首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Poly (ethylene-terephthalate), (PET) bottles waste was chemically recycled by glycolysis and hydrolysis. The depolymerization processes were carried out in different time intervals from 5 to 360 min, in two different molar ratios of PET/EG, 1:5 and 1:18 and at different temperatures. The PET glycolysis leads to formation of bis(2-hydroxy-ethyl)terephthalate (BHET) monomer and PET oligomers with hydroxyl and carboxyl end groups while PET hydrolysis is followed by formation of monomers terephthalic acid (TPA) and ethylene glycol (EG). Fractions of monomers and oligomers were further characterized by FTIR spectroscopy and by differential scanning calorimetry (DSC). The results show that DSC is successful method to describe the different structures of oligomers formed during chemical recycling of PET.  相似文献   

2.
This paper aims at characterizing the quality of different treated sludges from Paris conurbation in terms of micropollutants and assessing their fate during different sludge treatment processes (STP). To achieve this, a large panel of priority and emerging pollutants (n = 117) have been monitored in different STPs from Parisian wastewater treatment plants including anaerobic digestion, thermal drying, centrifugation and a sludge cake production unit. Considering the quality of treated sludges, comparable micropollutant patterns are found for the different sludges investigated (in mg/kg DM – dry matter). 35 compounds were detected in treated sludges. Some compounds (metals, organotins, alkylphenols, DEHP) are found in every kinds of sludge while pesticides or VOCs are never detected. Sludge cake is the most contaminated sludge, resulting from concentration phenomenon during different treatments. As regards treatments, both centrifugation and thermal drying have broadly no important impact on sludge contamination for metals and organic compounds, even if a slight removal seems to be possible with thermal drying for several compounds by abiotic transfers. Three different behaviors can be highlighted in anaerobic digestion: (i) no removal (metals), (ii) removal following dry matter (DM) elimination (organotins and NP) and iii) removal higher than DM (alkylphenols – except NP – BDE 209 and DEHP). Thus, this process allows a clear removal of biodegradable micropollutants which could be potentially significantly improved by increasing DM removal through operational parameters modifications (retention time, temperature, pre-treatment, etc.).  相似文献   

3.
The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors.  相似文献   

4.
To investigate the feasibility of using aged municipal solid waste as farmland soil, it is essential to study its nutritive compositions for plant growth. Previous studies have demonstrated that the properties of different particle-size aged refuse are very different, therefore, the present study was conducted to evaluate the adequacy of three elements (N, P, K) and the fractionation of inorganic P in the aged refuse with a particle-size distribution of 900 to 300, 300 to 150, 150 to 105, 105 to 90 and 90 to 0 μm. The results indicate that (1) total quantities of N, P, K were much larger than that in the general soil and the quantities of available N, P and K were also adequate; (2) total content of P was sufficient, but the ratio of available-P to total P was not high enough; (3) with the decrease of particle size, the contents of these elements presented different trends. The results implicate that total contents of N, P and K were enough for the aged refuse being exploited as cultivated soil, and different gradation of aged refuse could be added to improve poor soils. It provides scientific evidence for utilizing different particle-size aged refuse comprehensively.  相似文献   

5.
Characteristics of steel slag under different cooling conditions   总被引:2,自引:0,他引:2  
Four types of steel slags, a ladle slag, a BOF (basic oxygen furnace) slag and two different EAF (electric arc furnace) slags, were characterized and modified by semi-rapid cooling in crucibles and rapid cooling by water granulation. The aim of this work was to investigate the effect of different cooling conditions on the properties of glassy slags with respect to their leaching and volume stability. Optical microscopy, X-ray diffraction, scanning electron microscope and a standard test leaching (prEN 12457-2/3) have been used for the investigation. The results show that the disintegrated ladle slag was made volume stable by water granulation, which consisted of 98% glass. However EAF slag 1, EAF slag 2 and the BOF slag formed 17%, 1% and 1% glass, respectively. The leaching test showed that the glass-containing matrix did not prevent leaching of minor elements from the modified slags. The solubility of chromium, molybdenum and vanadium varied in the different modifications, probably due to their presence in different minerals and their different distributions.  相似文献   

