首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究模拟酸雨对森林土壤C、N、P生态化学计量特征的影响,对于认识森林生态系统生物地球化学循环如何响应酸雨加剧具有重要意义。以鼎湖山季风常绿阔叶林为研究对象,2009年6月开始进行人工模拟酸雨的野外实验,共设置4个不同处理水平,即CK(喷洒pH=4.5左右的天然湖水)、T1(pH=4.0)、T2(pH=3.5)和T3(pH=3.0);2009年12月—2017年12月(8年实验周期)对模拟酸雨下土壤pH值和土壤C、N、P质量分数及其生态化学计量特征进行了5次测定。结果显示:对照样地表层(0~10 cm)土壤pH值,土壤C、N、P质量分数分别为(3.89±0.01),(31.99±0.37)、(2.25±0.05)和(0.23±0.01)g·kg-1。长期模拟酸雨处理导致表层土壤pH值显著下降(最大降幅达0.22,P0.05),土壤酸化加剧;同时,表层土壤C质量分数显著增加(最大增幅达14.69%,P0.05),P质量分数呈一定程度的下降趋势(最大降幅达18.79%),但N质量分数没有显著变化。对照样地表层土壤C?N、C?P和N?P分别为(14.24±0.23)、(141.38±3.35)和(9.91±0.26),由于土壤C、N、P质量分数对酸雨响应的差异导致土壤C?P和N?P显著增加(最大增幅分别达41.31%和27.16%,P0.05),从而改变了土壤C?N?P生态化学计量特征。模拟酸雨对上述指标的处理效应随着处理时间的延长而逐渐显现,处理间的差异在试验后期才逐渐达到显著水平(P0.05),且上述各指标在次层(10~20 cm)土壤在不同处理间不存在显著差异。根据研究结果可推测,长期酸雨引起的土壤酸化会改变南亚热带森林土壤C、N、P耦合关系,加剧该区域森林土壤P限制的趋势,降低森林生态系统结构与功能的稳定性。  相似文献   

2.
开展酸雨增加对森林土壤酸化和土壤微生物活性的影响,可以为正确评估森林生态系统碳氮过程及其对全球气候变化的响应提供依据。以鼎湖山处于不同演替阶段的3种森林类型(马尾松Pinus massoniana)针叶林、针阔叶混交林和季风常绿阔叶林)为研究对象,从2009年6月开始,在自然林里喷施4个不同处理水平的模拟酸雨,即CK(p H=4.5左右的天然湖水)、T1(p H=4.0)、T2(p H=3.5)和T3(p H=3.0);2009年12月─2013年3月对模拟酸雨下土壤p H值和土壤微生物量碳、氮含量进行长期观测研究。重复测量方差分析表明,观测周期内,模拟酸雨没有显著影响松林的土壤p H值和土壤微生物量碳、氮含量,但却显著地降低了阔叶林的这3个指标(P0.05),而对混交林的降低程度也接近显著。具体表现为:与CK处理相比,松林、混交林和阔叶林表层土壤p H值在T1、T2和T3处理分别下降了0.01、0.01和0.04,0.01、0.06和0.07,0.04、0.09和0.10;相应地,土壤微生物量碳含量分别下降了-1.0%、2.7%和0.4%,4.2%、4.4%和13.6%,12.3%、12.6%和18.4%;土壤微生物量氮含量则分别下降了0.8%、4.2%和9.7%,5.4%、17.4%和15.6%,12.3%、16.2%和25.1%。这表明模拟酸雨加速了土壤酸化,同时降低了土壤微生物活性,而从降低的幅度和差异的显著性可看出,3个林型的响应敏感性随森林的顺行演替而增强,处于演替后期的阔叶林敏感性最强。同时,这种处理效应大体上随着模拟酸雨处理时间的延长而逐渐显著。以阔叶林为例,表现为实验初期,模拟酸雨并没有显著降低其土壤p H值和土壤微生物量碳、氮含量,而在模拟酸雨24、30和36个月后,T3和T2处理的土壤p H值显著低于CK和T1处理(P0.05);同样,在模拟酸雨24、36和45个月后,T3处理的土壤微生物量碳、氮含量显著低于CK处理(P0.05);这表明模拟酸雨对土壤酸化和土壤微生物活性的影响是一个逐渐累积的过程。  相似文献   

