首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligninolytic enzymes, manganese peroxidase (MnP), laccase, and lignin peroxidase (LiP), from white-rot fungi were used in an attempt to treat methoxychlor (MC), a chemical widely used as a pesticide. MnP and laccase in the presence of Tween 80 and 1-hydroxybenzotriazole (HBT), respectively, and LiP were found to degrade MC, and MnP-Tween 80 decreased MC levels by about 65% after a 24-h treatment. MC was converted into methoxychlor olefin (MCO) and 4,4'-dimethoxybenzophenone by MnP-Tween 80 or laccase-HBT treatment. These results indicate that ligninolytic enzymes from white-rot fungi can catalyze the oxidative dechlorination of MC. Moreover, a metabolite MCO was also degraded by MnP-Tween 80 or laccase-HBT treatment.  相似文献   

2.
The production of ligninolytic enzymes by the fungus Phanerochaete chrysosporium in a fixed-bed tubular bioreactor, filled with cubes of nylon sponge, operating in semi-solid-state conditions, was studied. Maximum individual manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of 1293 and 225 U/l were detected.The in vitro decolourisation of two structurally different dyes (Poly R-478, crystal violet) by the extracellular liquid obtained in the above-mentioned bioreactor was monitored in order to determine its degrading capability. The concentration of some compounds (sodium malonate, manganese sulphate) from the reaction mixture was optimised in order to maximise the decolourisation levels. A percentage of Poly R-478 decolourisation of 24% after 15 min of dye incubation was achieved.On the other hand, a methodology for a long treatment of these dyes based on the continuous addition of MnP enzyme and H(2)O(2) was developed. Moreover, this enzymatic treatment was compared with a photochemical decolourisation process. The former allowed to maintain the degradation rate almost constant for a long time, resulting in a decolourisation percentage of 70% and 30% for crystal violet and Poly R-478, respectively, after 2 h of treatment. As for the latter, it was not able to degrade Poly R-478, whereas crystal violet reached a degradation of 40% in 2 h.  相似文献   

3.
Natural steroidal hormone estrone (E1) was treated with the white rot fungus Phanerochaete sordida YK-624 under ligninolytic condition with low-nitrogen and high-carbon culture medium. E1 decreased by 98% after 5 d of treatment and the activities of ligninolytic enzymes, manganese peroxidase (MnP) and laccase, were detected during treatment, which suggested that the disappearance of E1 is related to ligninolytic enzymes produced extracellularly by white rot fungus. Therefore, E1 was treated with MnP and laccase prepared from the culture of white rot fungi. HPLC analysis demonstrated that E1 disappeared completely in the reaction mixture after 1 h of treatment with either MnP or laccase. Using the yeast two-hybrid assay system, it was also confirmed that both enzymatic treatments completely removed the estrogenic activity of E1 after 2 h. These results strongly suggest that ligninolytic enzymes are effective in removing the estrogenic activity of E1.  相似文献   

4.
Thirty different white rot strains were screened for Orange G and Remazol Brilliant Blue R (RBBR) decolorization on agar plates. Three promising strains, Dichomitus squalens, Ischnoderma resinosum and Pleurotus calyptratus, selected on the basis of this screening, were used for decolorization study in liquid media. All three strains efficiently decolorized both Orange G and RBBR, but they differed in decolorization capacity depending on cultivation conditions and ligninolytic enzyme production. Two different decolorization patterns were found in these strains: Orange G decolorization in I. resinosum and P. calyptratus was caused mainly by laccase, while RBBR decolorization was effected by manganese peroxidase (MnP); in D. squalens laccase and MnP cooperated in the decolorization processes.  相似文献   

