首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
高强度连作下露天菜地土壤次生盐渍化及其影响因素研究   总被引:1,自引:0,他引:1  
采集佛山市南海区露天菜地表层土壤,测定其硝酸盐含量和全盐量,分析珠江三角洲典型区域蔬菜地土壤次生盐渍化的发生现状和原因,为制定合理的施肥和管理措施提供科学依据。结果表明,1)136个土壤样本硝态氮质量分数在1.070~854.4mg/kg,平均值为194.3mg/kg,有19.9%的土壤样本硝态氮质量分数超过300mg/kg,已达到极高水平;全盐质量分数在0.02~2.7g/kg,平均值为1.2g/kg,有12.5%的土壤样本全盐质量分数已超过2.0g/kg的轻度盐化标准。2)土壤硝态氮质量分数与全盐质量分数之间具有一定的相关性,经统计检验相关系数达极显著水准(r=0.5665,n=131,P<0.01)。3)高强度连作露天菜地土壤的硝态氮质量分数和可溶性盐分浓度已经接近多年塑料大棚水平。4)综合而言,导致土壤次生盐渍化的原因有气候条件、土壤质地、地下水位、灌溉方式、不合理施肥等,而过量施肥及高强度连作可能是引起南海区露天菜地土壤次生盐渍化的主要因素。  相似文献   

2.
上海市蔬菜地土壤硝态氮状况研究   总被引:9,自引:2,他引:9  
以上海市郊不同管理方式下菜地表层土壤采样测定土壤硝态氮含量为基础,并以水稻土等土壤作为对照,以期了解上海蔬菜地土壤硝态氮的现状,为菜地的合理施肥提出科学依据。结果表明,由于管理方式不同,土壤的硝态氮的NO3--N质量分数差异明显。大棚蔬菜地土壤中NO3--N明显高于其它其他用地管理方式下的土壤,依次为:w(大棚蔬菜地)>w(露天蔬菜地)>w(传统自留地),而且土壤硝态氮的积累是全剖面性的,而非仅在表层,如在80~100cm土层,大棚土壤硝态氮也为农田的好几倍。而且,大棚蔬菜地土壤盐渍化明显,主要特点之一是硝态氮积累,盐分高的土壤一般硝态氮也高。此外,长期大量的N肥投入引起了土壤酸化。土壤pH与土壤NO3--N质量分数呈线性负相关,经统计检验相关性达极显著水平。  相似文献   

3.
新乡市郊区大棚菜地土壤重金属Pb、Cd、Cr和Hg污染评价   总被引:1,自引:0,他引:1  
周凯  王智芳  马玲玲  周丹  姚连芳 《生态环境》2013,(12):1962-1968
科学评估菜地土壤重金属污染对保障食品安全和公众身体健康具有重要的现实意义。采用原子吸收光谱法和冷原子吸收光谱法,研究了新乡市郊区菜地土壤重金属Pb、Cd、Cr和Hg的质量分数,并参照HJ 333-2006《温室蔬菜产地环境质量评价标准》,对土壤重金属污染进行评价。结果表明:菜地土壤重金属Cd、Pb、Cr、Hg的平均质量分数分别为25.64、156.18、992.38、0.316 mg·kg-1。东黑堆、前河头、后河头和东水东菜地土壤重金属Cd、Pb、Cr均全部超标,其中以Cd污染最为严重,后河头土壤重金属Cd的质量分数达到33.78 mg·kg-1,超过土壤环境质量评价指标限值的111.6倍,东水东采样点次之,也超标66倍。除了前辛庄Hg污染超标127%以外,其他采样点重金属Hg均不超标。表层(0~10 cm)土壤重金属Hg质量分数高于耕层(10~20 cm),其他重金属没有表现出明显的规律性。在不同季节,Cr质量分数随着季节变化逐渐递增,Hg质量分数则呈递减的趋势;Cd和Pb质量分数没有明显规律性。不同采样点综合污染指数以后河头的为最高,达到了82.49,其他依次为前河头、前辛庄、东黑堆、东水东。总体上讲,新乡市近郊菜地土壤重金属综合污染指数远远超过Ⅴ级的限值3.0,前河头、后河头和前辛庄菜地土壤都处于极高风险的重金属污染状态;东黑堆和东水东菜地土壤也处于高风险状态。  相似文献   