3.
调查了两个阔叶树种(固氮树种桤木Alnus cremastogyne Burkill和非固氮树种五角枫Acer mono Maxim)及凋落物施放对杉–阔混交林生物量和土壤微生物性质的影响.结果表明,杉–阔混交林中杉木生物量没有显著差异(P0.05),杉木–桤木混交林总生物量比杉木–五角枫多200%(P0.05),增加的生物量源于阔叶树种的差异.凋落物对两个类型混交林的生物量都没有产生显著影响(P0.05).桤木混交处理0~10cm层土壤的土壤有机碳增加了16.8%,而土壤基础呼吸和呼吸熵下降了13.1%和16%.覆盖凋落物使0~10cm层的微生物量碳增加了10.8%,此外,树种和凋落物对土壤基础呼吸和呼吸熵有显著的交互作用(P0.05).土壤有机碳和树木的生物量呈显著的正相关(R=0.775,P=0.005,N=12).不考虑处理间的差异,土壤微生物量碳与土壤有机碳(R=0.438,P=0.032,N=24)、可溶性有机碳(R=0.0.541,P=0.006,N=24)具有显著的相关性.混交林树种的选择和凋落物对杉–阔混交林林地土壤微生物学性质都具有重要的作用.图3表2参23  相似文献   

4.
降雨脉冲对土壤呼吸具有瞬间的激发效应,地表凋落物是土壤有机碳的重要来源,并影响降雨的下渗过程和土壤含水量。降雨对土壤呼吸的激发效应是否受地表凋落物的影响?这一问题目前尚不清楚。针对我国亚热带-暖温带气候过渡区麻栎(Quercus acutissima)林和水杉(Metasequoia glyptostroboides)林2种林型开展不同凋落物输入水平(对照、添加凋落物和去除凋落物)下模拟降雨事件对土壤呼吸影响研究,以阐明不同凋落物条件下土壤呼吸对降雨脉冲的响应规律。结果表明:就麻栎次生林而言,对照、添加凋落物和去除凋落物处理土壤呼吸速率在降雨10 min时均达到峰值,分别为4.72、11.68和5.12μmol·m~(-2)·s~(-1),添加凋落物增强了降雨脉冲的激发效应,去除凋落物与对照处理土壤呼吸速率在降雨事件后无显著差异(P0.05)。地表凋落物层对麻栎次生林在降雨后的土壤呼吸速率变化具有重要影响。水杉林3种凋落物水平下土壤呼吸均不存在降雨激发效应,且凋落物添加与去除均显著降低水杉林土壤呼吸速率(P0.05)。麻栎林土壤呼吸与土壤湿度呈显著正相关关系(P0.05或P0.01)。水杉林添加凋落物条件下土壤呼吸速率与土壤温度呈显著正相关关系(P0.05)。该研究表明土壤呼吸对降雨脉冲的响应与森林类型、地表凋落物覆盖与否有密切关系,因此森林生态系统碳循环的变化除了考虑气候变化以外,还必须考虑林型和地表凋落物状况。  相似文献   

5.
氧化亚氮(N_2O)是一种重要的温室气体,而农田生态系统是N_2O的重要排放源。酸雨是中国重要的环境问题,然而少有研究关注酸雨对农田土壤N_2O排放的影响。在大豆(Glycine max(Linn.)Merr.)生长季开展了2年的田间模拟酸雨试验,设置了pH值分别为6.7(对照,CK)、4.0(T_1)、3.0(T_2)和2.0(T_3)的4个不同酸雨处理水平,采用静态箱-气相色谱法测定N_2O排放通量,以研究模拟酸雨对大豆田土壤N_2O排放通量及植株与土壤氮含量的影响。结果表明:与CK相比,酸雨没有改变土壤N_2O排放的季节性规律,虽然整个大豆生长季土壤N_2O平均通量并没有显著变化,但在第二年大豆鼓粒期,与CK相比,T_1和T_3处理使土壤N_2O平均排放通量分别显著增加35.1%(P=0.020)和71.2%(P=0.000)。通过植株和土壤理化分析发现,酸雨处理显著降低了开花—结荚期大豆植株地下生物量,T_1和T_3处理的地下生物量分别下降了31.93%(P=0.039)和24.30%(P=0.027)。在分枝期、开花—结荚期和鼓粒期,各酸雨处理不同程度地降低了叶片可溶性蛋白质含量;在开花—结荚期,酸雨各处理均降低了叶片全氮和硝态氮含量。酸雨处理没有显著改变土壤有机碳及全氮含量,但在分枝期和开花—结荚期,酸雨处理显著减少了土壤硝态氮含量。  相似文献   

