首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
森林碳储量是森林生态系统碳库的重要组成成分,在全球碳循环中发挥着重要的作用。以韶关小坑林场山杜英(Elaeocarpus sylvestris)林为研究对象,研究其植被层和凋落物层的生物量、碳储量分配格局,为山杜英人工林的固碳能力和碳汇功能研究提供参考。在林地内建立3个20 m×20 m的样地,采用径阶标准木法,选取10株标准木,按照枝、叶、干和根分别进行取样。每个样地分别设置5个灌木样方(2 m×2 m)、草本样方(1 m×1 m)和凋落物样方(1 m×1 m)样方,收获样方内全部的灌木和草本及凋落物,并各取300 g样品,带回实验室分析。结果表明,山杜英林生物量为34.89 t·hm~(-2),平均碳质量分数为463.79 g·kg~(-1),碳储量为16.65 t·hm~(-2);山杜英林垂直结构的各组分中,乔木层的生物量(26.76 t·hm~(-2))和碳储量(12.85 t·hm~(-2))最大,占比分别为76.70%和77.18%;乔木层各组分中,树干的生物量(13.60 t·hm~(-2))和碳储量(6.62t·hm~(-2))最大,占比分别为50.82%和51.52%。山杜英林树干碳储量是乔木层碳储量的主体,因此应充分利用其生长特性,最大限度地增加树干碳储量,从而增加林分植被层碳储量。该林分具有较大的碳汇潜力,可通过提高林分密度以提高林分的碳储量。  相似文献   

2.
定量评价森林碳储量及其碳汇潜力,有助于科学评估森林减缓气候变化的潜在贡献,对国际气候变化谈判和国内应对气候变化的决策均具有重要意义。然而,如何对森林进行可持续经营管理以确保木材产量和森林碳汇量间的平衡是一个十分重要的问题。为准确评估西南地区乔木林碳储量及木材产量供应潜力,利用西南各省(市、区)第七次(2004—2008年)和第八次(2009—2013年)森林资源连续清查数据,结合森林经营规划目标设定采伐与非采伐两种情景,采用蓄积-生物量转换因子法,估算了乔木林生物量碳储量和碳密度,模拟预测了2010—2050年间的乔木林生物量碳汇潜力及木材产量。结果表明,(1)2010年西南地区乔木林碳储量为2 449.06 Tg,碳密度为57.64 Mg·hm~(-2)。碳储量大小顺序为:西藏云南四川贵州重庆,碳密度大小顺序为:西藏四川云南重庆贵州。(2)采伐和非采伐情景下,2050年西南地区乔木林碳储量分别为3 829.18 Tg和4 057.29 Tg,碳密度分别为81.60 Mg·hm~(-2)和85.08 Mg·hm~(-2)。(3)与非采伐情景相比,2050年时采伐情景下碳储量下降了228.11 Tg,碳密度下降了3.48 Mg·hm~(-2);但是采伐情景下2010—2050年间累计提供木材产量7.86×10~8m~3。西南地区幼、中龄林比例较高,随着生长成熟以及抚育经营管理使森林质量提高,该地区森林碳汇潜力巨大。制定合理的乔木林更新采伐比例,有助于在有效发挥森林碳汇效益的同时实现森林质量的提升和木材产量的增加。  相似文献   

3.
大兴安岭南段华北落叶松人工林碳储量及分配特征研究   总被引:1,自引:0,他引:1  
以大兴安岭南段内蒙古赛罕乌拉森林生态系统国家定位观测研究站为研究区,以华北落叶松(Larix prinicipis)人工林为研究对象,采用野外样地实测调查与室内分析相结合的方法对华北落叶松人工林碳储量及分配特征进行了研究。结果表明:不同林龄华北落叶松人工林生态系统碳储量表现为32 a(205.83 t·hm~(-2))28 a(186.38 t·hm~(-2))16 a(155.84 t·hm~(-2));华北落叶松人工林植被层碳储量为9.11~26.73 t·hm~(-2),占总碳储量的5.85%~14.0%,随着林龄的增加而先增加后减少;枯落物层碳储量为0.29~0.40 t·hm~(-2),占总碳储量的0.19%,随着林龄的增加其所占比例趋于稳定;土壤层碳储量表现为为32 a(178.70t·hm~(-2))28 a(159.92 t·hm~(-2))16 a(146.44 t·hm~(-2)),占总碳储量的比例为86.82%~93.96%,随着林龄的增加其所占比例呈递减趋势;不同林龄阶段碳储量均表现为土壤层植被层枯落物层,地下地上;植被层碳储量以乔木层最大(6.85~26.46t·hm~(-2)),占比为75.21%~98.99%,而乔木层碳储量主要分布在树干(2.53~14.98 t·hm~(-2)),占乔木层碳储量的比例为36.93%~56.61%,且随林龄的增加而增加;土壤层碳储量主要集中在0~30 cm土层,占土壤层总碳储量的70.78%~78.82%。研究结果可为华北落叶松人工林经营管理和高效培育提供理论依据。  相似文献   

