首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
When a recombinantEscherichia coli XL1-Blue harboring pSYL105 was cultured in a complex medium, a poly(3-hydroxybutyric acid) (PHB) concentration of 7.16 g/L was obtained in 48 h. However, a PHB concentration of only 0.91 g/L was obtained in 60 h by culturing in a defined medium. Also, fed-batch culture in a defined medium resulted in considerably lower PHB accumulation than in a complex medium. With the aim to produce a high concentration of PHB at a reduced medium cost, we examined 10 complex nitrogen sources for their ability to promote PHB synthesis in a defined medium. Tryptone, casamino acids, and casein hydrolysate promoted PHB synthesis to a higher extent than the others tested. PHB synthesis was also enhanced during fedbatch cultures when a defined medium was supplemented with various complex nitrogen sources. With tryptone supplementation a PHB concentration of 66.7 g/L could be obtained in 44 h. Yeast extract was less effective for promoting PHB synthesis than tryptone. Corn steep liquor, which did not enhance PHB synthesis significantly, could promote PHB synthesis considerably when supplemented together with yeast extract in both flask and fed-batch cultures.  相似文献   

2.
Blends of poly(3-hydroxybutyrate) (PHB) and poly(ethylene terephthalate-co-1,4-cyclohexenedimethanol terephthalate) (PETG) were prepared in a batch mixer and in a twin screw extruder and characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), field emission scanning electron microscopy (FE SEM), flexural tests, biodegradation tests in soil compost and in an enzymatic medium. The torque data showed that the addition of PETG to PHB improved its processability. DSC, DMA and FE SEM showed that the polymers are immiscible with morphology dependent on the processing conditions. A fine dispersion of PETG in the PHB matrix was observed for extruded and injection molded blends. Flexural modulus for blends was higher for blends in comparison with PHB, while the impact resistance of blends containing 20 wt% and 30 wt% of PETG is comparable to the value for PHB. PHB is biodegradable, while PETG did not degrade either in simulated soil or in the α-amylase medium. On the other hand, the PHB phase of the blends degrades under these aging conditions. Thus, the addition of PETG to PHB results in advantage such as improving of processability and Young′s modulus without significant changes in the impact resistance while keeping the biodegradability of PHB.  相似文献   

3.
To assess the capacity of the natural environment for degrading PHB/V, the film-MPN method proposed previously was modified to estimate the numbers of PHB/V degrading microorganisms (degraders) in various environments. The First-Order Reaction (FOR) model was used to determine the appropriate incubation period for the method. Numbers of aerobic PHB/V degraders were estimated in garden soil, paddy field soil, farm soil, river bank soil, infertile garden soil, river water, activated sludge, and seawater by the film-MPN method. Results were compared with those estimated by the clear-zone technique and showed that the film-MPN method was suitable for estimating the numbers of PHB/V degraders in the environments tested. On the other hand, biodegradability of injection molded PHB/V samples was investigated in several kinds of environments. The changes of weight were studied and results showed that biodegradability of PHB/V related to the numbers of PHB/V degraders in similar ecosystem in different regions. In different environments the biodegradability of PHB/V not only related to the number of PHB/V degraders, but also depended on whether there were conditions for the PHB/V degraders to grow and proliferate easily in the environment.  相似文献   

4.
The feasibility of utilizing non edible rice (broken rice) for production of fine materials such as poly(3-hydroxybutyrate) (PHB) was considered as one of the alternative ways of keeping the environment clean for sustainable development. Thus, production of PHB from broken rice by simultaneous saccharification and fermentation (SSF) was investigated. During the SSF process, the rice (15% w/v) material was hydrolyzed to glucose, which was utilized by Cupriavidus necator for growth and production of PHB. The PHB content reached 38% at 58 h fermentation. The PHB had weight average molar mass (Mw) and polydipersity index of 3.82 × 105 (g/mol) and 4.15, respectively. Differential calorimetric scan of the PHB showed a melting temperature (Tm) of 176 °C. Given that the PHB was a homopolymer (which consisted of (R)-3-hydroxybutyric acid monomers), it was thought that broken rice could be a raw material for production of both PHB and (R)-3-hydroxybutyric acid. This SSF process would not only help in the utilization of broken rice or non edible rice, but would also serve as a model for utilization of other raw materials that contain starch for production of PHB.  相似文献   