6.
为了研究酸雨淋溶前后不同磷基材料对土壤重金属稳定化的影响,通过室内土柱淋溶实验,考察不同pH值酸雨淋溶前后磷酸二氢钾(PDP)和羟基磷灰石(HAP)稳定化重金属污染土壤pH值、重金属和P有效活性的变化。结果表明:PDP和HAP增加了土壤pH值和速效P含量,降低了土壤有效态Cu、Cd和Pb含量,促进了重金属由活性态向非活性态和潜在活性态转化,但pH=3.5的酸雨使PDP和HAP处理土壤pH值降低0.45和0.47,且酸雨淋溶降低了PDP处理速效P含量,提高了土壤有效态Cu和Cd含量;酸雨淋溶使HAP处理土壤总Cu含量和CK处理总Cd含量分别降低14.5%~15.9%和20.4%~26.5%,但增加了HAP和PDP处理离子交换态Cu和Pb含量;PDP和HAP处理显著增加了土壤总P、树脂P、HCl结合态P和残渣态P含量,但酸雨淋溶降低了PDP处理总P和树脂P含量,显著增加了HAP和PDP处理土壤稳定态P含量(P0.05)。模拟酸雨作用下HAP较PDP处理对Pb和Cd具有更好的稳定化效果和更低的P释放风险,具有更好的应用潜力。  相似文献   

7.
选择长江上游人工采伐形成的7种不同大小的马尾松人工林林窗(G1:100 m~2;G2:225 m~2;G3:400 m~2;G4:625 m~2;G5:900 m~2;G6:1 225 m~2;G7:1 600 m~2),探讨不同林窗大小、位置和凋落物分解时间下土壤动物对凋落物微生物生物量的影响.结果显示:中等林窗(G4和G5)内,土壤动物显著影响了凋落物的微生物生物量氮(MBN)(P0.05),MBN分别增加了28.16%和26.18%.同时,林窗边缘的土壤动物使凋落物的MBN增加了29.06%(P0.05).此外,分解30 d,土壤动物使凋落物的MBN增加了26.52%(P0.05);分解90 d,土壤动物使凋落物中微生物生物量碳(MBC)显著增加了49.10%(P0.05);但在180 d时,土壤动物显著降低了MBC(P0.05).这些结果说明,在马尾松人工林林窗内马尾松凋落物分解初期,土壤动物对微生物生物量的增加有一定的促进作用,但其作用大小受到林窗大小、林窗位置和凋落物分解时间的影响而表现出一定的差异.  相似文献   

8.
凋落物质量和分解对中亚热带栲木荷林土壤氮矿化的影响   总被引:11,自引:2,他引:11  
用控温、控水室内培养方法,研究了中亚热带栲木荷常绿阔叶林和邻近柳杉人工针叶林凋落物的分解及其对栲木荷林土壤氮矿化的影响.结果表明:栲木荷阔叶林的凋落物失重率大于针阔混合凋落物的失重率,大于柳杉针叶纯林凋落物的失重率.所有凋落物失重率都与其初始氮含量呈显著负相关,和初始碳含量呈显著正相关,而与凋落物C/N比的相关性不强.不同凋落物处理下的土壤NO3--N含量差异显著(P<0.05,N=18),NH4 -N含量差异不显著(P>0.05,N=18),混合凋落物处理下的土壤NO3--N和NH4 -N含量最高,分别是224.21 mg kg-1和56.77 mg kg-1,其氮转化速率也最高,硝化、氨化、氮矿化速率分别为1.74 mg kg-1 d-1、0.36 mg kg-1 d-1和1.90mg kg-1 d-1.各凋落物处理下的土壤氮含量随时间变化的规律不一致.土壤氨化速率与土壤全氮呈显著正相关(r=0.843,P<0.05,N=21),与栲木荷林凋落物的失重率呈显著负相关(r=-0.997,P<0.05,N=21).图3表4参29  相似文献   

