首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

2.
This study develops and tests a novel optimization method for optimally selecting and sizing stormwater control measures (SCMs) in urban landscapes for selected design storms. The developed methodology yields SCMs that capture and retain stormwater via onsite percolation, remove stormwater pollutants, and minimize stormwater control expenditures. The resulting environmental optimization problem involves integer and real variables imbedded in an objective function that is subjected to multiple constraints. This study's methodology aims at practicality and ease of implementation in the solution of the SCM sizing and selection optimization problem while taking into account the main factors that govern stormwater management in urban landscapes. The near‐optimal global solution of the SCM selection and design problem is obtained with nonlinear programming and verified with the average of multiple solutions calculated with multiple runs of an optimization evolutionary algorithm. The developed methodology is illustrated with one stormwater project in the City of Los Angeles, California.  相似文献   

3.
We analyzed the relation of the amount and spatial pattern of land cover with stream fish communities, in-stream habitat, and baseflow in 47 small southeastern Wisconsin, USA, watersheds encompassing a gradient of predominantly agricultural to predominantly urban land uses. The amount of connected impervious surface in the watershed was the best measure of urbanization for predicting fish density, species richness, diversity, and index of biotic integrity (IBI) score; bank erosion; and base flow. However, connected imperviousness was not significantly correlated with overall habitat quality for fish. Nonlinear models were developed using quantile regression to predict the maximum possible number of fish species, IBI score, and base flow for a given level of imperviousness. At watershed connected imperviousness levels less than about 8%, all three variables could have high values, whereas at connected imperviousness levels greater than 12% their values were inevitably low. Connected imperviousness levels between 8 and 12% represented a threshold region where minor changes in urbanization could result in major changes in stream condition. In a spatial analysis, connected imperviousness within a 50-m buffer along the stream or within a 1.6-km radius upstream of the sampling site had more influence on stream fish and base flow than did comparable amounts of imperviousness further away. Our results suggest that urban development that minimizes amount of connected impervious surface and establishes undeveloped buffer areas along streams should have less impact than conventional types of development.  相似文献   

4.
5.
Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.  相似文献   

6.
Continuing pressures from human activities have harmed the health of ocean ecosystems, particularly those near the coast. Current management practices that operate on one sector at a time have not resulted in healthy oceans that can sustainably provide the ecosystem services humans want and need. Now, adoption of ecosystem-based management (EBM) and coastal and marine spatial planning (CMSP) as foundational principles for ocean management in the United States should result in a more holistic approach. Recent marine biogeographical studies and benthic habitat mapping using satellite imagery, large-scale monitoring programs, ocean observation systems, acoustic and video techniques, landscape ecology, geographic information systems, integrated databases, and ecological modeling provide information that can support EBM, make CMSP ecologically meaningful, and contribute to planning for marine biodiversity conservation. Examples from coastal waters along the northeast coast of the United States from Delaware Bay to Passamaquoddy Bay, Maine, illustrate how benthic biogeography and bottom seascape diversity information is a useful lens through which to view EBM and CMSP in nearshore waters. The focus is on benthic communities, which are widely used in monitoring programs and are sensitive to many stresses from human activities.  相似文献   

7.
It is now well established that the traditional practice of urban stormwater management contributes to the degradation of receiving waterways, and this practice was more recently critiqued for facilitating the wastage of a valuable water resource. However, despite significant advances in alternative “integrated urban stormwater management” techniques and processes over the last 20 years, wide-scale implementation has been limited. This problem is indicative of broader institutional impediments that are beyond current concerns of strengthening technological and planning process expertise. Presented here is an analysis of the institutionalization of urban stormwater management across Sydney with the objective of scoping institutional impediments to more sustainable management approaches. The analysis reveals that the inertia with the public administration of urban stormwater inherently privileges and perpetuates traditional stormwater management practices at implementation. This inertia is characterized by historically entrained forms of technocratic institutional power and expertise, values and leadership, and structure and jurisdiction posing significant impediments to change and the realization of integrated urban stormwater management. These insights strongly point to the need for institutional change specifically directed at fostering horizontal integration of the various functions of the existing administrative regime. This would need to be underpinned with capacity-building interventions targeted at enabling a learning culture that values integration and participatory decision making. These insights also provide guideposts for assessing the institutional and capacity development needs for improving urban water management practices in other contexts.  相似文献   