4.
艾比湖湿地植物群落变化对盐分环境梯度的响应   总被引:1,自引:0,他引:1  
土壤盐分是影响干旱区荒漠植物群落动态的决定因素之一。基于2012年5月和10月在艾比湿地调查的植物样方和实验得出的土壤表层盐分数据,利用聚类分析方法将39个土壤表层盐分数据划分为3个盐分梯度0.03%~0.73%(S1)、0.81%~1.73%(S2)和2.40%~3.12%(S3),分析艾比湖湿地植物群落植物多样性变化对土壤盐分环境梯度的响应。结果表明,(1)距湖15 km和距湖5 km采样点大部分处于第1个盐分梯度,属于轻度盐渍化;鸟岛、博河、鸭子湾、奎屯河、和距湖10 km处均处于第2个盐分梯度,盐渍化程度达到中-重度;湖边采样点,在3个盐分梯度各有分布。(2)3个盐分梯度上的主要植被类型不同:S1以梭梭(Haloxylon ammodendron)、柽柳(Tamarix ramosissima)、白刺(Nitraria tangutorum Bobr)为主,并且出现的植被种类较多(37种);S2以柽柳(Tamarix ramosissima)、盐节木(Haloenemum strobilaceum)为主,出现的植被种类相对较少(11种);S3以盐节木(Haloenemum strobilaceum)、盐角草(Salicornia europaea)、芦苇(Phragmites australis)为主,出现的植被种类较少(7种),随土壤盐含量的升高,植被种类减少、群落生活型结构有所改变,草本比例减少,灌木和乔木比例有所增加。(3)植物Simposon指数、Shannon-Wiener指数和Margalef指数在中盐梯度下达到最大,最大值分别为0.84、2.28、3.82。(4)Pielow 指数则是随着盐分梯度的上升呈下降趋势,在低盐梯度下达到最大值,最大值为1.26。(5)多样性指数在S3梯度下整体显著降低,即土壤盐分含量为2.40%~3.12%时对艾比湖湿地植物多样性的影响较大。  相似文献   

5.
干旱、半干旱区的土壤盐渍化是重要的生态环境问题。黑河流域是我国第二大内陆河流域,研究该地区的土壤盐渍化问题对于我国西部地区的可持续发展具有重要意义。黑河的中游地区集中了流域内绝大部分人口和经济活动(以农业生产为主)。该研究对黑河中游地区表层土壤进行了全面采样,测定了土壤含盐量及其离子构成;并通过主成分分析确定了表征盐渍化程度的第一主成分和表征碱化程度的第二主成分。结合地表-地下水耦合模拟的结果,探讨了研究区水循环过程对土壤盐分特征的影响。研究结果表明,黑河中游表层土壤的盐渍化程度较高,高台-金塔一带盐渍化最严重,含盐量最高可达31.4%,其次为酒泉北部和张掖南部地区,含盐量在0.20%~0.37%之间。黑河中游土壤的盐渍化程度与地下水埋深密切相关。总体而言,地下水埋深越浅,土壤含盐量的均值越高,而标准差越大。研究区土壤主要呈原生盐渍化,次生盐渍化现象不显著。黑河中游土壤碱化程度较轻,碱化程度和盐渍化程度的空间分布呈反向关系。黑河中游的灌溉活动未造成显著的次生盐渍化,但一定程度上提高了土壤的碱化程度。与以往研究相比,该研究更全面地覆盖了黑河中游地区的代表性地点,并定量分析了区域水循环与土壤盐渍化之间的联系,研究结果对于我国西部地区水土资源的可持续开发利用具有重要参考价值。  相似文献   

6.
南京城郊零散菜地土壤与蔬菜重金属含量及健康风险分析   总被引:40,自引:3,他引:40  
丁爱芳  潘根兴 《生态环境》2003,12(4):409-411
采集南京城郊零散菜地土壤和青菜配对样品各18个,用原子吸收光谱仪测定了铜、锌、铅、镉的质量分数。结果表明,南京城郊零散菜地土壤中Cu、Zn、Pb、Cd质量分数的变化范围分别为39.38±9.85、254.79±132.77、67.77±57.52、1.03±1.28 mg/kg;重金属质量分数在土样之间存在较大的变异性,反映了人为活动已对南京城郊土壤重金属污染产生了明显的影响。在城郊零散菜地土壤上种植的青菜,其叶中Cu、Zn、Pb、Cd质量分数的变化范围分别为5.00±1.57、62.21±16.05、5.90±3.09、0.73±0.39 mg/kg,其中Pb、Cd质量分数全都超过国家食品卫生标准。依据USEPA推荐的RfD值和我国居民平均食物消费结构进行计算,结果表明这些零散菜地的蔬菜重金属污染可能给食用者带来健康风险;食用其中一些污染严重的蔬菜而摄入Pb、Cd引起的健康风险分别高达90.66%和42.17%。  相似文献   