6.
Blending starches with polymers such as poly-ε-caprolactone (PCL) has been used as a route to biodegradable plastics. The addition of starch has a significant effect on all physical properties including toughness, elongation at break. On blending cellulose acetate butyrate (CAB) with starch and PCL, improvements in most physical and mechanical properties were observed. This is may be due to CAB acts as a compatibilizer between PCL and starch due to the presence of both hydroxyl groups (in starch and CAB) and ester carbonyls (in PCL and CAB). The presence of different compounds affects the way in which other components degrade. For example the structure of CAB within a starch and PCL combination might make the degradation rate different to that when starch was only mixed with PCL. To check whether this was the case, three combinations of different blends were used to calculate the rate of degradation of each of them separately. These degradation rate constants were then used to predict the theoretical degradation which was checked against the experimental value for other different combinations.  相似文献   

7.
In this article, glaze with different colorants was applied to tile specimens manufactured by incinerated sewage sludge ash (ISSA) and clay. Improvements using different amounts of colorants, and glaze components and concentrations on tile bodies were investigated. Four different proportions of clay (by weight ratio) were replaced by ISSA. Tiles of size 12 cm x 6 cm x 1 cm were made and left in an electric furnace to make biscuit tiles at 800 degrees C. Afterwards, four colorants, Fe2O3 (red), V2O5 (yellow), CoCO3 (blue), and MnO2 (purple), and four different glaze concentrations were applied on biscuit tile specimens. These specimens were later sintered into glazed tiles at 1050 degrees C. The study shows that replacement of clay by sludge ash had adverse effects on properties of tiles. Water absorption increased and bending strength reduced with increased amounts of ash. However, both water absorption and bending strength improved for glazed ash tiles. Abrasion of grazed tiles reduced noticeably from 0.001 to 0.002 g. This implies glaze can enhance abrasion resistance of tiles. Effects like lightfastness and acid-alkali resistance improved as different glazes were applied on tiles. In general, red glazed tiles showed the most stable performance, followed by blue, yellow, and purple.  相似文献   

8.
In this experiment, three microbial strains were inoculated in two different organic wastes to study their effect on the humic acids content, acid phosphatase activity and microbial properties of the final stabilized products. Pyrophosphate extract of vermicomposts were analyzed through polyacrylamide gel electrophoresis to study the nature of a isozymes in different treatments. Results suggested that vermicomposting increased humic acids content and acid phosphatase activity in organic substrates and microbial inoculation further enhanced the rate of humification and enzyme activity. Although humic acids content in different microorganism-inoculated vermicomposts were statistically at par, acid phosphatase activity in these treatments was significantly (P<0.05) different. Results revealed that microbial respiration was increased due to vermicomposting, but a reduction in microbial biomass was recorded after stabilization of organic wastes. Although vermicomposting increased the value of microbial quotient (qCO(2)), microbial inoculation did not show any significant effect on qCO(2). The zymogram revealed that two isozymes of acid phosphatase (group II and group III) were present in all vermicompost samples and higher acid phosphatase activity in fungi-inoculated vermicomposts might be due to the presence of an additional isozyme (group I) of acid phosphatase.  相似文献   

9.
Journal of Polymers and the Environment - The novel polyelectrolyte complexes (PEC) were prepared by mixing different Wt% of Tragacanth gum (TG) to Chitosan (CS) and systematic evaluation of...  相似文献   