5.
Bisphenol A (BPA) and nonylphenol (NP) were treated with manganese peroxidase (MnP) and laccase prepared from the culture of lignin-degrading fungi. Laccase in the presence of 1-hydroxybenzotriazole (HBT), the so-called laccase-mediator system, was also applied to remove the estrogenic activity. Both chemicals disappeared in the reaction mixture within a 1-h treatment with MnP but the estrogenic activities of BPA and NP still remained 40% and 60% in the reaction mixtures after a 1-h and a 3-h treatment, respectively. Extension of the treatment time to 12 h completed the removal of estrogenic activities of BPA and NP. The laccase has less ability to remove these activities than MnP, but the laccase-HBT system was able to remove the activities in 6 h. A gel permeation chromatography (GPC) analysis revealed that main reaction products of BPA and NP may be oligomers formed by the action of enzymes. Enzymatic treatments extended to 48 h did not regenerate the estrogenic activities, suggesting that the ligninolytic enzymes are effective for the removal of the estrogenic activities of BPA and NP.  相似文献   

6.
Plants of Glandularia pulchella (Sweet) Tronc. performed decolorization of structurally different dyes to varying extent because of induction of different set of enzymes in response to specific dyes. Differential pattern of enzyme induction with respect to time was obtained for lignin peroxidase, veratryl alcohol oxidase, tyrosinase and dichlorophenolindophenol reductase during the decolorization of dye mixture, whose combined action resulted in greater and faster decolorization of dyes. HPLC, FTIR and High Performance Thin Layer Chromatography (HPTLC) analysis confirmed degradation of dyes from textile effluent and mixture. HPTLC demonstrated progressive decolorization of dye mixture along with preferential degradation of the dyes. G. pulchella showed reduction in American Dye Manufacturer's Institute from 405 to 21 and 418 to 22, in case of textile effluent and mixture of dyes respectively. The non-toxic nature of the metabolites of degraded textile dye effluent and mixture of dyes was revealed by phytotoxicity studies.  相似文献   

7.
The structurally related hydroxylated polybrominated diphenyl ether (PBDE) like hydroxylated 4,4′-dibromodiphenyl ether widely occur in precipitation, surface water, and biotic media. The origins of hydroxylated PBDEs (OH-PBDEs) are of particular interest due to their greater toxic potencies than the corresponding PBDEs. We studied the transformation behavior and products of 4,4′-dibromodiphenyl ether (BDE 15) mediated by lignin peroxidase (LiP), an extracellular enzyme that is produced by certain white rot fungus and is widely present in the natural environment. We found that BDE 15 can be effectively transformed through the reaction mediated by LiP, and two different mono-OH-dibromodiphenyl ethers were identified by using gas chromatography–mass spectrometry (GC-MS) and GC-MS/MS. In particular, we compared the reaction behavior for systems variously containing natural organic matter (NOM) and/or veratryl alcohol (VA), a metabolite that certain fungus produces along with LiP in nature. It was found that the VA’s enhancement effect on LiP performance was impaired by the presence of NOM. The findings in this study provide useful information for better understanding the origins of OH-PBDEs found in the environment.  相似文献   

8.
研究了游离细胞与载体吸附培养、不同载体材料对Phanerochaete chrysosporium进行连续染料脱色及产酶能力的影响。结果表明,P.chrysosporium可在载体上良好生长,甚至生长到载体内部。木屑、玉米芯、花生壳3种载体材料中,以木屑载体吸附培养物的持续脱色和产酶效果最佳,该培养物经三轮连续脱色后对染料RB5仍能达到最高95%的脱色率,并产生596 U/L锰依赖过氧化物酶(MnP)和1 326 U/L木质素过氧化物酶(LiP),对染料的持续脱色和产酶能力明显优于游离细胞培养物。  相似文献   

9.
研究了游离细胞与载体吸附培养、不同载体材料对Phanerochaete chrysosporium进行连续染料脱色及产酶能力的影响。结果表明,P. chrysosporium可在载体上良好生长,甚至生长到载体内部。木屑、玉米芯、花生壳3种载体材料中,以木屑载体吸附培养物的持续脱色和产酶效果最佳,该培养物经三轮连续脱色后对染料RB5仍能达到最高95%的脱色率,并产生596 U/L锰依赖过氧化物酶(MnP)和1 326 U/L木质素过氧化物酶(LiP),对染料的持续脱色和产酶能力明显优于游离细胞培养物。  相似文献   