4.
老龄林是重要的森林碳库,研究老龄林碳储量长期变化对评价老龄林碳源和碳汇功能和量化区域尺度森林生态系统碳循环具有重要的意义。基于云南省迪庆自治州森林资源规划设计调查数据、样地数据和迪庆州造林、采伐、灾害等统计数据,运用林业碳收支模型(CBM-CFS3)模拟并预测了2005—2020年云南省迪庆州区域尺度云杉(Picea likiangensis)老龄林(过熟林)的生物量、死亡有机质(包括枯落物、枯死木和土壤有机碳)以及生态系统碳储量及其动态变化。结果表明,干扰情景下,2005—2020年迪庆州云杉老龄林的生物量、死亡有机质和生态系统碳储量范围分别为3.98~4.73 Tg、5.41~7.28 Tg和9.44~12.01 Tg,且均呈逐渐增长趋势。模拟期间,云杉老龄林的生物量碳密度和生态系统碳密度均呈减少趋势,其中生物量碳密度平均值为106.40 Mg·hm~(-2),生态系统碳密度平均值为255.56 Mg·hm~(-2);死亡有机质碳库碳密度呈增加趋势,平均值为149.16 Mg·hm~(-2)。研究结果显示,迪庆州云杉老龄林生态系统碳储量动态受林分生长、成熟林为过熟林和干扰三方面影响;其中自然生长导致生态系统碳储量增加0.51 Tg,成熟林进阶导致生态系统碳储量增加2.75 Tg,而采伐干扰造成生态系统碳储量损失1.14 Tg。建议未来森林经营中将老龄林每年采伐总面积控制在1.9×10~3 hm2·a~(-1)以内,以保证老龄林生态系统碳储量趋于稳定,避免老龄林转变为碳源。  相似文献   

5.
国内外关于森林碳汇功能的研究集中于热带和温带森林,就中国东部亚热带森林,尤其是中亚热带常绿阔叶林的碳汇功能的研究较为薄弱。该研究选取井冈山国家级自然保护区作为中国中亚热带森林生态系统的典型代表,针对不同森林类型分别设置样地,采用材积源生物量法估算该地区森林生态系统植被碳储量,并以老龄林生态系统碳储量为参考标准,通过计算参考碳储量与基准碳储量之差,估算研究区森林植被的固碳潜力,旨在明确中国中亚热带森林生态系统在全球碳循环中的作用及贡献。研究发现,(1)井冈山自然保护区森林植被总碳储量为1 589 531 t,平均碳密度为7.29 kg·m-2,高于中国及全球中高纬度森林植被平均碳密度。常绿阔叶林植被碳密度最高,为9.25 kg·m-2,其次是针阔叶混交林和常绿落叶阔叶混交林,其植被碳密度分别为8.12和7.83 kg·m-2。(2)各林型老龄林的植被碳密度均高于平均植被碳密度,常绿阔叶林的老龄林植被碳密度最大,达10.53 kg·m-2。(3)研究区森林植被的固碳潜力为182 868 t,常绿阔叶林的植被固碳潜力最大,达74 086 t,其次为常绿落叶阔叶林混交林、暖性针叶林和针阔叶混交林。研究结果表明中国中亚热带森林生态系统具有较高的固碳能力。  相似文献   