5.
Extrusion coating experiments were carried out in the pilot line at Tampere University of Technology (Institute of Paper Converting). Commercially produced 3-hydroxybutyrate/3-hydroxyvalerate copolymer, commercial Finnish paper, and paperboard qualities were utilized as substrates. Functional properties, such as heat-sealing and hot-tack properties, pinhole density, and water vapor transmission rate were determined. PHB/V coatings exhibited approximately four–six times higher water vapor transmission rates (WVTR) than the corresponding LDPE coatings. The incorporation of wax or tall oil rosin into PHB/V improved its water vapor barrier. Curling of PHB/V was reduced by the addition of wax or tall oil rosin into the base polymer. PHB/V provided good heat-sealing characteristics at rather high sealing temperatures. Pinhole density was substantially reduced by using higher molecular weight PHB/V and by incorporating plasticizer into PHB/V.  相似文献   

6.
Polyhydroxybutyrate (PHB) films nanoreinforced with hydrolyzed cellulose nanocrystals (CNC) and bacterial cellulose (BC) were prepared by solvent casting. The influence of different cellulose nanoparticles content (2, 4 and 6 wt% of CNC and 2 wt% of BC) on the PHB properties was studied. CNC nanocomposites presented good dispersion of the nanocrystals, improving transparency, mechanical and barrier properties of the PHB films. On the other hand, reduced thermal stability and mechanical properties were yielded by BC addition due to the intrinsic lower degradation temperature and higher length of the BC nanofibrils compared to CNC. Nanocomposites performance variation is mainly caused by the marked difference in nanoparticles structure. It was demonstrated that PHB–CNC films exhibited higher performance enhancement without detrimental effect of the pristine PHB properties.  相似文献   

7.
Microbial polyhydroxyalkonate such as homopolyester of poly(3-hydroxybutyrate) (PHB) was produced from cheese whey by Bacillus megaterium NCIM 5472. Due to their numerous potential industrial applications, the focus was given to competently enhance the amount of PHB produced. The amount of PHB produced from whole cheese whey, and ultrafiltered cheese whey was first compared, and after observing a rise in PHB production by using ultrafiltered cheese whey, cheese whey permeate was chosen for further analysis. The presence of PHB was then confirmed by GCMS. Since the main aim of the study was to increase the amount of PHB produced through batch fermentation, various process parameters like time, pH, C/N ratio, etc. were optimized. After optimization, it was found that B. megaterium NCIM 5472 was capable of accumulating 75.5% of PHB of its dry weight and a PHB yield of 8.29 g/L. The chemical structure of the polymer was further analyzed by using FTIR and NMR spectroscopy methods. Also, the physical and thermal properties were studied by using Differential scanning calorimetry and Thermogravimetric analysis. It was found that the polymer produced had excellent thermal stability, thus allowing the possibility to exploit its properties for industrial purposes such as adhesives, packaging materials, etc.  相似文献   

8.
PHB (poly-3-hydroxybutyric acid) is a thermoplastic polyester synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and accumulated as inclusions in the cytoplasm of these bacteria. The degradation of PHB by fungi from samples collected from various environments was studied. PHB depolymerization was tested in vials containing a PHB-containing medium which were inoculated with isolates from the samples. The degradation activity was detected by the formation of a clear zone below and around the fungal colony. In total, 105 fungi were isolated from 15 natural habitats and 8 lichens, among which 41 strains showed PHB degradation. Most of these were deuteromycetes (fungi imperfecti) resembling species of Penicillium and Aspergillus and were isolated mostly from soils, compost, hay, and lichens. Soil-containing environments were the habitats from which the largest number of fungal PHB degraders were found. Other organisms involved in PHB degradation were observed. A total number of 31 bacterial strains out of 67 isolates showed clear zones on assay medium. Protozoa, possible PHB degraders, were also found in several samples such as pond, soil, hay, horse dung, and lichen. Lichen, a fungi and algae symbiosis, was an unexpected sample from which fungal and bacterial PHB degraders were isolated.  相似文献   