10.
An efficient sequential, biological and photocatalytic treatment to reduce the pollutant levels in wastewater due to the bleaching process during paper production is reported. For a biological pre-treatment, 800 ml of non-sterilized effluent was inoculated with Trametes versicolor immobilized in polyurethane foam, with 25 g l(-1) glucose, 6.75 mM CuSO(4), and 0.22 mM MnSO(4) added, and cultured at 25 degrees C with an air flow of 800 ml min(-1) for 8d. The fungus did not inhibit growth of the heterotropic populations of the effluent. After 4d of culture, the chemical oxygen demand (COD) reduction and colour removal (CR) were 82% and 80%, respectively, with laccase (LAC) and manganese peroxidase (MnP) activities of 345 U l(-1) and 78 U l(-1), respectively. The COD reduction and CR correlated positively (p<0.0001) with LAC and MnP activities. Chlorophenol removal was 99% of pentachlorophenol, 99% of 2,3,4,6-tetrachlorophenol (2,3,4,6-TCP), 98% of 3,4-dichlorophenol (3,4-DCP) and 77% of 4-chlorophenol (4-CP), while 2,4,5-trichlorophenol (2,4,5-TCP) increased to 0.2 mg l(-1). The pre-treated effluent was then exposed to a photocatalytic treatment. The treatment with photolysis resulted in 9% CR and 46% COD reduction, 42% CR and 60% COD reduction by photocatalysis, and 62% CR and 85% COD reduction by heterogeneous photocatalysis with the system TiO(2)/Ru(x)Se(y) (Fig. 4). With this treatment the bacterial and fungal populations also decreased by 5 logarithmic units with respect to the biological treatment alone (Fig. 5). The total sequential treatment resulted in a 92% CR (from 5800 UC), 97% COD reduction (from 59 g l(-1)) and 99% chlorophenol removal at 96 h and 20 min.  相似文献   

11.
The impact of Pb contamination was tested to five hydrolytic (beta-glucosidase, beta-xylosidase, beta-cellobiosidase, alpha-glucosidase and sulphatase) and two ligninolytic (manganese peroxidase, MnP and laccase) enzyme activities in the humus layer in the forest soil. The ability of eight selected litter-degrading fungi to grow and produce extracellular enzymes in the heavily Pb (40 g Pb of kg ww soil(-1)) contaminated and non-contaminated soil in the non-sterile conditions was also studied. The Pb content in the test soil was close to that of the shooting range at H?lv?l? (37 g Pb of kg ww soil(-1)) in Southern Finland. The fungi were Agaricus bisporus, Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Mycena galericulata, Gymnopilus luteofolius, Stropharia aeruginosa and Stropharia rugosoannulata. The Pb contamination (40 g Pb of kg ww soil(-1)) was deleterious to all five studied hydrolytic enzyme activities after five weeks of incubation. All five hydrolytic enzyme activities were significantly higher in the soil than in the extract of the soil indicating that a considerable part of enzymes were particle bound in the soils. Hydrolytic enzyme activities were higher in the non-contaminated soil than in the Pb contaminated soil. Fungal inocula increased the hydrolytic enzyme activities beta-cellobiosidase and beta-glucosidase in non-contaminated soils. All five hydrolytic enzyme activities were similar with fungi and without fungi in the Pb contaminated soil. This was in line that Pb contamination (40 g Pb of kg ww soil(-1)) depressed the growth of all fungi compared to those grown without Pb in the soil. Laccase and MnP activities were low in both Pb contaminated and non-contaminated soil cultures. MnP activities were higher in soil cultures containing Pb than without Pb. Our results showed that Pb in the shooting ranges decreased fungal growth and microbial functioning in the soil.  相似文献   

12.
An extracellular H2O2-requiring Remazol Brilliant Blue R (RBBR) decolorizing enzyme activity was detected after cultivation of cells of various plant species both in liquid medium and when growing on agar plates containing RBBR. Level of the enzyme activity was compared with the ability to metabolize polychlorinated biphenyls (PCBs). The ability to decolorize RBBR was tested in the presence and absence of PCBs. The cultures with high PCB-transforming activity proved to exhibit RBBR oxidase much more resistant towards the influence of PCBs. In addition low activities of lignin peroxidase (LiP) and manganese dependent peroxidase (MnP) were detected in medium and in plant cells. No correlation of MnP and LiP activities with PCB degradation could be found. The RBBR decolorization could be used as a rough screening method for plant cultures able to metabolize PCBs.  相似文献   

