首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
针对高瓦斯矿井自燃煤层综放孤岛工作面开采时采空区漏风导致的采空区自燃和瓦斯爆炸灾害综合防治的技术难题,以天池煤矿102孤岛工作面为例,进行采空区自燃"三带"及爆炸危险带现场监测及数值模拟研究。监测结果表明,102工作面采空区氧气体积分数随与工作面距离增加而下降,工作面进风侧采空区氧化升温带宽度较大,工作面中部到回风侧采空区氧化升温带宽度逐渐减小。利用COMSOL软件模拟采空区风流速度场、氧气体积分数场、甲烷体积分数场和自燃"三带"分布。数值模拟结果表明,102工作面采空区进风侧切顶线20~70 m范围内氧气体积分数大于8%,风速小于0.004m/s,存在自然发火危险;工作面回风侧采空区没有自燃危险带;工作面进风端头后部采空区的自燃危险带内瓦斯体积分数也处于爆炸范围5%~15%内,此重合部分即为瓦斯爆炸危险区。  相似文献   

2.
高瓦斯矿井孤岛综放采空区遗煤自燃综合防治技术   总被引:12,自引:2,他引:10  
针对国阳二矿高瓦斯自燃煤层综放开采的实际情况,分析了"U+Ⅱ"型孤岛综放面采空区遗煤自燃特点及危险性。利用单元法对孤岛面的漏风状况进行了实测,并通过数值模拟分析了综放采空区内的漏风流场,根据采空区自燃"三带"的渗流风速确定了可能自燃带的范围,表明采空区漏风是"U+Ⅱ"型孤岛综放面采空区遗煤自燃的主要危险因素。在此基础上,结合实际情况系统地制定了以有效控制采空区漏风和重点发火区域注胶为主的综合防灭火技术措施,为有效控制综放采空区遗煤自燃,实现矿井高产高效、安全生产提供技术保障。实践表明,运用控制工作面风量与高抽巷负压、均压堵漏、压注胶体防灭火材料及加快工作面推进速度等综合防灭火技术防治高瓦斯矿井"U+Ⅱ"型孤岛综放面采空区遗煤自燃是可行的。  相似文献   

3.
为研究注氮对采空区自燃三带分布的影响,建立了二维注氮采空区渗流场的数学模型,研究了注氮量的变化对采空区流场分布的影响,得到了注氮采空区自燃三带的分布规律。结果表明,随着注氮量的增大,散热带增宽,氧化带向采空区深部移动,距注氮源越近三带所受影响越大,并分析了注氮量对工作面氧浓度分布的影响。  相似文献   

4.
为研究采煤工作面开采过程中采空区自燃氧化带的分布与宽度及发火期动态变化规律,利用COMSOL多物理场数值模拟软件,基于变形几何和其他多物理-化学场,以瑞安公司014N1-1综放工作面为例,建立采空区自燃动态数值模拟模型,开展采空区遗煤自燃数值模拟研究。结果表明:工作面开采过程中,供风量大、推进速度低,氧化带初次出现所需时间长、发火期短;氧化带最大宽度与时间间有类似"S"型关系,动态非稳定性增加;开采初期氧化带宽度随风量增加而变小,开采稳定阶段,则相反;随开采速度增加,氧化带最大宽度与推进速度的比值(Lmax/vt)变小,自燃危险性降低。  相似文献   

5.
为揭示浅埋深近距离煤层群开采过程中地表裂隙发育对上覆采空区遗煤自燃的影响规律及影响范围,以苏家沟煤矿为研究背景,建立采空区流场流动及低温氧化的数学模型和三维几何模型。采用FLUENT模拟软件模拟了下煤层工作面推进过程中上覆采空区的氧气分布情况,得到了浅埋近距离煤层上覆采空区基于裂隙动态发育的氧气场和风流场的分布规律。依据采空区自燃危险区域判定理论,对上部煤层采空区内的自然发火危险区域进行预测。结果表明:连通地表与采空区的裂隙数量随工作面的推进而增加,上覆采空区氧化升温区域主要集中在滞后工作面0~20 m范围内,采空区深部的氧化带分布在新、老裂隙附近,在进风侧靠近地表且在回风侧靠近裂隙底端;当工作面推进120 m,即产生3条贯通型裂缝时,采空区自燃危险性最大,结合风流场云图确定上煤层底板自燃危险区距工作面水平距离为97.5 m,是煤矿开采过程中的重点防护区域。  相似文献   