9.
A novel affinity chromatographic material, which is composed of silica matrix, coated with polyhydroxybutyrate (PHB) powder, suitable for the purification of PHB depolymerases, was developed. The surface morphology of the PHB-silica coated particles (silica-PHB composite particles) was examined by scanning electron microscopy and revealed a successful uniform coating of silica particles with PHB. Moreover, the complex of these materials retained its homogeneity even after incubation at 80 °C for 6 h, whereas the strong binding of PHB on silica surface was further verified by thermal gravimetric analysis and by PHB extraction- from silica surface- experiments. This novel material was demonstrated to be suitable for both, the one-step on-batch and on-column purification of Thermus thermophilus extracellular PHB depolymerase. The enzyme exhibited higher affinity against the composite of silica-PHB particles than PHB powder, since the one-step purification-fold and the overall recovery of the enzyme were 2.8 and 4 times higher respectively, in the first case. Reusability of the silica-PHB composites particles was examined by determining the recoveries of PHB depolymerase. The enzyme recoveries were ranged from 30 to 35% for the first five uses, whereas for further uses recoveries gradually dropped to 15–18% indicating that the particles could be used repeatedly for five times. This material could be also a suitable support for lipases or other proteins that exhibit strong affinity to hydrophobic materials.  相似文献   

10.
Poly-β-hydroxybuyrate (PHB) is a carbon—energy storage material which is accumulated as intracellular granule in variety of microorganism under nutrient starved conditions. Solid PHB is a biodegradable thermoplastic polymer and is utilizable in various ways similar to many conventional plastics. Ralstonia eutropha (Alcaligenes sp.), a gram negative bacteria accumulates PHB as insoluble granules inside the cells when nutrients other than carbon are limited. In this report effort has been made to analyze PHB granule synthesis inside Alcaligenes sp. NCIM 5085 by transmission electron microscopy and qualitative estimation of PHB was carried out by fourier transform infrared spectroscopy which provide better precision compared to other conventional techniques previously applied for PHB determination. Maximum PHB concentration of 2.20 ± 0.40 g/L and cell biomass of 3.42 ± 0.20 g/L was obtained after 48.0 h of fermentation. Leudking-Piret equation deduced mixed growth associated product formation which varies from earlier reports.  相似文献   

11.
A strain of Aspergillus fumigatus, which was observed to rapidly degrade poly-3-hydroxybutyrate (PHB) in a leaf compost, was found to secrete an extracellular hydrolase when grown on PHB as the sole carbon source. Isolation and characterization of the PHB hydrolase (depolymerase) from this fungus revealed that the enzyme had a molecular weight of 57 kDa, an isoelectric point of 7.2, and a PHB hydrolysis activity maxima which occurred at 70°C and pH 8.0. Affinity labeling experiments suggested that this fungal hydrolase is a type of serine esterase. The cyclic trimers of 3-hydroxybutyrate were found to reversibly inhibit the enzymes.  相似文献   

12.
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), 1H and 13C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, 13C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.  相似文献   

13.
WhenPseudomonas oleovorans (GPo1) is grown on sodium octanoate under ammonium limiting conditions, it is able to accumulate a copolyester consisting of medium chain length 3-hydroxyalkanoic acids (PHAm). 3-Hydroxybutyrate is only incorporated in trace amounts. WhenP. oleovorans is equipped with the PHB biosynthetic genes ofAlcaligenes eutrophus (GPo1[pVK101::PP1]), it forms a polyester containing major amounts of 3-hydroxybutyrate. The resulting polymer however is a blend of PHAm and PHB, rather than a copolymer of 3-hydroxybutyrate and medium chain length 3-hydroxyalkanoic acids [11]. To establish whether PHAm and PHB molecules are stored in the same or separate granules by this recombinantP. oleovorans strain, we studied polymer forming cells by freeze-fracture electron microscopy. This approach is possible because previous freeze-fracture electron microscopy studies on PHAm and PHB accumulating strains have shown that PHAm and PHB granules can be distinguished from each other: PHAm granules from mushroom-like structures, whereas PHB granules from needle structures during freeze-fracturing. In this paper we show that stationary phase cells of GPo1[pVK101::PP1] contained both mushroom and needle-like structures, indicating that PHAm and PHB chains were stored in separate granules. To be able to determine whether the separation of PHAm and PHB is complete, the respective granules were separated on sucrose gradients. A total cell extract of GPo1[pVK101::PP1] which was subjected to sucrose gradient centrifugation revealed two white bands of different densities: the upper band with a density of 1.05 g/mL consisted exclusively of PHAm granules, while the lower band with a density of 1.19 g/mL consisted of PHB granules only. Thus, when bacteria synthesize both PHAm and PHB, the resulting polymer chains are segregated completely and stored in separate granules.  相似文献   