9.
针对采煤沉陷区坡耕地的水土流失问题,通过田间试验,以平作为对照(CK),研究平作+残茬覆盖(T1)、横坡垄作(T2)和横坡垄作+残茬覆盖(T3)对坡耕地夏玉米籽粒产量和水分利用效率的影响。结果表明,从苗期到拔节期,残茬覆盖明显降低了土壤水分的无效蒸发,2个残茬覆盖处理(T1和T3)0~100 cm土壤含水量显著高于CK(P0.05);到拔节期时,T1和T3处理土壤含水量分别比CK提高9.64%和9.74%。玉米拔节后降雨增多,与CK相比,T1、T2和T3处理地表径流减少,坡耕地的保水保肥能力提高。T1、T2和T3处理还显著提高了玉米的产量、水分利用效率、降雨利用效率和氮肥偏生产力(P0.05),其中T3处理保水保肥和增产效果最好,其玉米的产量、水分利用效率、降雨利用效率和氮肥偏生产力分别较CK提高16.59%、31.20%、16.55%和16.59%。通过横坡垄作并附以秸杆覆盖是适用于采煤沉陷区坡耕地的有效农耕措施。  相似文献   

10.
当前氮沉降对湿地泥炭藓凋落物分解的影响还存在很大争议,并且亚热带湿地泥炭藓分解对氮沉降的响应研究鲜见报道.采用分解袋法,在鄂西南地区开展模拟氮沉降对泥炭藓凋落物分解影响的实验.模拟氮浓度设置4个水平,分别为N0(0 g m~(-2) a~(-1))、N3(3 g m~(-2) a~(-1))、N6(6 g m~(-2) a~(-1))、N12(12 g m~(-2) a~(-1)),其中N0为对照(CK).野外分解3、6、9和12个月后,室内测定泥炭藓凋落物干重、灰分、总碳(C)、总氮(N)、C/N以及总酚含量,计算凋落物的质量残留率、总碳(C)残留率及总酚残留率.结果显示:(1)氮沉降对凋落物分解的影响取决于分解时间,且泥炭藓凋落物的分解主要发生在前6个月.分解12个月后,N3浓度的质量残留率较CK下降了11.91%,而N6、N12较CK分别增加了12.98%、10.43%.(2)氮沉降对凋落物灰分含量有一定影响,但是随分解时间的延长影响程度不同.凋落物的相对灰分含量和绝对灰分含量均随分解时间的增加呈显著增加趋势.(3)氮沉降对泥炭藓凋落物总碳(C)含量有显著的影响(P 0.05),分解时间对泥炭藓凋落物总碳(C)、总氮(N)及总酚含量存在显著影响(P0.05),且氮沉降对泥炭藓凋落物总碳(C)含量的影响程度取决于分解时间.分解12个月后,凋落物中总碳(C)含量和C/N均较初始值有所下降,总氮(N)含量和总酚含量则有所增加.(4)凋落物质量残留率、总碳(C)残留率与总酚残留率呈现出较强的线性正相关.可见,氮沉降对泥炭藓分解在短期内有一定影响,但并不是简单地促进或抑制作用.(图4表2参53)  相似文献   