7.
多种盐分离子作用下苋菜对重金属的吸收累积特征   总被引:1,自引:0,他引:1  
模拟不同淋洗脱盐阶段滩涂土壤孔隙水中盐分和重金属含量,通过苋菜水培试验,研究多种盐分离子(SO42-、Cl-、NO3-、CO32-、Na+、Ca2+、K+和Mg2+等)的共同作用下,苋菜对Zn、Cu、Ni、Cr、Pb和Cd 6种重金属的吸收、累积和转运的变化。结果表明,与对照相比,在不同盐分离子浓度影响下,苋菜茎叶中Cd的累积增幅为69.2%~146.2%,而茎叶中其他重金属的含量无显著变化,苋菜根系中Cd、Pb、Cr、Ni和Cu含量的最大增幅分别为187.8%、197.7%、305.7%、228.1%和58.2%,但根系中Zn含量未受到显著影响。在相对较高的盐分离子浓度(〉1 312.4 mg.L-1)范围内,不同盐分离子浓度处理间苋菜茎叶和根系中6种重金属含量差异均不显著。盐分处理显著降低了苋菜对Pb、Cr、Ni和Cu的转移系数,但未显著影响苋菜对Cd和Zn的转移系数。  相似文献   

8.
不同灌水频率条件下设施土壤水盐运移特征   总被引:1,自引:0,他引:1  
为了寻求防治设施土壤次生盐渍化的最适灌水频率,通过野外调查与室内土柱模拟试验相结合的方法,分析了不同灌水频率条件下设施土壤剖面水分、盐分及主要离子的变化特征。结果表明,各灌水处理土壤剖面水分变化主要集中在0~20 cm深度土壤,30和40 cm深度土壤为土壤水分的"过渡层",提高灌水频率可使上部土壤含水量增高至0.36 cm~3·cm~(-3)。当灌水总量一定时,1次·(5 d)~(-1)处理不利于土壤剖面水分蓄存。1次·(5 d)~(-1)处理对土壤剖面盐分的淋洗效果优于其他处理,但其质量中心深度为23.71 cm,存在返盐风险。就1次·(5 d)~(-1)处理而言,除对Na+淋洗率较低外,其余离子的淋洗率均高于其他处理,其中NO_3~-淋洗率可达65.68%。根据各灌水处理土壤剖面中的水盐分布状况,提出1次·(10 d)~(-1)为此次试验条件下的最适灌水频率。  相似文献   

9.
桂林市土壤和蔬菜镉含量调查及食用安全性评估   总被引:4,自引:0,他引:4  
对桂林市蔬菜和菜地土壤镉含量进行调查,评价其累积状况,并评估人体经食用蔬菜摄入镉的安全性。结果显示,桂林市菜地土壤镉含量空间变异较大,呈现西北部和西南部低、东北部和东南部高的分布特点;与背景样点相比,菜地土壤镉累积效应显著,土壤镉含量范围、中值、算术均值和几何均值分别为0.056~17.35、0.624、1.193和0.696 mg.kg-1,超标率为85.5%。蔬菜镉含量范围、中值和几何均值分别为0.09~663.2、29.4和29.2μg.kg-1(以鲜质量计),综合超标率为4.95%;叶菜类蔬菜镉含量显著高于根茎类和瓜果类,花菜、韭菜、大白菜、大葱、芋头、豆苗、萝卜、菠菜、大蒜和蕃茄的镉富集系数较低,抗镉污染能力较强。桂林市居民人均通过食用蔬菜的镉摄入量为9.08μg.d-1,对普通人群不存在明显的食用安全风险。  相似文献   