6.
城市化已成为全球土地覆被变化的主要驱动因素之一。城市化及其引起的土地覆被变化对城市生态系统碳动态具有重要的影响。以快速城市化的典型区域——深圳市为例,采用遥感影像解译与实地生态调查相结合的方法,研究了1986—2015年间城市化引起的土地覆被变化对城市生态系统碳密度和碳储量的影响,旨在加深对城市生态系统碳循环的认知,为城市生态系统碳管理提供科学依据。研究结果显示,(1)研究区城市化过程中土地覆被变化的主要特征是建设用地的急剧扩张。林地、耕地、园地等在面积减少的同时,景观趋于破碎化。(2)研究区植被和土壤的碳密度呈现出明显的空间异质性。研究时段内,植被和土壤的平均碳密度分别减少了约5.1 t?hm~(-2)、11.8 t?hm~(-2)。(3)研究区城市生态系统碳储量的变化大致经历了3个阶段:城市化"初始期"以自然植被和农业用地为主的高碳储量期;城市化"加速期"建设用地快速扩张带来的城市生态系统碳储量急剧下降;城市化"稳定期"城市生态系统碳储量逐渐恢复。(4)研究时段内土地覆被变化造成研究区城市生态系统约16.8 t?hm~(-2)的碳损失,占城市生态系统碳储量的37.7%。虽然城市化总体上导致了城市生态系统碳密度和碳储量的减少,但通过适当的城市植被与土壤的碳管理措施可以使城市生态系统碳库逐渐得到恢复。  相似文献   

7.
森林生物碳储量作为森林生态系统碳库的重要组成部分,在全球碳循环中发挥着重要作用。以四川省老君山典型亚热带常绿阔叶林为研究对象,通过外业样地调查与室内实验分析相结合的方法,利用2012年和2015年的植被调查数据,对其乔木层生物量和碳储量进行了计量,分析了乔木层碳储量的空间分配格局,并对不同样地年固碳能力与碳汇潜力进行了探讨。结果表明:老君山亚热带常绿阔叶林在1 500 m处普查样地和1 700 m复查样地的森林乔木层碳储量(以C计)分别为142.95和139.67 t·hm~(-2),乔木年平均固碳增量分别为7.45和7.11 t·hm~(-2),年平均增长率分别为5.83%和5.68%。其中,普查样地的乔木层碳储量、年平均固碳增量、平均年增长率均大于复查样地,显示了老君山亚热带常绿阔叶林具有较强的固碳能力,而且海拔1 500 m处的乔木层在碳蓄积方面占主导优势。另外,海拔1 500 m处常绿阔叶林乔木层碳储量主要存储在树高h≥10m(比例50.54%)和径级10 cm≤d20 cm(比例40.08%)的乔木中,1 700 m处的常绿阔叶林乔木碳储量主要存储在树高5m≤h10 m(比例56.88%)和径级10 cm≤d20 cm(比例48.82%)的乔木中。尤其是老君山常绿阔叶林目前中龄林所占的比重较大,具有较大的碳汇潜力。研究结果可为该地区森林经营管理及碳汇功能评价提供参考。  相似文献   

8.
城市森林作为陆地生态系统的组成成分之一,研究其在全球碳循环中的地位和作用有很重要的意义.文章以上海城市森林为研究对象,开展基于基于森林清查数据和遥感技术的城市森林净初级生产力(NPP)估算研究.首先,根据选取上海市典型的森林植被类型,设置森林植被样方,测量反映植被生物学特性的特征参数,包括林龄、胸径、树高和叶面积指数(LAI)等,采用能反映林龄和蓄积量共同影响的生产力回归模型估算了样方NPP,建立了基于LAI的样方NPP回归模型;其次,利用一景相近时相的SPOT5影像,经进行几何纠正和辐射定标后,计算出能较好地反映植被特征和消除土壤背景影响的修正土壤调节植被指数(MSAVI),建立了基于MSAVI的区域森林LAI遥感估测模型;最后,根据建立的样方NPP回归模型以及区域LAI遥感估测模型,进行尺度化转换,估算出区域尺度上的上海城市森林净初级生产力.通过比较与前人运用传统方法研究估算的NPP,精度可达到89%,且本模型简单可行.因此本研究可为快速定量评估城市森林碳储量提供依据.  相似文献   