11.
青藏高原高山草地的凋落物分解是其生物地化循环过程的重要一环.采用样方调查法估测两种典型地形条件下高山草地单位面积的年凋落物产量,分析定面积凋落物分解袋中的初始装袋量与凋落物分解率的关系,估算最佳初始凋落物装袋量.通过积雪期设置双面凋落物分解袋于浅雪、深雪、无雪及人工雪被处理下,比较不同的雪被处理下凋落物的分解率,同时测定对应的土壤温度及土壤微生物生物量碳氮含量,进而分析土壤微生物生物量碳氮与凋落物分解率之间的相关关系.研究发现:(1)两种典型样地内植物凋落物在自然状态下的年产生量均约为90 g/m~2;(2)非生长季中凋落物分解率与凋落物初始重量呈负线性相关,凋落物初始装袋量3 g是研究分解率的相对较佳重量;(3)随着积雪厚度的增加,非生长季土壤温度和凋落物分解率提高,同时也促进了土壤微生物生物量的积累,凋落物分解率和土壤微生物生物量碳、氮在深雪与无雪处理下分别达到最大值(分别为10.15%,156.37 mg/kg,75.89 mg/kg)和最小值(分别为3.07%,65.38mg/kg,20.17mg/kg).土壤微生物生物量碳、氮均与凋落物分解率呈显著相关性(P 0.05).综上所述,即便在冬季气温低于冰点的情况下,雪被的隔绝作用使得土壤微生物活动依然活跃进行;雪被变化既改变了土壤环境因子及凋落物分解率,也深刻影响着高山草地生态系统的结构与功能.  相似文献   

12.
立枯分解是湿地植物凋落物分解的重要组成部分,在湿地养分循环中起着重要作用。在人类活动的影响下,磷大量流入到自然湿地中,可能会引起草本植物凋落物质量及立枯期分解过程的变化。通过磷添加控制试验(对照,0 g·m~(-2)·a~(-1);磷添加,1.2 g·m~(-2)·a~(-1)),探讨三江平原草甸中土壤磷可用性增加对优势植物小叶章(Deyeuxia angustifolia)地上部分(杆和叶片)凋落物质量及其在立枯期的分解过程的影响,以揭示磷可用性变化对植物立枯期碳与养分循环的影响。结果表明,磷添加引起叶片凋落物氮和磷含量的升高,升幅分别为8.35%和28.33%,但对杆凋落物无显著影响(P0.05)。在一年的立枯期内,来自于不同磷添加处理的凋落物质量损失速率及微生物呼吸速率无显著差异(P0.05)。然而,磷添加使立枯期叶片凋落物养分残留量(以百分比计)显著减少(P0.05):分解一年后,来自于P添加处理的叶片凋落物氮和磷残留量分别为106.64%和49.34%,而对照处理分别为121.84%和63.58%。因此,在该地区的淡水湿地中,人类活动引起的磷富营养化将会通过提高植物组织的养分含量,改变其在立枯阶段的养分释放动态,从而对生态系统的养分循环产生重要影响。  相似文献   

13.
氮素是农田土壤的主要养分限制因子之一,在全球气候变化背景下研究农田土壤氮素对温度和降水变化的响应,对评价气候变化农业生态效应具有重要的意义。通过田间试验,利用红外辐射灯管模拟增温,人工减少降水量,并测定土壤氮素含量,以探讨增温和降水减少对冬小麦和大豆生长季土壤氮素的影响规律。试验设置对照(CK)、增温(T,增温约2℃)、降水减少(P,降水量减少30%)、增温和降水减少复合处理(TP,增温约2℃+降水减少30%)4个水平处理。结果表明,在冬小麦生长季,与CK相比,T、P和TP处理显著减少了返青期土壤全氮,增加了成熟期土壤全氮;T和TP处理显著降低了拔节期土壤全氮。T、P和TP处理显著减少了孕穗-抽穗期土壤铵态氮。P和TP处理显著增加了返青-灌浆期土壤硝态氮,T处理显著增加了拔节-抽穗期土壤硝态氮。在大豆生长季,与CK相比,T、P和TP处理对土壤全氮含量的影响都没有达到显著性水平。T处理使鼓粒期土壤铵态氮增加10.0%(P=0.038),T和P处理使结荚期土壤硝态氮分别减少了27.4%(P=0.011)和27.1%(P=0.009),T、P和TP使鼓粒期土壤硝态氮分别增加了46.6%(P=0.007)、41.3%(P=0.014)和56.3%(P=0.003)。研究表明,增温和降水减少改变了农田土壤氮素含量,且对冬小麦生长季土壤氮素的影响较大豆生长季更加明显。  相似文献   