8.
Understanding organisation at different social scales is crucial to learning how social processes play a role in sustainable natural resource management. Research has neglected the potential role that individual personality plays in decision making in natural resource management. In the past two decades natural resource management across rural Australia has increasingly come under the direct influence of voluntary participatory groups, such as Catchment Management Authorities. The greater complexity of relationships among all stakeholders is a serious management challenge when attempting to align their differing aspirations and values at four social institutional scales—local, regional, state and national. This is an exploratory study on the psychological composition of groups of stakeholders at the four social scales in natural resource management in Australia. This article uses the theory of temperaments and the Myers-Briggs Type Indicator (MBTI®) to investigate the distribution of personality types. The distribution of personality types in decision-making roles in natural resource management was markedly different from the Australian Archive sample. Trends in personality were found across social scales with Stabilizer temperament more common at the local scale and Theorist temperament more common at the national scale. Greater similarity was found at the state and national scales. Two temperaments comprised between 76 and 90% of participants at the local and regional scales, the common temperament type was Stabilizer. The dissimilarity was Improviser (40%) at the local scale and Theorist (29%) at the regional scale. Implications for increasing participation and bridging the gap between community and government are discussed.  相似文献   

9.
Damodaram, Chandana, Marcio H. Giacomoni, C. Prakash Khedun, Hillary Holmes, Andrea Ryan, William Saour, and Emily M. Zechman, 2010. Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management. Journal of the American Water Resources Association (JAWRA) 1-12. DOI: 10.1111/j.1752-1688.2010.00462.x Abstract: Urbanization causes increased stormwater runoff volumes, leading to erosion, flooding, and the degradation of instream ecosystem health. Although Best Management Practices (BMPs) are used widely as a means for controlling flood runoff events, Low Impact Development (LID) options have been proposed as an alternative approach to better mimic the natural flow regime by using decentralized designs to control stormwater runoff at the source, rather than at a centralized location in the watershed. For highly urbanized areas, LID practices such as rainwater harvesting, green roofs, and permeable pavements can be used to retrofit existing infrastructure and reduce runoff volumes and peak flows. This paper describes a modeling approach to incorporate these LID practices in an existing hydrologic model to estimate the effects of LID choices on streamflow. The modeling approach has been applied to a watershed located on the campus of Texas A&M University in College Station, Texas, to predict the stormwater reductions resulting from retrofitting existing infrastructure with LID technologies. Results demonstrate that use of these LID practices yield significant stormwater control for small events and less control for flood events. A combined BMP-LID approach is tested for runoff control for both flood and frequent rainfall events.  相似文献   

10.
/ In this paper we develop a conceptual framework for selectingstressor data and analyzing their relationship to geographic patterns ofspecies richness at large spatial scales. Aspects of climate and topography,which are not stressors per se, have been most strongly linked withgeographic patterns of species richness at large spatial scales (e.g.,continental to global scales). The adverse impact of stressors (e.g., habitatloss, pollution) on species has been demonstrated primarily on much smallerspatial scales. To date, there has been a lack of conceptual developmenton how to use stressor data to study geographic patterns of speciesrichness at large spatial scales.The framework we developed includes four components: (1) clarification of theterms stress and stressor and categorization of factors affecting speciesrichness into three groups-anthropogenic stressors, natural stressors, andnatural covariates; (2) synthesis of the existing hypotheses for explaininggeographic patterns of species richness to identify the scales over whichstressors and natural covariates influence species richness and to providesupporting evidence for these relationships through review of previousstudies; (3) identification of three criteria for selection of stressor andcovariate data sets: (a) inclusion of data sets from each of the threecategories identified in item 1, (b) inclusion of data sets representingdifferent aspects of each category, and (c) to the extent possible, analysisof data quality; and (4) identification of two approaches for examiningscale-dependent relationships among stressors, covariates, and patterns ofspecies richness-scaling-up and regression-tree analyses.Based on this framework, we propose 10 data sets as a minimum data base forexamining the effects of stressors and covariates on species richness atlarge spatial scales. These data sets include land cover, roads, wetlands(numbers and loss), exotic species, livestock grazing, surface water pH,pesticide application, climate (and weather), topography, and streams.KEY WORDS: Anthropogenic impacts; Biodiversity; Environmental gradients;Geographic information systems; Hierarchy  相似文献   