9.
王磊  宋乃平*  徐秀梅  徐坤  杨微 《生态环境》2012,(6):1004-1008
选择宁夏中卫市中冶·美利纸业集团的林纸一体化人工速生杨基地作为研究对象,以CBERS/CCD影像和同步实测样地数据为基础,利用相关分析方法筛选出相关系数分别为0.939和0.936的NDVI和RVI两个变量,构建了基于NDVI、RVI及NDVI和RVI的3个人工速生林地叶面积遥感回归估测模型,R2分别为0.882、0.877和0.885,并通过相关检验,估算出研究区不同林龄速生杨林地的叶面积。结合样地的实测净光合速率(PN,Net Photosynthetic Rate,μmol·m-2·s-1),推算出不同林龄的速生杨单位叶面积的年二氧化碳净吸收量,最终估算出整个研究区的年固定碳(CO2)的净增量分别为326 648.66、315 688.73和322 509.04 t。通过与常规方法测得结果的比较,表明遥感结合地面实测数据估算林木固碳是可行的;从建立模型的R2值分析,根据不同植被指数建立的多元模型的精度要优于单一植被指数建立的一元模型;根据估测结果,随着林龄的增长,林木的固碳能力不断提高,但受不同生境的影响,增长速度存在空间差异。  相似文献   

10.
西双版纳森林植被碳储量动态与增汇潜力研究   总被引:1,自引:0,他引:1  
科学评估区域森林碳储量动态与增汇潜力对理解陆地碳循环具有重要的意义。本文基于生物量转换因子连续函数法,对西双版纳1993—2006年间森林植被碳储量与碳汇潜力进行了研究,结果表明,(1)西双版纳1993—1994年间森林植被整体碳储量为60 770 378.37 t,碳汇增量表现为栎类(Quercus L.)〉经济林〉思茅松(Pinus kesiya)〉其它阔叶〉桤木(Alnus cremastogyne),主要森林类型的碳密度范围为15.08~74.76 t.hm-2;2005—2006年间森林植被整体碳储量为62 347 715.19 t,比1994—1993年间上升2.60%,碳汇增量均表现为其它阔叶〉经济林〉栎类〉思茅松〉桤木〉杉木(Cunninghamia lanceolate)〉其它针叶,主要森林类型的碳密度范围为8.60~70.90 t.hm-2。(2)2005—2006年间,景洪森林植被整体碳储量为23 299 801.23 t,碳密度范围为8.78~73.35 t.hm-2;勐海森林植被整体碳储量为14 058 043.42 t,碳密度范围为7.95~59.51 t.hm-2;勐腊森林植被整体碳储量为25 050 562.32 t,碳密度范围为8.46~98.73 t.hm-2。可见,1993—2006年间,西双版纳森林植被起到了重要的碳汇功能,且其碳汇功能呈上升趋势。  相似文献   

11.
浦东东滩湿地围垦对土壤碳氮储量及酶活性影响   总被引:3,自引:0,他引:3  
沿海滩涂湿地围垦为区域发展提供了潜在的土地资源,同时也深刻影响土壤质量演变及碳氮循环过程。以上海浦东东滩湿地光滩、2000年围垦后自然演替草地、2000年围垦林地和1994年围垦林地为研究对象,通过样地调查和室内分析研究了土壤总氮、总有机碳、水解性氮、易氧化有机碳含量及土壤酶活性变化。结果表明:随围垦时间延长,土壤碳氮储量显著增加(P0.05),1994年围垦后的林地土壤碳氮储量分别比光滩增加了58t·hm~(-2)和3.64t·hm~(-2),2000年围垦后的林地和草地碳氮储量分别比光滩增加了31.79t·hm~(-2)、2.85t·hm~(-2)和29.75t·hm~(-2)、1.77t·hm~(-2)。土壤易氧化有机碳和水解氮含量也随围垦年限增加而显著增大(P0.05)。围垦后随植被恢复的进行,土壤酶活性显著增强(P0.05),但过氧化氢酶和纤维素酶在不同围垦期不同土地利用方式之间均没有显著差异(P0.05),土壤尿酶和蔗糖酶活性随围垦年限增加而显著增大(P0.05),相同围垦期林地和草地之间4种土壤酶活性没有显著差异(P0.05)。土壤碳氮含量与土壤酶活性呈显著正相关,但与土壤含盐量呈显著负相关。土壤含盐量的降低是提高土壤酶活性,促进土壤碳氮积累的重要环境因素之一。该研究证实围垦有利于土壤碳氮储量的增加,围垦地造林提高了土壤固碳能力,加速了土壤肥力改善,但林分不同生长阶段对沿海围垦地土壤固碳增肥的效果具有较大差异。  相似文献   