13.
The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) greatly hamper their degradation in liquid media. The use of an organic solvent can assist the degradative action of ligninolytic enzymes from white rot fungi. The enzymatic action of the enzyme manganese peroxidase (MnP) in media containing a miscible organic solvent, acetone (36% v/v), was evaluated as a feasible system for the in vitro degradation of three PAHs: anthracene, dibenzothiophene and pyrene. These compounds were degraded to a large extent after a short period of time (7, 24 and 24h, respectively), at conditions maximizing the MnP-oxidative system. The initial amount of enzyme present in the reaction medium was determinant for the kinetics of the process. The order of degradability, in terms of degradation rates was as follows: anthracene>dibenzothiophene>pyrene. The intermediate compounds were determined using gas chromatography-mass spectrometry and the degradation mechanisms were proposed. Anthracene was degraded to phthalic acid. A ring cleavage product of the oxidation of dibenzothiophene, 4-methoxybenzoic acid, was also observed.  相似文献   

14.
Agricultural wastewater that produces color are of environmental and health concern as colored effluent can produce toxic and carcinogenic by-products. From this study, batch culture optimization using response surface methods indicated that the fungus isolated from the pineapple solid waste, Curvularia clavata was able to decolorize sterile palm oil mill effluent (POME) which is mainly associated with polyphenol and lignin. Results showed successful decolorization of POME up to 80 % (initial ADMI [American Dye Manufacturing Index] of 3,793) with 54 % contributed by biosorption and 46 % by biodegradation after 5 days of treatment. Analysis using HPLC and GC-MS showed the degradation of color causing compound such as 3-methoxyphenyl isothiocynate and the production of new metabolites. Ecotoxicity test indicated that the decolorized effluent is safe for discharge. To determine the longevity of the fungus for a prolonged decolorization period, sequential batch decolorization studies were carried out. The results showed that lignin peroxidase and laccase were the main ligninolytic enzymes involved in the degradation of color. Carboxymethyl cellulase (CMCase) and xylanase activities were also detected suggesting possible roles of the enzymes in promoting growth of the fungus which consequently contributed to improved decolorization of POME. In conclusion, the ability of C. clavata in treating color of POME indicated that C. clavata is of potential use for decolorization and degradation of agricultural wastewater containing polyphenolic compounds.  相似文献   

15.
The present study investigates the effect of metals on the secretion of enzymes from12 fungal strains maintained in liquid cultures. Hydrolases (acid phosphatase, β-glucosidase, β-galactosidase, and N-acetyl-β-glucosaminidase) and ligninolytic oxidoreductases (laccase, Mn, and lignin peroxidases) activities, as well as biomass production, were measured in culture fluids from fungi exposed to Cu or Cd. Our results showed that all fungi secreted most of the selected hydrolases and that about 50 % of them produced a partial oxidative system in the absence of metals. Then, exposure of fungi to metals led to the decrease in biomass production. At the enzymatic level, Cu and Cd modified the secretion profiles of soil fungi. The response of hydrolases to metals was contrasted and complex and depended on metal, enzyme, and fungal strain considered. By contrast, the metals always stimulated the activity of ligninolytic oxidoreductases in fungal strains. In some of them, oxidoreductases were specifically produced following metal exposure. Fungal oxidoreductases provide a more generic response than hydrolases, constituting thus a physiological basis for their use as biomarkers of metal exposure in soils.  相似文献   