6.
为了解决近距离煤层上、下回采工作面联合开采易引起采空区遗煤自燃的安全问题,通过实验室实验、现场测试和数值模拟等方法,系统研究了山西华苑煤业有限公司9号与10号近距离自燃煤层回采工作面联合开采采空区自然发火的相关问题,包括煤层赋存与煤质特征、煤自燃特性与自燃标志气体及指标优选、联合开采工作面布置与开采参数、采空区漏风检测、采空区气体分布与自燃"三带"划分。给出并实施了束管监测预报、限定工作面最低推进速度、喷洒阻化剂、注氮防灭火和凝胶灭火等综合防灭火技术措施,实现了近距离自燃煤层联合开采的安全生产,对类似条件有一定的参考价值与借鉴意义。  相似文献   

7.
胡世洛  杨应迪 《安全》2022,(12):62-67
为保障无煤柱前进式U型通风工作面的安全开采,从一通三防技术角度分析工作面通风系统危险性。首先,对无煤柱前进式开采的2GN00工法特点进行介绍;其次,结合陕煤集团神木柠条塔矿业有限公司柠条塔煤矿拟采工作面N1217的实际工程背景,对工作面的通风特性、瓦斯灾害特性、火灾特性、粉尘灾害等特性进行分析;最后,针对通风、瓦斯治理、火灾防治、粉尘防治提出指导措施。结果表明:无煤柱前进式开采U型通风工作面瓦斯危险性较低,应做好监控;采空区漏风面多、漏风量大,通风系统优化、防治采空区自燃是一通三防的工作重点;粉尘灾害与传统开采方式并无太大差别,危险性并未增大。  相似文献   

8.
为解决浅埋自燃煤层采空区因地表及工作面漏风而自燃的难题,以沙坪煤矿1818工作面为例,利用SF6示踪法检测采空区地表漏风通道和风速,利用FLUENT数值模拟分析不同漏风源采空区自燃“三带”分布的特征,并通过现场束管测试结果对比分析浅埋煤层采空区地表漏风对自燃“三带”分布的影响,同时限定工作面最小推进速度,确保工作面的安全生产。研究结果表明:地表漏风风速为0.06~0.30 m/s,漏风通道多且复杂;相比于工作面单一漏风源,有地表漏风存在时,自燃危险性加大;限定工作面最小推进速度为1.24 m/d。因此,多漏风源煤层开采条件下自燃“三带”分布的确定对浅埋藏自燃煤层采空区遗煤自燃预测预报及预防工作具有重要的指导和借鉴意义。  相似文献   

9.
针对急倾斜高瓦斯易自燃厚煤层综放面缓慢推进条件下采空区瓦斯事故及火灾的严重性,提出了上隅角浮抽、上顺槽铺设预埋管路采空区抽放、钻场顺层钻孔裂隙带抽放瓦斯的综合防瓦斯措施,但抽采扩大了自燃氧化带,为保证采空区抽放条件下的自然发火控制,采用注氮技术控制缓慢推进工作面的采空区自燃三带范围,通过Fluent模拟分析了工作面风量对采空区火与瓦斯的影响,瓦斯抽放对采空区流场及自燃"三带"分布的影响及注氮效果。结果表明,供风量增大到一定程度,自燃氧化带最大宽度及瓦斯浓度超90%边界距工作面最大距离都会趋于平缓,该拐点为防火防瓦斯的最佳风量,Fluent模拟分析了采取防火防瓦斯措施后流场,验证了综合抽放配合注氮技术解决采空区瓦斯积聚及自然发火危险的有效性。  相似文献   

