non-Asian dust and Asian dust periods, respectively. Taking into account the proximity of the sampling site to the sea, and the observed chloride depletion, coarse mode nitrate, during the non-Asian dust period, is assumed to originate from the reaction of nitric acid with sodium chloride on the surfaces of sea-salt particles although the chloride depletion was not shown to be large enough to prove this assumption. During the Asian dust period, however, chloride depletion was much smaller, indicating coarse nitrate particles were mainly produced by the reaction of nitric acid with surfaces of basic soil particles. Most chloride and sodium components were shown to originate from sea-salt particles. Asian dust aerosols, arriving at Jeju Island, contained considerable amounts of sea-salt particles as they passed over the Yellow Sea. Ca2+ was shown to be the most abundant species in Asian dust particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号