14.
To explore the commercial viability of Polyhydroxybutyrate (PHB)/wood flour (WF) composites, systems were produced at industry-standard levels of fiber loading. Further, four interfacial modifiers were selected to improve the mechanical properties of PHB/WF composites, including maleated PHB (PHB-g-MA), a low molecular weight epoxy, a low molecular weight polyester, and polymethylene-diphenyl-diisocyante (pMDI). Results showed that all modifiers resulted in improvements in tensile strength and modulus, however, pMDI showed the highest improvements. The pMDI modifier also improved water uptake of the composites. Study of the fracture surfaces showed signs of improved fiber bonding, as did morphological studies by dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). Interpretation of the DSC and DMA results indicate possible reactions with lubricant, and interactions between PHB and wood fibers with the addition of pMDI.  相似文献   

15.
Bacteria capable of growing on poly(3-hydroxybutyrate), PHB, as the sole source of carbon and energy were isolated from various soils, lake water, activated sludge, and air. Although all bacteria utilized a wide variety of monomeric substrates for growth, most of the strains were restricted to degrade PHB and copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate, P(3HB-co-3HV). Five strains were also able to decompose a homopolymer of 3-hydroxyvalerate, PHV. Poly(3-hydroxyoctanoate), PHO, was not degraded by any of the isolates. One strain, which was identified asComamonas sp., was selected, and the extracellular depolymerase of this strain was purified from the medium by ammonium sulfate precipitation and by chromatography on DEAE-Sephacel and Butyl-Sepharose 4B. The purified PHB depolymerase was not a glycoprotein. The relative molecular masses of the native enzyme and of the subunits were 45,000 or 44,000, respectively. The purified enzyme hydrolyzed PHB, P(3HB-co-3HV), and—at a very low rate—also PHV. Polyhydroxyalkanoates, PHA, with six or more carbon atoms per monomer or characteristic substrates for lipases were not hydrolyzed. In contrast to the PHB depolymerases ofPseudomonas lemoignei andAlcaligenes faecalis T1, which are sensitive toward phenylmethylsulfonyl fluoride (PMSF) and which hydrolyze PHB mainly to the dimeric and trimeric esters of 3-hydroxybutyrate, the depolymerase ofComamonas sp. was insensitive toward PMSF and hydrolyzed PHB to monomeric 3-hydroxybutyrate indicating a different mechanism of PHB hydrolysis. Furthermore, the pH optimum of the reaction catalyzed by the depolymerase ofComamonas sp. was in the alkaline range at 9.4.  相似文献   

16.
Fed-batch cultures of recombinantEscherichia coli strains were carried out for the production of poly(3-hydroxybutyric acid) (PHB) in a chemically defined medium. TheE. coli strains used were XL1-Blue, harboring pSYL105, a stable high-copy number plasmid containing theAlcaligenes eutrophus polyhydroxyalkanoate (PHA) genes, and XL1-Blue, harboring pSYL107, which is pSYL105 containing theE. coli ftsZ gene to suppress filamentation. With XL1-Blue(pSYL105) the final cell mass and PHB concentration obtained in 62 h were 102 and 22.5 g/L, respectively. Fed-batch culture of XL1-Blue(pSYL107) under identical conditions resulted in a final cell mass and PHB concentration of 127.5 and 48.2 g/L, respectively. The PHB contents obtained with XL1-Blue(pSYL105) and XL1-Blue(pSYL107) were 22.1 and 37.8%, respectively. Therefore, PHB was more efficiently produced in a defined medium by employing filamentation-suppressed recombinantE. coli.  相似文献   