10.
不同栽培模式下耕层土壤盐分演变规律研究   总被引:1,自引:0,他引:1  
刘子英  孟艳玲  李季  杨合法 《生态环境》2006,15(6):1237-1240
通过定位试验对有机栽培、无公害栽培和常规栽培模式下土壤盐分动态进行了研究。结果表明,有机栽培和无公害栽培模式中土壤盐分差异不显著,常规与无公害栽培模式中土壤盐分差异显著(F0.05=9.04),常规与有机栽培模式下的土壤盐分差异也极显著(F0.01=9.37)。常规栽培与无公害栽培环境中,全年土壤全盐量变化表现为两个积盐期:春季和秋季,以春季积盐最明显;有机栽培环境中,从7月份即出现了积盐过程,并且土壤全盐量变化趋势与气温变化基本一致。  相似文献   

11.
12.
根据京郊菜田的分布和土壤养分、土壤环境质量特点选择了监测点,按照各个指标对土壤质量的影响程度确定评价指标及其权重,并据此建立了无公害菜田土壤环境评价系统。系统采用分层体系结构,在目前基于J2EE架构开发Web应用的基础上,采用J2EE中的JSP,Servlet,JavaBean以及JDBC技术来构建该平台的基础组件框架,结合MVC结构的方式来构建Web应用系统,有效地提高了应用程序的可重用性、可维护性和可扩展性。根据过去3年的监测结果对于系统进行了初步应用,对各个监测点的菜田土壤环境质量进行了评价,表明该评价系统对菜田环境质量管理具有很好的指导意义。  相似文献   

13.
过量施肥通常导致集约化菜田土壤质量劣化、养分利用效率低及环境风险增加。合理的养分资源管理需要考虑蔬菜的养分吸收规律、土壤养分的迁移和转化及环境养分供应的特点。由于土壤氮素具有较强的移动性,氮素养分资源管理可通过根层氮素实时监控来实现;而磷和钾养分水平在土壤中相对比较稳定,可采取衡量监控技术决定养分的需要量。菜田有机肥的投入总量及其氮磷养分的释放特点也是养分资源管理中的重要内容。有机肥施用于新菜田应考虑“以氮定量”的原则,而施用于土壤有效磷过量累积的老菜田,应采取“以磷定量”原则,来控制有机肥中的磷素投入;根据不同有机肥的氮磷释放特点的差异,可搭配施用不同比例和类型有机肥,以满足作物主要生育期的养分需求,减少环境污染的风险。  相似文献   

14.
植物油改性纳米铁修复硝基苯污染地下水的研究   总被引:1,自引:0,他引:1  
实验室条件下,液相还原法FeSO4·7H2O和KBH4反应制备纳米铁,用XRD、TEM对其性能进行表征,结果表明该纳米铁平均粒径为50 nm,主要成分为α-Fe0。实验室进一步制备植物油改性纳米铁,TEM表明油膜均匀包覆在纳米铁颗粒表面,且纳米铁粒子分布均匀,分散较好。厌氧条件下,纳米铁与硝基苯反应,研究纳米铁和植物油改性纳米铁对硝基苯的降解性能,以及不同初始铁投加量、植物油质量分数、初始 pH 对硝基苯降解的影响。研究表明,纳米铁和植物油改性纳米铁均对硝基苯有较强的降解能力,理论摩尔比下,1 h内纳米铁和改性纳米铁对硝基苯的降解率达99.85%和56.74%;油膜质量分数为1%和2%的改性纳米铁降解硝基苯效果较好;随着初始纳米铁投加量的增加,硝基苯的降解越快;初始pH对改性纳米铁降解硝基苯有一定影响,酸性条件有利于改性纳米铁降解硝基苯。  相似文献   

15.
东莞市不同区域菜地土壤重金属污染状况研究   总被引:17,自引:2,他引:17  
对东莞市及其不同区域菜地土壤重金属污染情况进行了调查和分析,参照国家土壤环境质量标准,运用单因子污染指数法和综合污染指数法对上述土壤质量进行了评价。结果表明,全市和各区土壤受到了不同程度的重金属污染,具体表现为:全市土壤Cd、Cu、Ni和Pb的超标率分别为4.9%,6.6%,3.3%和95.1%,均处于轻污染状态,以Pb污染最严重;土壤Cr未有超标,仅西北区域达到了警戒级水平。全市土壤重金属含量各样点间变异较大(Zn、Cr、Pb、Cd、Cu、Ni和有效Cu、Zn的变异系数分别为51.5%,54.1%,37.5%,48.8%,60.2%,57.3%和85.3%,64.7%),但对各重金属元素而言却存在着不同程度的区域差异。  相似文献   