10.
This paper focuses on the evaluation of potential environmental impacts of food waste management practices by material flow analysis (MFA) and life cycle assessment (LCA) during different life cycle stages toward the environmentally sustainable options for Daejeon Metropolitan City (DMC) in Korea. The MFA and LCA studies were conducted to examine different recycling facilities of food waste. The results of the LCA study indicate that, among the different recycling methodologies currently in practice in DMC, Scenario 4 (wet and dry feed site) conduced to higher global warming potential (GWP) and higher acidification potential (AP), whereas Scenarios 2 (wet feed site 1) and 3 (wet feed site 2) resulted in the lowest impact. This is mainly due to the emission caused during the treatment stage. For eutrophication potential (EP), Scenario 1 (composting site) contributed to higher environmental impacts due to the emission of ammonia generated during the treatment process, while in case of photochemical ozone creation potential (POCP), the collection stage for all recycling facilities led to higher impacts to the environment due to the combustion of fossil fuels. This study indicates that the proper disposal of the final residues, such as solid sludge and screened materials, could aid in reducing environmental burdens.  相似文献   

11.
A series of formulations were prepared with different percentages of oligomer, epoxy diacrylate (EA-1020 ), monomer, 1,6 Hexane diol diacrylate,(HDDA) and different percentages of filler (Magnesium tri-silicate, Mg2Si3O8). Irgacure 369 [2-Benzyl-2-dimethyl-amine-1 (4-morpholinophenyl) butanone-1] was used in the formulations as photoinitiator. Ultraviolet (UV) cured thin polymer films were prepared from these formulating solutions on clean glass plates. Pendulum hardness (PH), gel content and macro scratch hardness (MSH) of the UV cured films were studied. One percent Mg2Si3O8 containing formulation showed the premium properties. The substrates (plain board) were coated by these formulating solutions and cured under the same UV lamp at different intensities of radiation. Various properties of the coated surface such as PH, gloss, adhesion, abrasion and MSH were investigated. The base coat containing 1% Mg2Si3O8 and top coat containing 48% HDDA produced the best performance among all the formulations inspected. The degradable properties in different weathering conditions on PH, gloss, adhesion, abrasion and MSH were measured. The surface cured with the optimized formulation (E) again yielded the minimum loss of the properties.  相似文献   

12.
The effect of crosslinkers on the biodegradation behavior of starch/polyvinyl alcohol (PVA) blend films was investigated by weight loss study, Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Starch/PVA films were prepared by solution casting method and 5 weight% of four different crosslinking agents like epichlorohydrin, formaldehyde, zinc oxide and borax were used in four different sets to crosslink the films. These crosslinked starch/PVA films were biodegraded in compost. Weight loss study showed that crosslinking retarded the biodegradation of the films in the first 15?days, but after that, there was a significant increase in weight loss. The DSC analysis revealed that the consumption of starch and consequent rearrangement of the PVA molecules were distinctly different in the crosslinked films due to the effect of different crosslinking agents.  相似文献   

13.
This paper describes the feasibility of an aerobic system (rotating biological contactor, RBC) and a biological anaerobic system (upward-flow anaerobic sludge bed reactor) at small scale for the treatment of a landfill leachate. In the first phase of the aerobic system study, a cyclic-batch RBC system was used to select perforated acetate discs among three different acetate disc configurations. These discs were chosen on the basis of high COD removal (65%) and biological stability. In the second phase, the RBC system (using four stages) was operated continuously at different hydraulic retention times (HRT), at different rotational speeds, and with varying organic concentrations of the influent leachate (2500-9000mgL(-1)). Forty percent of the total surface area of each perforated disc was submerged in the leachate. A COD removal of about 52% was obtained at an HRT of 24h and a rotational speed of 6rpm. For the anaerobic system, the reactor was evaluated with a volumetric organic load of 3273g-COD m(-3) day(-1) at an HRT of 54, 44, 39, 24 and 17h. At these conditions, the system reached COD removal efficiencies of 62%, 61%, 59%, 44% and 24%, respectively.  相似文献   

14.
Journal of Polymers and the Environment - Degussa P25 titanium dioxide/chitosan composites (P25/CS) were prepared using three different methods and two different chitosan materials. The obtained...  相似文献   