12.
南方红壤花岗岩严重侵蚀区实施水土保持治理后的土壤碳汇效应尚不清晰。为揭示水土保持综合治理对退化土壤有机碳库的影响效应,该研究选取南方水土保持综合治理试点的样板——江西省兴国县塘背小流域为研究区,设置退化样地(BL)、水平竹节沟+乔灌草补植综合施策的生态恢复模式(F34)、前埂后沟+梯壁植草式反坡台地果园开发治理模式(GY)和周边未受扰动的次生林(UF)4种类型样地,分析不同层次土壤总有机碳(TOC)、土壤活性有机碳组分的变化情况,评价南方典型花岗岩侵蚀区综合治理的土壤碳汇效应。结果表明:F34和GY、UF模式下0—100 cm土壤TOC平均含量分别为5.54、6.05、10.22 g·kg~(-1),比BL增加145%、168%和352%;0—40 cm土壤DOC平均含量分别为46.29、45.91和116.85mg·kg~(-1),比BL增加410%、405%和465%;土壤MBC含量分别为112.34、73.20和251.99 mg·kg~(-1),比BL增加217%、106%和611%;F34和GY模式下0—100 cm土壤碳储量为39.65和53.91 t·hm~(-2),高于BL(19.86 t·hm~(-2)),但低于未受人为干扰的UF样地(75.90 t·hm~(-2)),生态恢复样地和果园开发样地的碳吸存量分别为19.79、34.05 t·hm~(-2),碳吸存速率分别为0.58、1.00 t·hm~(-2)·a~(-1);以当前F34、GY吸存速率推算,分别还需要62 a和22 a才能达到与UF相当的土壤有机碳库储量水平。综上,生态恢复模式和果园开发模式可有效促进土壤有机碳积累和恢复,且果园模式土壤碳素恢复效应更加明显,但距离周边未受扰动的次生林还存在一些差距;其次,侵蚀退化地经治理后,显著增加了土壤活性有机碳含量;同时退化裸地具有较高的碳汇潜力,即使通过F34、GY治理34 a后仍具有较大碳汇潜力。  相似文献   

13.
耕作措施是影响稻田生态系统净碳汇效应和经济收益的关键因素。为探明南方双季稻区不同耕作模式下稻田耕层土壤(0—20 cm)固碳速率和土壤碳密度、年碳汇平衡和经济收益的变化特征,开展紫云英(Astragalus sinicus L.)-双季稻大田定位试验,设双季水稻翻耕+秸秆还田(CT)、双季水稻旋耕+秸秆还田(RT)、双季水稻免耕+秸秆还田(NT)、双季水稻旋耕+秸秆不还田(RTO,对照)4种耕作处理,系统分析了不同耕作方式对稻田耕层土壤固碳速率和土壤碳密度、年碳汇平衡和经济收益的影响。研究结果表明,各处理稻田耕层土壤的固碳速率变化范围为2.98—3.43 t·hm~(-2)·a~(-1),耕层土壤碳密度为29.77—34.33 t·hm~(-2),其大小顺序均表现为CTRTNTRTO。不同耕作处理稻田生态系统作物的净碳固定变化范围为5.27—7.43 t·hm~(-2)·a~(-1),其大小顺序表现为CTRTNTRTO;CT和RT处理土壤的净碳汇量分别比NT处理增加40.26%和3.90%。不同处理稻田生态系统物质投入的碳成本为0.03—0.85 t·hm~(-2)·a~(-1),年经济收益为7.11—8.81×10~3 CNY·hm~(-2)·a~(-1),稻田生态系统经济效益大小顺序表现为CTRTNTRTO。总之,翻耕、旋耕结合秸秆还田处理均有利于提高双季稻田耕层土壤的固碳速率、碳汇效应和经济收益,是增加耕层土壤有机碳库贮量的有效措施。  相似文献   

14.
森林在固碳与应对气候变化方面起着重要作用。在区域空间尺度上,如何准确预测森林碳储量仍是热点与难点。以新疆主要森林类型常绿针叶林、落叶针叶林、落叶阔叶林和针阔混交林为研究对象,综合激光雷达树高数据与森林调查数据,采用幂函数模型估算新疆森林植被生物量并转换为碳密度,基于森林植被生物量利用Logistic模型与Gompertz模型估算新疆森林年龄获得新疆森林年龄空间分布图。在构建适合新疆主要森林类型的年龄与碳密度模型的基础上,预测2030年和2060年新疆森林植被碳储量与碳汇速率。结果表明,(1)构建的适合新疆主要森林类型生物量和森林年龄的估算模型以及森林年龄与碳密度的生长模型拟合度和显著性水平都较高,通过验证确定了对应的最优模型及参数。其中新疆森林生长模型表现出随林龄增加碳密度逐渐增加,到达成熟林后碳密度逐渐趋于稳定的特征。(2)2019年新疆森林年龄与碳密度空间分布大致呈现西高东低,北高南低的格局,与不同森林类型的环境适应能力及生长速率有关。2019年新疆森林的平均生物量、平均碳密度和年龄分别为147.84 Mg·hm-2、73.92 Mg·hm-2  相似文献   