16.
Bacterium Pseudomonas aeruginosa BCH was able to degrade naphthylaminesulfonic azo dye Amaranth in plain distilled water within 6 h at 50 mg?l?1 dye concentration. Studies were carried out to find the optimum physical conditions and which came out to be pH?7 and temperature 30 °C. Amaranth could also be decolorized at concentration 500 mg?l?1. Presence of Zn and Hg ions could strongly slow down the decolorization process, whereas decolorization progressed rapidly in presence of Mn. Decolorization rate was increased with increasing cell mass. Induction in intracellular and extracellular activities of tyrosinase and NADH-DCIP reductase along with intracellular laccase and veratryl alcohol oxidase indicated their co-ordinate action during dye biodegradation. Up-flow bioreactor studies with alginate immobilized cells proved the capability of strain to degrade Amaranth in continuous process at 20 ml?h?1 flow rate. Various analytical studies viz.—HPLC, HPTLC, and FTIR gave the confirmation that decolorization was due to biodegradation. From GC-MS analysis, various metabolites were detected, and possible degradation pathway was predicted. Toxicity studies carried out with Allium cepa L. through the assessment of various antioxidant enzymes viz. sulphur oxide dismutase, guaiacol peroxidase, and catalase along with estimation of lipid peroxidation and protein oxidation levels conclusively demonstrated that oxidative stress was generated by Amaranth.  相似文献   

17.
We tried to decolorize mixtures of four reactive textile dyes, including azo and anthraquinone dyes, by a white-rot basidiomycete Phanerochaete sordida. P. sordida decolorized dye mixtures (200 mg l-1 each) by 90% within 48 h in nitrogen-limited glucose-ammonium media. Decolorization of dye mixtures needed Mn2+ and Tween 80 in the media. Manganese peroxidase (MnP) played a major role in dye decolorization by P. sordida. Decolorization of dye mixtures by P. sordida was partially inhibited by polyvinyl alcohol (PVA) that wastewaters from textile industries often contain. This was caused by an inhibitory effect of PVA on the decolorization of Reactive Red 120 (RR120) with MnP reaction system. Second addition of Tween 80 to the reaction mixtures in the presence of PVA improved the decolorization of RR120. These results suggest that PVA could interfere with lipid peroxidation or subsequent attack to the dye.  相似文献   

18.
Ogawa N  Okamura H  Hirai H  Nishida T 《Chemosphere》2004,55(3):487-491
Irgarol 1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine), a derivative of s-triazine herbicide, is an antifouling compound used as an alternative to organotins. The compound is highly persistent and is known to be biodegraded only by the white rot fungus, Phanerochaete chrysosporium. We used partially purified manganese peroxidase (MnP) prepared from P. chrysosporium to evaluate its capacity to degrade Irgarol 1051. MnP degraded Irgarol 1051 to two major products, one identified as M1 (identical to GS26575, 2-methylthio-4-tert-butylamino-6-amino-s-triazine) and the other not identified but with same mass spectrum as M1 and a different ultraviolet spectrum. This report clearly demonstrates that this ligninolytic enzyme is involved in the degradation of Irgarol 1051.  相似文献   

19.
Natural estrogens such as estrone, 17β-estradiol, estriol, and the particularly recalcitrant synthetic estrogen 17α-ethinylestradiol used as oral contraceptive, accumulate in the environment and may give rise to health problems. The processes participating in their removal from soil, wastewater, water-sediments, groundwater-aquifer material, and wastewater or sewage treatment plant effluents may involve the action of bacterial and microbial consortia, and in some cases fungi and algae. This review discusses the different efficiencies of bacterial degradation of 17α-ethinylestradiol under aerobic and anaerobic conditions, the role of sulfate-, nitrate-, and iron-reducing conditions in anaerobic degradation, and the role of sorption. The participation of autotrophic ammonia oxidizing bacteria and heterotrophic bacteria in cometabolic degradation of estrogens, the estrogen-degrading action of ligninolytic fungi and their extracellular enzymes (lignin peroxidase, manganese-dependent peroxidase, versatile peroxidase, laccase), and of algae are discussed in detail.  相似文献   

20.
The white-rot fungus Trametes versicolor growing in submerged culture on a basal medium, with barley bran as a carbon source, produced two laccase isoenzymes LacI and LacII. The addition of metal ions to the culture medium was performed to improve the total laccase activity and to determine the effect on the production of laccase isoenzymes. From all the tested metals, only Cu2+ increased laccase activity (up to 12-fold with respect to control cultures) and T. versicolor in presence of all metals produced the two isoenzymes in different proportion with ratios of activity (LacI/LacII) varying between 0.11 and 0.51. This factor played an important role in the decolourisation of the textile dye Indigo Carmine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号