14.
基于Meta分析的土壤呼吸对凋落物输入的响应   总被引:1,自引:0,他引:1  
凋落物输入是影响土壤呼吸的一个重要因素,然而从国内外目前研究结果来看,土壤呼吸响应凋落物输入的影响因素尚不清楚。利用国内外已发表的30篇研究论文共1393对有效数据,通过Meta分析,从凋落物管理措施、气候、植被、地形、土壤理化性质等因素揭示凋落物输入对土壤呼吸的影响程度。研究发现:与清除凋落物处理相比较而言,(1)凋落物输入后显著增加了土壤呼吸,且土壤呼吸的增加程度呈现出倍增凋落物处理是自然凋落物处理的1.33倍;(2)不同气候条件下的土壤呼吸增加程度呈现出强降雨(>1000 mm)是微弱降雨(<1000 mm)的1.34倍,以及高温气候(>20℃)是低温气候(<20℃)的1.7倍;(3)土壤呼吸的增加程度在不同植被带下呈现出针叶林带(34.1%)>阔叶林带(28%)>混交林带(22%)>草地(17.3%)的趋势;(4)不同海拔梯度条件下土壤呼吸的增加程度呈现出高海拔(59.6%)>中海拔(34.2%)>低海拔(26.7%)的趋势;(5)不同土壤理化性质条件下的土壤呼吸增量呈现出低容重(77.5%)分别是中容重(26.9%)和高容重(18.0%)的2.9倍和4.3倍,同时中性土壤(79.6%)的呼吸增量远远大于酸性(28.2%)和碱性(24.1%)土壤的呼吸增量,以及高土壤碳氮比(81.2%)的土壤呼吸增量远远大于低土壤碳氮比(19.4%)和中土壤碳氮比(29.6%)的土壤呼吸增量。由此可见,凋落物输入后会导致土壤呼吸的显著增加,但是不同气候、不同植被、不同地形、不同土壤理化性质等条件下其土壤呼吸增加的幅度不同。  相似文献   

15.
韩雪  王春梅  蔺照兰 《生态环境》2014,(9):1503-1508
森林凋落物的分解是生态系统养分循环的重要过程,以北京西山地带性植被栎树林(辽东栎:Quercus liaotungensis)为对象,主要研究温带森林植物凋落物分解对模拟氮沉降的响应,为更好地了解氮沉降对温带森林地区凋落物的分解过程提供参考.通过模拟氮沉降,研究不同形态氮(硝态氮、铵态氮和混合态氮)和不同水平氮沉降(对照0 kg·hm^-2·a^-1、低氮处理50 kg·hm^-2·a^-1 和高氮处理150 kg·hm^-2·a^-1)对凋落物分解的影响,在2 年的时间内调查分析了凋落物分解过程中质量损失动态和碳(C)、N 含量及w(C)/w(N)比值的变化.研究结果表明,氮沉降均使凋落物分解速率减缓,且随氮沉降剂量增加,凋落物分解速率相比对照分别减慢了9.88%(硝态氮低氮)、15.02%(硝态氮高氮)、11.46%(铵态氮低氮)、14.62%(铵态氮高氮)、13.04%(混合态氮低氮)和16.20%(混合态氮高氮).且不同氮沉降类型、不同氮沉降水平间差异显著.不同形态、不同水平的氮沉降显著地增加了凋落物N 含量(P=0.061,P=0.087),其中混合态氮沉降对凋落物中N 素含量增加最显著(P=0.044).但在分解过程中,各处理均未对凋落物C 含量产生显著影响.不同水平的氮沉降显著降低了凋落物的w(C)/w(N)比值,而且不同类型不同水平氮沉降对凋落物w(C)/w(N)比值具有显著的交互作用(P=0.011).综上所述,通过对模拟氮沉降后凋落物残留率等的变化分析,得出氮沉降对温带森林凋落物的分解产生了抑制作用.  相似文献   