11.
Several factors, such as municipality location and population, are thought to influence trends among stormwater utilities (SWUs); however, no analysis of the relationship between these factors and SWU characteristics has been performed. This article corroborates hypothesized relationships and identifies trends and patterns in the establishment, funding mechanism, and magnitude of SWUs by analyzing location, population density, home value, and year of establishment for a comprehensive national SWU database with data for 1,490 SWUs. The equivalent residential unit (ERU), a SWU that charges based on impervious area, was the most prevalent funding mechanism in all National Oceanic and Atmospheric Administration Climate Regions of the United States except the West and West‐North‐Central. The ERU was also found in larger cities with high population densities, whereas the Flat Fee, a SWU that charges a single rate for all properties, was found in smaller towns. Higher home values were correlated with higher monthly fees for 28% of the municipalities analyzed. The residential equivalence factor, a SWU that charges based on runoff produced, was popular in municipalities with higher home values, whereas the Flat Fee was popular in municipalities with lower home values. The number of SWUs established increased with Phase I municipal separate stormwater and sewer system (MS4) permit and Phase II small MS4 permit deadlines. Summary tables provide guidance to aid municipalities considering a SWU.  相似文献   

12.
Abstract:  It is critical that evapotranspiration (ET) be quantified accurately so that scientists can evaluate the effects of land management and global change on water availability, streamflow, nutrient and sediment loading, and ecosystem productivity in watersheds. The objective of this study was to derive a new semi‐empirical ET modeled using a dimension analysis method that could be used to estimate forest ET effectively at multiple temporal scales. The model developed describes ET as a function of water availability for evaporation and transpiration, potential ET demand, air humidity, and land surface characteristics. The model was tested with long‐term hydrometeorological data from five research sites with distinct forest hydrology in the United States and China. Averaged simulation error for daily ET was within 0.5 mm/day. The annual ET at each of the five study sites were within 7% of measured values. Results suggest that the model can accurately capture the temporal dynamics of ET in forest ecosystems at daily, monthly, and annual scales. The model is climate‐driven and is sensitive to topography and vegetation characteristics and thus has potential to be used to examine the compounding hydrologic responses to land cover and climate changes at multiple temporal scales.  相似文献   

13.
Land use and land cover change (LUCC) is an acknowledged cause of the current biodiversity crisis, but the link between LUCC and biodiversity conservation remains largely unknown at the regional scale, especially due to the traditional lack of consistent biodiversity data. We provide a methodological approach for assessing this link through defining a set of major pressures on biodiversity from LUCC and evaluating their extent, distribution, and association with a set of physical factors. The study was performed in the Metropolitan Region of Barcelona (MRB, NE of Spain) between 1956 and 2000. We generated a LUCC map for the time period, which was reclassified into a set of pressures on biodiversity (forestation, deforestation, crop abandonment, and urbanization). We then explored the association of these pressures with a set of physical factors using redundancy analysis (RDA). Pressures encompassed 38.8 % of the MRB area. Urbanization and forestation were the dominating pressures, followed by crop abandonment and deforestation. RDA showed a significant distribution gradient of these pressures in relation to the studied physical factors: while forestation and deforestation are concentrated in remote mountain areas, urbanization mainly occurs in lowlands and especially on the coast, and close to previous urban centers and roads. Unchanged areas are concentrated in rainy and relatively remote mountain areas. Results also showed a dramatic loss of open habitats and of the traditional land use gradient, both featuring Mediterranean landscapes and extremely important for their biodiversity conservation. Implications of these results for biodiversity management are finally discussed.  相似文献   

14.
Environmental Management - Monitoring long-term changes in aquatic biodiversity requires the effective use of historical data that were collected with different methods and varying levels of...  相似文献   

15.
Green infrastructure is a general term referring to the management of landscapes in ways that generate human and ecosystem benefits. Many municipalities have begun to utilize green infrastructure in efforts to meet stormwater management goals. This study examines challenges to integrating gray and green infrastructure for stormwater management, informed by interviews with practitioners in Cleveland, OH and Milwaukee WI. Green infrastructure in these cities is utilized under conditions of extreme fiscal austerity and its use presents opportunities to connect stormwater management with urban revitalization and economic recovery while planning for the effects of negative- or zero-population growth. In this context, specific challenges in capturing the multiple benefits of green infrastructure exist because the projects required to meet federally mandated stormwater management targets and the needs of urban redevelopment frequently differ in scale and location.  相似文献   