15.
准确评估区域尺度下森林生态系统固碳能力和趋势,对实现森林可持续经营和固碳增汇具有重要意义。基于全国第四次(1989—1993年)、第五次(1994—1998年)、第六次(1999—2003年)和第七次(2004—2008年) 4次全国森林资源清查数据,结合生物量估算模型和植被含碳系数,研究长江流域森林植被碳储量、碳密度分布特征及动态变化。结果表明,1989—2008年长江流域森林植被碳储量由1 345. 30 Tg增加到1 924. 98 Tg,年均增长率为2. 15%,比全国年均增长率高0. 29百分点,表明该流域森林植被碳汇功能不断增强。长江流域森林植被平均碳密度分别为42. 25、40. 34、41. 00和41. 42 Mg·hm-2。从森林龄组来看,长江流域森林植被碳储量主要集中于幼、中龄林和近熟林,这3者对林分碳汇的贡献超过85%,且幼、中龄林和近熟林碳密度远低于成熟林和过熟林,表明流域森林植被碳汇潜力巨大。从森林起源来看,流域内森林植被碳储量主要分布于天然林,占同期森林植被碳储量的78%以上,但人工林碳储能力不断提高,人工林碳储量占同期森林植被碳储量的比例也呈增加趋势,且碳密度明显低于天然林,表明人工林将在该流域森林植被碳汇功能中扮演重要角色。长江中上游是流域内森林植被碳储量主要贡献区,占全流域森林植被碳储量的96%以上。  相似文献   

16.
以著名钢铁企业上海宝钢为例,基于厂区植被调查、航片数字化解释、优势种生物量测定及模型建立,对宝钢厂区植被碳储量和固碳能力进行估算,并通过碳税法对其固碳效益进行评价,以期为城市工业区绿地群落配置和绿化树种选择、企业绿化建设的费用效益分析提供更为科学的依据。结果表明:宝钢厂区植被总碳储量为3992.99~4736.17 t,固碳效益为13507.33~16185.85万元;平均碳密度为45.82~53.27 t/hm2,固碳能力为5.91~6.87t/(hm2.a),高于上海城市森林平均值,但小于中国森林平均值,一定程度上受平均胸径、郁闭度及群落密度等因素影响。厂区在进行绿化建设时,应考虑选择防污且固碳能力强的植物,构建防污固碳兼有型群落,发挥植被的多元功能。  相似文献   

17.
中国竹林生态系统的碳储量   总被引:13,自引:1,他引:12  
利用中国4次森林资源清查资料以及中国森林生态定位观测研究站(CFERN)的观测数据,估算了中国1977-2003年期间4个时期竹林生态系统的碳储量,并对其垂直分配结构特征、时空动态格局和贮碳潜力进行了分析.竹林的总碳储量结果为1977-1981年期间537.6Mt C,1984-1988年期问598.61Mt C,1994-1998年期间710.14 Mt C,1999-2003年期间837.92Mt C,期间浙江、江西、福建、湖南、广东和四川六省是中国竹林碳库的主要组成部分,占80.04%-83.13%.垂直分配结构基本相似,植被层占总碳储量的23.84%~24.49%,枯落物层占0.93%~0.96%,土壤层占的74.55%~75.23%.1999-2003年期间中国竹林生态系统碳素现存量为837.92 Mt C,10年后贮碳量将达到837.92 Mt C,并以C 54.81Mt·a-1.的平均积累速率递增.  相似文献   