16.
采用盆栽实验,通过向土壤(每盆8 kg)中添加0 g/盆(CK)、20 g/盆(T1)、40 g/盆(T2)和80 g/盆(T3)香樟(Cinnamomum camphora)凋落叶,探讨其在土壤中分解初期对凤仙花(Impatiens balsamina)生长和生理特性的影响,为乔木园林植物香樟与林下草本观赏植物的合理搭配以及凋落叶的处理提供参考.为分析施入的凋落叶是否会明显改变土壤物理性状进而影响受体植物生长,干扰化感效应的表现,同时进行了平行空白试验,即将香樟凋落叶蒸煮2 d后风干(尽可能地降低其中次生代谢物质的含量),同样设置3个处理(Z1 20 g/盆,Z2 40 g/盆和Z3 80 g/盆).分别在凤仙花播种后第20、60、100和120天测定其植株的生长指标,在第60天测定光合生理指标,并取样测定抗性生理指标.结果表明:(1)香樟凋落叶在土壤中分解的初期,显著抑制了凤仙花的地径和高生长(P<0.05);随着凋落叶添加量的增加,抑制效应增强,且显著抑制了凤仙花叶片的叶绿素含量和气体交换过程,其中叶绿素含量、净光合速率(Pn)、气孔限制值(Ls)在60 d随凋落叶量的增加而显著减小(P<0.05);随着凋落叶量增加,凤仙花叶片超氧化物歧化酶(SOD)和过氧化物酶(POD)活性显著降低(P<0.05);各处理丙二醛(MDA)含量均显著大于CK,表明其受到了一定程度的膜质氧化损伤;各凋落叶处理的脯氨酸(Pro)、可溶性糖(SS)含量均显著低于CK(P<0.05),可溶性蛋白(SP)含量随凋落叶量增加呈上升趋势.(2)在平行空白试验中,经蒸煮后凋落叶处理的凤仙花在形态和抗性生理上均表现为无显著差异(P>0.05),表明在一定的凋落叶添加量范围内,土壤的物理性质的变化不明显,没有显著影响凤仙花的生长,其受到抑制的主要原因是凋落叶分解释放的次生代谢物质在土壤和受体植物中发生化学作用的结果;(3)香樟凋落叶处理对凤仙花的化感综合抑制效应随施用剂量的增大而增强,T1、T2和T3处理的化感综合效应值(CE)分别为0.169、0.354和0.497.综上说明,在香樟凋落叶自然分解初期,其释放的化感物质影响了树下凤仙花的抗性生理活动,对环境适应能力降低,致使凤仙花光合能力下降,生长受到抑制,最终导致凤仙花观赏质量降低.  相似文献   

17.
在华西雨屏区天然常绿阔叶林中,通过野外原位试验,设置对照(CK)、减少降雨5%(W1)、减少降雨10%(W2)、减少降雨20%(W3)和减少降雨50%(W4)5个处理,采用LI-8100土壤碳通量分析系统(LI-COR Inc.,USA)测定土壤呼吸速率及其相应环境因子,并通过回归方程分析土壤呼吸速率与10 cm土壤温度和0-10 cm土壤水分间的关系,研究模拟减雨对华西雨屏区天然常绿阔叶林土壤呼吸的影响.结果表明:(1)W1处理对常绿阔叶林土壤呼吸无显著影响,W2处理显著促进了常绿阔叶林土壤呼吸,W3和W4处理显著抑制了常绿阔叶林土壤呼吸(P0.05);(2)W1、W3和W4处理的年累计土壤呼吸分别比CK减少了3.03%、12.26%和26.67%,而W2处理比CK增加了11.17%;(3)W2处理使土壤呼吸的温度敏感性降低,而W1、W3和W4则提高了土壤呼吸的温度敏感性.综上所述,降雨减少显著影响了阔叶林土壤呼吸,改变了土壤呼吸的温度敏感性.(图4表1参28)  相似文献   