16.
人工封育区沙化草地植被生态位研究   总被引:1,自引:0,他引:1  
采用样线和样方结合法对宁夏人工封育草原进行野外调查,运用重要值、Levins生态宽度指数和Pianka生态位重叠指数对封育外围区、边缘区、核心区3种不同措施下的植物生态位宽度及生态位重叠进行分析,以揭示人工封育区沙化草地植被生态位变化规律。结果表明:在整个人工封育区,重要值之和较大的为黑沙蒿(Artemisia ordosica Krasch.)和刺沙蓬(Salsolaruthenica IIjin.),分别为689.53、455.83。外围区与边缘区生态位宽度最大的均为黑沙蒿,生态位宽度分别为0.846、0.790,核心区生态位宽度最大的是阿尔泰狗娃花(Heteropappus altaicus(Willd.)Novopokr.),生态位宽度为0.640,是人工封育区的优势种。生态位重叠计测结果表明,植被的生态位宽度和生态位重叠并不存在直接的线性关系;生态位重叠度平均值和重叠对百分数表现为外围区〉核心区〉边缘区。不同封育措施间生态位宽度和生态位重叠度的差异表明适度封育有利于草地植被恢复,但随着封育时间延长,植物的再生和幼苗的形成会受到一定程度抑制。  相似文献   

17.
菜田土壤氮素淋失及其调控措施的研究进展   总被引:11,自引:1,他引:11  
从菜田中硝态氮的动态变化、土壤氮素的矿化、硝态氮对地下水的影响等几方面概述了近年来国内外的研究进展,介绍了渗漏测定计法、土壤溶液提取器和15N同位素示踪技术等3种测定土壤氮素淋失的研究方法其应用前景;论述了影响菜田土壤氮素淋失的主要因素和降低菜田土壤氮素淋失的丰要调控措施;提出了今后菜田土壤氮素淋失应加强的研究方向。  相似文献   

18.
南京市郊蔬菜地土壤中重金属含量的时空变化规律   总被引:1,自引:0,他引:1  
测定了28份蔬菜地土壤样品中的铜、锌、铅、镉、汞的含量,从城市化的角度研究了南京市郊蔬菜地土壤重金属在“城区、郊区和农区”的水平空间变化和在层次间的纵向空间变化,并结合历史数据分析了蔬菜地土壤重金属的时间累积作用。结果表明,城市化影响重金属的水平空间变化,蔬菜地土壤重金属含量随着蔬菜地与城市距离的增加,在城区到郊区这一距离段呈下降趋势,在郊区到农区则基本不变;城市化影响重金属的纵向空间变化,蔬菜地各重金属元素表层减底层差值的均值,城区均为正值且绝对值较高,郊区和农区各值都在0浓度附近摆动且绝对值较小。由于受城市化的时间累积作用的影响,1999年土壤中重金属Pb和Zn含量显著高于1985年。  相似文献   

19.
上海市郊蔬菜硝酸盐含量及评价   总被引:5,自引:1,他引:5  
对上海市不同种类和不同种植方式下的蔬菜硝酸盐含量进行测定,以期了解上海市蔬菜的硝酸盐含量现状。结果表明,不同种类蔬菜硝酸盐含量(设为Y)由高到低依次为:Y(绿叶菜类)→Y(豆类)→Y(瓜类)→Y(茄果类)→Y(食用菌类);叶菜类的硝态氮含量较高,平均为463.95mg/kg;其次是豆类,平均值为141.91mg/kg;瓜类、茄果类、食用菌类蔬菜的硝态氮平均含量较低,分别为102.38mg/kg,38.81mg/kg,26.29mg/kg。耕作和种植制度均能影响硝酸盐在土体中的积累和迁移,由于管理方式不同,同一种蔬菜品种的NO3^--N质量分数(设为Y)由高到低依次为:y(大棚蔬菜)→y(露地蔬菜)→y(传统自留地蔬菜)。所有样品中叶菜类蔬菜的硝酸盐含量超过一级标准的占57.1%,污染指数最高的达3.50,污染较重;豆类、瓜类、茄果类、食用菌类样品中硝酸盐没有超过一级标准的,污染较轻。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号