10.
由于大倾角坚硬顶板煤层采空区地质条件复杂,漏风规律复杂多变,因而煤自燃危险性较大。利用SF6作为示踪气体对龙东煤矿7162工作面采空区和邻近采空区进行漏风检测,得到7162工作面采空区漏风的基本分布规律。采空区内的漏风出口主要是上隅角处后部的未压实巷道,最小漏风风速随深度的增加而减少,邻近采空区的漏风与煤柱完整程度及断层大小有关,最大漏风量占到正常总供风量的27%。根据漏风检测结果,利用Fluent软件对采空区漏风渗流场进行数值模拟,得到了采空区风压和风速分布规律,离工作面距离大于100 m的采空区内部几乎不存在漏风,保留煤柱的存在使风流更容易进入采空区内部。该研究成果为采空区煤炭自燃防治提供了科学指导。  相似文献   

11.
为探究煤矿采空区在不同孔隙率条件下对煤自燃环境的影响,基于多孔介质渗流特性的相关理论,以煤矿综采工作面为原型建立了U型通风采空区三维模型和渗流数学模型,利用Fluent软件对采空区以不同的孔隙率大小和分布方式进行数值模拟计算,从而得到采空区的漏风和氧气浓度的分布状态,以及氧化带的位置变化情况,进而研究不同孔隙率对采空区煤自燃环境的影响规律。研究表明:采空区漏风主要源于工作面下隅角处,进入采空区的漏风量大小与采空区的孔隙率有关。孔隙率越大,靠近工作面的漏风流速越大,氧气浓度越高,而深入采空区,孔隙率大小对采空区漏风影响越小,氧化带随着孔隙率的增大不断向采空区深部移入;孔隙率分布方式对采空区漏风速度的影响较大,且距离工作面越近影响越大,采空区深部则差别不大。  相似文献   

12.
为研究开区注氮条件下,采空区遗煤自燃被抑制和熄灭作用复杂力学过程(原理),由非均质多孔介质中的渗流连续性方程、气体弥散方程和综合传热方程的联立,建立了注氮采空区煤自燃的非定常数值模型。结合实例,用迎风格式有限元方法求解。计算在不同情况下采空区自燃高温点熄灭过程,以图形方式给出了采空区的漏风流态、氮气流态,描绘灭火降温过程中,采空区氧、CO和温度分布的动态变化过程。提出了对自燃早期火灾施行开区注氮灭火的方法和适用的判定准则。理论计算得到开区注氮灭火分为两个阶段过程,即原火源熄灭和新自燃氧化区形成并自燃。指出实施开区注氮灭火应准确把握注氮时机和防止新自燃氧化区形成的工作面开采推进时机;并配合降低漏风措施条件下进行注氮。  相似文献   

13.
采空区遗煤自燃升温过程的数值模型及其应用   总被引:12,自引:0,他引:12  
基于漏风渗流方程、氧浓度渗流-扩散-消耗方程和传热方程,建立了采空区自然发火非定常数值模型,并用迎风格式的有限元方法联立求解.结合实例,从理论上描绘了采空区漏风渗流、氧浓度分布和温度分布,以及它们随时间的加速变化过程,同时给出自燃的附产物CO的分布情况,重点给出了遗煤的自燃耗氧与升温的量化关系.结果表明,通常情况下采空区高温区偏在入风一侧,边界漏风对高温区有一定影响.与传统的采空区冷却带、自燃带和窒息带的三带划分相比,该模型能对自然发火问题给出更准确的解.模拟的自燃升温是加速的过程,同基于实验分析和实际观测得到的规律基本一致.  相似文献   

14.
采空区遗煤自燃过程及其规律的数值模拟研究   总被引:16,自引:5,他引:16  
基于非均质多孔介质中的连续性方程、多相气体渗流———扩散方程和综合传热方程,建立了工作面动态推进下的采空区自燃数值模型。结合实例,从理论上描绘了工作面开采过程中采空区的漏风流态、氧、CO、瓦斯和温度等分布状态及其动态过程。计算中考虑了瓦斯涌出对自燃的耦合作用;工作面动态推进对自燃的影响,以及沿边界冒落非压实性对漏风供氧、自燃高温区产生的影响。从理论上重点讨论了采空区自燃与各因素的定量化关系,得出自然发火期与煤氧化速度、工作面风量二者均呈显著的反比例关系;对于综放工作面采场漏风供氧系统,自然发火期主要取决于煤的耗氧能力,提高工作面风量仅能扩大自燃高温区的范围,增大自燃的发生几率;提高推进度能显著延长采空区自然发火期,呈指数变化。  相似文献   