18.
冰暴、台风等极端气候事件严重干扰了森林生态系统,导致大量落叶、断枝、断干等非正常凋落物产生,将对土壤碳库产生激发效应,然而目前对这种现象的研究仍十分匮乏。以马尾松(Pinus massoniana)、黧蒴锥(Castanopsis fissa)、浙江润楠(Machilus chekiangensis)3种南亚热带常见树种为研究对象,利用~(13)C标记植株并采集其新鲜叶片添加至土壤表面,进行了为期110 d的室内培养实验,培养中分别测量了CO2排放量、~(13)C丰度值以及培养前后土壤碳库的变化。结果表明,不同树种的非正常凋落物的碳排放模式相似,均表现为前期快速升高,之后波动下降,后期稳定在较低水平。其中91.39%—94.04%的碳排放过程发生在前中期(0—45d)。110d的培养过程中,非正常凋落物分解产生的碳有67.86%—95.31%以C–CO_2的形式排放到大气当中。非正常凋落物输入对土壤有机碳的激发效应主要分为3个阶段。培养前期(0—7d)3种非正常凋落物输入均引起了土壤碳强烈的负激发效应且在短期内达到峰值,峰值分别为-50.05、-117.72、-124.08;培养中期(7—35 d)负激发效应强度逐步下降,表现为先快速下降后速率转慢;培养后期(35—110 d)碳激发效应较为平稳,不同树种之间有所差异,黧蒴锥、浙江润楠的碳激发效应逐渐转为正向,而马尾松维持负激发效应并缓慢下降至消失。经过110 d的培养,马尾松、黧蒴锥的0—5 cm层土壤有机碳显著高于对照组(P0.05),黧蒴锥的0—5、5—10 cm层土壤的~(13)C同位素值显著高于对照组(P0.05)。各处理组与对照组之间全氮、有效氮差异均不显著(P0.05)。非正常凋落物输入在短期内对表层土壤有机碳含量影响显著而对深层土壤没有影响,其分解产生的碳大部分以C–CO_2的形式排放到大气当中。  相似文献   

19.
为进一步了解土壤动物对高寒森林凋落物分解的影响,于2011年11月至2012年10月在凋落物分解的不同时期即冻结前期、冻结期、融化期、生长季节初期、生长季节中期以及生长季节末期,采用凋落物分解袋法,研究了川西亚高山/高山森林代表性物种康定柳(Salix paraplesia)、方枝柏(Sabina saltuaria)、红桦(Betula albosinensis)和岷江冷杉(Abies faxoniana)凋落物中土壤动物的群落结构及其多样性动态.结果显示:(1)共捕获土壤动物7 082只,隶属2门9纲15目57科(类),不同物种凋落物中土壤动物捕获量差异显著,依次为岷江冷杉(36.01%)红桦(29.19%)康定柳(19.59%)方枝柏(15.21%).(2)冻融季节土壤动物捕获量显著小于生长季节,但仍占到总捕获量的17.69%.(3)凋落物分解的不同时期,土壤动物优势类群差异显著,但主要以弹尾目和甲螨亚目为主.(4)土壤动物功能类群以菌食性(64.17%)最多,其次是捕食性(23.89%),植食性(8.94%)次之,腐食性(3.00%)最少.(5)土壤动物多样性受温、湿度影响显著,其Shannon-Wiener多样性指数与水热条件变化趋于一致.这些结果表明凋落物质量及水热条件综合作用于川西亚高山/高山森林凋落物分解过程中土壤动物群落结构及其多样性.  相似文献   

20.
模拟酸雨对龙眼坐果的影响及钙调节   总被引:13,自引:1,他引:13  
pH 4.5的酸雨处理的花粉萌发率比CK下降 9.38%,pH 3.5处理可观察到花粉受害的症状 ,花粉萌发率比CK下降 2 4.2 3%.pH 4.0的酸雨处理雌花 ,其坐果率显著下降 (P <0 .0 5 ) .0 .0 2~ 0 .0 4mmol/L的Ca(NO3 ) 2 溶液处理显著促进酸雨胁迫下花粉的萌发 ,当Ca(NO3 ) 2 的浓度超过 0 .0 8mmol/L时则促进作用开始减弱 .酸雨胁迫后用 2mmol/LCa(NO3 ) 2 溶液或清水喷洒可显著减少因酸雨对雌花和坐果的危害 .图 1表 6参 2 1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号