17.
The extracellular poly(-hydroxybutyrate) (PHB) depolymerase of Aspergillus fumigatus Pdf1 was purified by a new, simple, one-step affinity chromatography method using the substrate PHB. The purified enzyme was glycosylated, with the molecular mass of 40 KD, and exhibited a novel self-aggregation behavior by means of hydrophobic interaction that was resolved by Triton X-100 (TX-100) pretreatment of enzyme and also TX-100 incorporation in the native gel. The apparent K m value of purified enzyme for PHB was 119 g/mL and 3-hydroxybutyrate was detected as the main endproduct of PHB hydrolysis. The depolymerase was insensitive to phenylmethyl sulfonyl fluoride (PMSF), sodium azide, ethylenediaminetetraacetic acid (EDTA), and para-chloromercuric benzoic acid (PCMB), but was inactivated by dithioerythritol (DTT) and showed specificity for short chain-length poly(-hydroxyalkanoates) (PHAs) such as PHB, poly(hydroxyvalerate) (PHV), and copolymers of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Medium-chain-length PHA failed to get hydrolyzed. The enzyme, however, exhibited strong cross reactivity with the Comamonas sp. PHB depolymerase antibodies, but not with PHV depolymerase antibodies of Pseudomonas lemoignei. Southern hybridization and dot blot analysis of A. fumigatus Pdf1 genomic DNA with alkaline phosphatase labeled probes of P. lemoignei PHB and PHV depolymerase genes revealed no homology, although the enzyme hydrolyzed both PHB and PHV.  相似文献   

18.
The accumulation of polyhydroxybutyrate of Bacillus megaterium is growth associated and significantly dependent on carbon sources. In the present investigation B. megaterium strain isolated from soil was studied for PHB production in fructose minimal media. The PHB production was found to be growth associated. The polymer production by the strain was found to vary from 24 to 48 % content (w/w) of the dry cell weight. Box Bohn design was used to study the interactive effect of four variables on cell growth and PHB production. The optimized medium conditions with the constrain to maximize cell growth and PHB content were glucose 4.32 g/L, Mannitol 4.52 g/L and Na succinate 3.45 g/L and PHB yield 1.38 g/L amounting to 49 % of dry cell weight which is more than 1.8 folds the basal medium. The polymer production by the strain was found to vary from 12.18 to 57.2 % content (w/w) of the dry cell weight.  相似文献   

19.
Present study describes the treatment of molasses spentwash and its use as a potential low cost substrate for production of biopolymer polyhydroxybutyrate (PHB) by waste activated sludge. Fluorescence microscopy revealed the presence of PHB granules in sludge biomass which was further confirmed by fourier transform-infra-red spectroscopy (FT-IR) and 13C nuclear magnetic resonance (NMR). The processing of molasses spentwash was carried out for attaining different ratios of carbon and nitrogen (C:N). Highest chemical oxygen demand (COD) removal and PHB accumulation of 60% and 31% respectively was achieved with raw molasses spentwash containing inorganic nitrogen (C:N ratio = 28) followed by COD removal of 52% and PHB accumulation of 28% for filtered molasses containing inorganic nitrogen (C:N ratio = 29). PHB production yield (Yp/s) was highest (0.184 g g?1 COD consumed) for deproteinized spentwash supplemented with nitrogen. In contrast, the substrate consumption and product formation were higher in case of raw spentwash. Though COD removal was lowest from deproteinized spentwash, evaluation of kinetic parameters suggested higher rates of conversion of available carbon to biomass and PHB. Thus the process provided dual benefit of conversion of two wastes viz. waste activated sludge and molasses spentwash into value-added product-PHB.  相似文献   

20.
Five extracellular PHB depolymerases of bacteria isolated from various sources were purified to electrophoretic homogeneity and compared with known extracellular PHB depolymerase fromAlcaligenes faecalis T1. The molecular mass of these enzymes were all around 40–50 kDa. Nonionic detergent, diisopropylfluorophosphate and dithiothreitol inhibited the PHB depolymerase activity of all these enzymes. Trypsin abolished PHB depolymerase activity, but not theD-3-hydroxybutyric acid dimer hydrolase activity of all the enzymes. These results showed that the basic properties of these PHB depolymerases resemble those of theA. faecalis T1 enzyme. Analysis ofN-terminal amino acid sequence of the purified enzymes revealed that these enzymes includingA. faecalis T1 enzyme fall into three groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号