18.
以南亚热带中幼龄针阔混交林为研究对象,通过典型样地调查法,对森林生态系统各个层次进行取样调查,采用12个样地实测数据和已有生物量模型相结合的方法计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-水合加热法。在此基础上,分析了中幼龄针阔混交林碳储量及其分配格局。结果表明,主要造林树种树根、树杆、树枝和树叶碳含量均值分别为45.07%、46.73%、46.30%和47.72%。植物碳含量表现为乔木〉灌木〉草本。乔木碳储量占植被总碳储量比例介于63.38%-94.08%之间,灌木碳储量所占比例介于3.55%-12.67%之间,而草本碳储量仅介于为1.28%-23.95%之间,不同林龄段乔木和灌木碳储量均值随林龄的增加呈上升趋势,而草本碳储量呈下降趋势。土壤碳储量介于106.73-136.61 t·hm^-2之间,土壤碳储量随林龄的增加呈现出先降低后升高的趋势。针阔混交林总碳储量介于134.79-162.60 t·hm^-2之间,分配格局表现为土壤层〉植被层〉凋落物层。土壤层碳储量所占总碳储量比例范围为78.34%-94.45%,植被层所占比例介于4.84%-20.16%之间,凋落物层仅介于0.71%-1.50%之间,中幼龄针阔混交林碳储量主要以土壤固碳为主。研究结果为树种选择、人工林生态系统固碳潜力以及人工碳汇林的经营管理等研究提供科学参考。  相似文献   

19.
滨海沙地不同树种人工林的碳储量及其分配格局   总被引:2,自引:0,他引:2  
为促进沿海合理营林和碳库平衡,基于对福州市滨海后沿沙地上营造的人工林的调查,研究尾巨桉、木麻黄、纹荚相思3种人工林生态系统的碳含量、碳储量及分配格局.结果表明,尾巨桉、木麻黄、纹荚相思不同器官平均碳含量分别为456.08-482.68、431.89-464.90、472.93-505.10 g/kg.相同树种不同器官之间和相同器官不同树种之间的碳含量均存在显著差异(P0.05).不同林分间乔木层的碳储量表现为木麻黄(32.89 t/hm~2)纹荚相思(31.33 t/hm~2)尾巨桉(30.20 t/hm~2),其中,乔木层各器官碳储量均以树干(10.92 t/hm~2、10.36 t/hm~2、15.00 t/hm~2)最大,分别占各自乔木层碳储量的33.20%、33.06%、49.67%;地被层(包括林下植被层和凋落物层)的碳储量表现为尾巨桉(6.42 t/hm~2)纹荚相思(6.19 t/hm~2)木麻黄(4.57 t/hm~2),其中凋落物层碳储量均远远大于草本层碳储量;土壤层的碳储量表现为木麻黄(8.02 t/hm~2)纹荚相思(7.31 t/hm~2)尾巨桉(6.42 t/hm~2).这3种人工林生态系统总碳储量表现为木麻黄(45.48 t/hm~2)纹荚相思(44.83 t/hm~2)尾巨桉(43.04 t/hm~2),且碳储量分布格局均为乔木层土壤层凋落物层草本层.因此,滨海沙地这3种人工林生态系统固碳效益无显著差异,纹荚相思、尾巨桉和木麻黄都是很好的固碳树种.  相似文献   

20.
自然生长的红树林植被生物量及土壤碳密度沿着海岸潮滩的分布存在异质性和不确定性,而目前对于潮滩高程间的异质性及不确定性的原因研究还比较少。以广东英罗湾自然分布的红树林为研究对象,通过比较不同潮滩高程红树林群落碳储量,对自然分布的不同潮位红树林碳储量差异进行研究。结果表明,(1)研究区域低潮位、中潮位、高潮位红树林植被生物量分别为(67.39±3.51)、(150.67±22.29)、(364.14±64.82)t·hm~(-2)。(2)低潮位土壤有机碳质量分数为13.50g·kg~(-1),中潮位为17.25 g·kg~(-1),高潮位为32.87 g·kg~(-1)。高潮位红树林土壤有机碳质量分数显著大于中低潮位。(3)生态系统碳密度在低潮位、中潮位、高潮位分别为(117.63±12.10)、(159.68±15.06)、(312.06±44.23) t·hm~(-2)。(4)不同潮位土壤盐度均值介于17.83‰-32.67‰,容重均值介于0.78-1.10 g·m~(-3),pH均值介于4.84-5.75,总氮(TN)质量分数介于1.32-1.85 g·kg~(-1),总磷(TP)质量分数介于0.18-0.35 g·kg~(-1),除容重、pH外,其他指标均呈现随潮滩高程增加而增加的规律。(5)植被生物量、土壤有机碳质量分数与土壤总氮、总磷、盐度呈显著性相关,与pH呈显著性负相关。潮滩高程的变化是影响红树林碳汇的重要因素,研究结果能够为区域红树林的碳汇作用研究提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号