16.
The influence of slash-and-burn agriculture and tree extraction on the spatial and temporal pattern of forest fragmentation in two municipalities in the highlands of Chiapas, Mexico was analyzed. The data series were derived from two subsets of satellite images taken in 1974 and 1996. The analysis was based on area, edge, shape, core area, and neighbor indices. During the 22 years, the dense forest decreased by 8.9%/yr in Huistán and by 8.6%/yr in Chanal, while open/disturbed forest, secondary vegetation, and developed area increased in both municipalities. The total number of fragments increased by 1.4%/yr and 2.3%/yr in Huistán and Chanal, respectively. Dense forest showed the highest increase in the number of fragments (6%/yr in Huistán and 12%/yr in Chanal), while edge length, core area, and number of dense forest core areas decreased. The larger fragments of dense forest present in 1974 were divided into smaller fragments in 1996; at the same time, they experienced a process of degradation toward open/disturbed forest and secondary vegetation. Two different fragmentation patterns could be distinguished based on agricultural or forestry activities. Forest fragmentation did not occur as a continuous process; the pattern and degree of fragmentation were functions of land tenure, environmental conditions, and productive activities. The prevalence of rather poor soil conditions, small-holdings, growing human population densities, increasing poverty, and the absence of alternative economic options will maintain a high rate of deforestation and forest fragmentation in the studied region.  相似文献   

17.
Best management practices (BMPs) are widely used to mitigate impacts of increased impervious surfaces on stormwater runoff. However, there is limited detailed and up‐to‐date information available on the cost of designing, constructing, and maintaining BMPs over their lifetime. The objective of this study is to analyze BMPs recently constructed by the Virginia Department of Transportation (VDOT) to quantify their total cost per pound of phosphorus removed annually. A motivating factor for the study is recent changes to regulatory guidelines in Virginia which allow for full or partial substitution of purchased nutrient credits in lieu of constructing onsite BMPs to achieve compliance with stormwater quality regulations. Results of the analysis of nine BMPs found their cost ranged from $20,100 to $74,900, in 2014 dollars, per pound ($44,313‐$165,126 per kg) of phosphorus removed. Based on these results and assuming current credit prices procured by VDOT, purchasing nutrient credits is a cost‐effective option for the agency, especially when factoring in the cost of additional right of way for the BMP. Based on this finding, we expect compliance with stormwater quality regulations through credit purchases to become more widely used in Virginia. Moving forward, we suggest more direct tracking of BMP costs to support comparisons between BMP costs across a range of types and conditions to credit purchases for meeting stormwater regulations.  相似文献   

18.
本文首先从多规空间分区存在的差异分析入手,重点分析技术方法与编制思路差异、空间边界与管制手段差异。其次,对"多规合一"实践中的空间矛盾解决途径进行梳理,包括空间图斑差异协调模式、机构改革和规划事权改革模式、构建新的空间管制体系模式,总结存在的困难与障碍。最后,抛开部门之争和体制障碍,不局限于技术手段衔接,践行十八届五中全会提出的以主体功能区规划为基础统筹各类空间规划,探索提出一套具有可推广、复制特征的"三条底线(生态保护红线、永久基本农田红线、城市开发边界)+三大空间(城镇、农业、生态)+八大空间管治区"县域空间管治分区体系,配合空间管治规则的融合与创新及部门空间事权的分离与引导,达到用途管制的目的。  相似文献   

19.
20.
Sustainability is a concept that has been widely embraced both politically and intellectually but has not been addressed in terms of practical application. In most resource sectors, the features of a sustainable future remain unclear and there are few examples that give practical expression to sustainability. This is especially true in the case of water resources management which has been conspicuous in its absence from the majority of the literature. This paper attempts to address this deficiency on two counts. First, it provides a discussion of sustainability and the application of the concept to the management of water resources. Second, the paper illustrates how the concept can be utilized for the management and planning of urban stormwater. The paper concludes by offering research opportunities to investigate the feasibility of adopting natural channel design and artificial wetlands for sustainable stormwater management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号