15.
浅埋近距离煤层内错布置开采下部煤层时,地表裂隙易与复合采空区相互贯通,造成地表漏风,使采空区,特别是上部老采空自燃危险区域的分布难以预测。针对此问题,以酸刺沟煤矿6上109工作面至地表空间为研究对象,在漏风测定及束管监测的基础上,建立地表与复合采空区漏风模型,借助FLUENT数值模拟软件,研究地表漏风对复合采空区自燃危险区域的影响。研究表明,地表漏风最终汇入下部采空区回风侧,加大了其自燃危险区域范围;漏风流在向回风侧偏移的过程中,由于煤柱的阻挡,风速逐渐降低,与下部漏入的风流共同作用,使上部老采空区形成了氧浓度中间低四周高的不规则环状自燃危险区域;下部采空区进风侧向上的漏风增加了本煤层采空区的总漏风量,加大了其自燃危险区域宽度,同时增加了上部老采空区局部氧浓度,使其自燃危险性增大。  相似文献   

16.
采空区渗透率分布对流场的影响   总被引:6,自引:1,他引:5  
根据多孔介质渗流理论,利用计算流体力学软件Fluent,设定采空区渗透率为均匀分布、分段均匀分布和连续性分布,分别模拟这3种情况的采空区漏风流场。当渗透率均匀分布时漏风量小,自燃带靠近工作面。渗透率分段均匀分布时,速度在分区界面上产生跳跃。采空区渗透率连续分布条件下的漏风分布与假设分段均匀分布和均匀分布条件下的漏风量、漏风风速分布和自燃三带的位置和宽度有很大差别。结果表明,只有采用更能如实反映采空区岩石冒落和压实规律的渗透率分布,得到的采空区的风流流动规律才更符合实际。  相似文献   

17.
为解决煤层露头自燃所引起的资源浪费和环境污染,以新疆台勒维丘克煤层露头为研究对象,采用数值模拟方法研究煤层露头在火风压、火风压及外部风压作用下的自燃演化规律,为治理火区和保护环境提供依据。研究表明:火风压作用下,风流最大流动速度0.729 m/s,火风压最大达到170.2 Pa;火风压与外部风压联合作用下,煤层露头动力系统是负压通风系统,在漏风速度为0.2 m/s时,研究5个典型位置的温度、氧浓度、速度及压力的变化规律;并分析孔隙率、漏风速度对煤层露头自燃火灾的影响,说明大孔隙和漏风供氧为火灾大规模发展提供有利条件。研究成果对治理火区及保护生态环境奠定坚实基础。  相似文献   

18.
针对大流量高位巷瓦斯抽采可能诱发采空区自燃问题,以南山矿18层5分段综放面为研究背景,构建采空区气体渗流分析模型。利用变渗透系数和Forchheimer方程,求解非线性流与层流并存下采空区三维氧气分布。结果表明:高位巷瓦斯抽采使工作面氧气更易沿漏风方向采空区纵深发展,氧化带总体宽度会随抽放流量的提高而增加。在进风侧氧气分布后移程度较小,而回风侧受抽放负压显著影响,出现明显氧气富集区。上下隅角封堵配合注氮,会降低抽放对氧气渗入的诱导影响。依据研究结论,利用综合防火措施消除了高位巷附近潜在的自燃危险。  相似文献   

19.
〗采空区自然发火的防治是自燃矿井灾害防治的重中之重,选用薛村矿92118轻放工作面采空区为研究对象,现场布置测点,选取合适的采样仪器,对N2、O2、CO、CO2、CH4、C2H4、C2H6、C2H2气体进行实地采样分析,得出相应气体分布规律。并用流场模拟FEMLAB软件对其进行自然发火机理模拟,分析采空区漏风渗流速度场、流线、风速场和风压场情况,最后得出采空区自燃氧化危险区域和最易自然发火危险区域,结论合理。这对采空区采用注氮、堵漏风等措施提供了主要技术依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号