15.
A mass spectrometer-based continuous emission monitor (MS-CEM) for organic compound emissions from combustion devices was developed and evaluated at the Louisiana State University (LSU) pilot-scale rotary kiln incinerator (RKI). The MS-CEM consists of a stack probe, heat-traced sampling line, vacuum pump, particulate filter, Nafion@ dryer and mass spectrometer. The mass spectrometer includes a computer that controls and optimizes the operation of the unit. The MS-CEM is capable of continuously analyzing up to 40 different volatile organic compounds on a real-time basis. The MS-CEM is capable of analyzing, computing and recording the analytical results for each and up to 40 different organic compounds in less than 0.3 s. Four different volatile organic compounds were mixed together and injected into the baghouse inlet while simultaneously analyzing each organic component exiting the RKI stack gas. The results obtained from MS-CEM were compared with the material balance values. The system response time (including the MS-CEM) varies from 1.1 to 1.5 min.  相似文献   

16.
The biodegradability of lactic acid based poly(ester-urethanes) was studied using the headspace test method, which was performed at several elevated temperatures. The poly(ester-urethanes) were prepared using a straight two-step lactic acid polymerization process. The lactic acid is first condensation polymerized to a low molecular weight hydroxyl-terminated telechelic prepolymer and then the molecular weight is increased with a chain extender such as diisocyanate. In the biodegradation studies the effect of different stereostructures (different amounts of D-units in the polymer chain), the length of ester units, and the effect of crosslinking on the biodegradation rate were studied. The results indicate that poly(ester-urethanes) do not biodegrade at 25‡C, but at elevated temperatures they biodegrade well. The different stereostructures and crosslinking have a strong influence on the biodegradation rate. The length of ester units in the polymer chain also affects the biodegradation rate, but much less than crosslinking and stereostructure.  相似文献   

17.
Crosslinked carboxymethyl chitosan (CMCh)/poly(ethylene glycol) (PEG) nanocomposites were synthesized using terephthaloyl diisothiocyanate as a crosslinking agent, in presence of montmorillonite (MMT), in different weight ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PEG nanocomposites increased the swell ability. Metal ions adsorption had also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non-crosslinked CMCh. Antimicrobial activity was examined against Gram-positive bacteria (S. aureus (RCMB 010027) and S. Pyogens (RCMB 010015), Gram-negative bacteria (E. coli (RCMB 010056), and also against fungi (A. fumigates (RCMBA 02564, G. candidum (RCMB 05096) and C. albicans (RCMB 05035). Data indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation studies were carried out in simulated body fluid for different time periods in order to find out the degradation index. Results showed that weight loss (%) of most of the nanocomposites increased as a function of incubation time.  相似文献   

18.
Parallel sampling was carried out in a Swedish municipal solid waste (MSW) incinerator, on two consecutive days, with five different sampling techniques. The samples were analysed for chlorinated dioxins (PCDDs) and chiorodibenzofurans (PCDFs) at two laboratories, one in Sweden and the other in Germany. Two different spiking protocols were used, both including pre-sampling or clean-up spikes from each homolog group of the tetra to octa CDDs and CDFs. Comparable results were obtained for all five sampling methods for the emission data and the recoveries for all pre-sampling spikes were above 50%. The agreement between the two laboratories was good. The different sampling methods resulted in very similar congener distributions (congener profiles) or isomer distributions (isomer patterns). However, the sampling techniques differ considerably in the distribution of PCDDs/PCDFs in various sampling compartments. The sampling techniques where large contribution of PCDDs and PCDFs could be found in the wash solvent may suffer from losses and/or cross-contamination problems unless the washing is carried out properly. The use of a cooled probe in combination with an adsorption (polyurethane foam plug) or absorption (ethoxyethanol) trap, where the main portion of the PCDDs and PCDFs were found in the condensate, is considered as a convenient and efficient sampling technique.  相似文献   

19.
Journal of Polymers and the Environment - In this study, we prepared Poly (vinyl alcohol) (PVA)/Guar gum (GG) based nanocomposite films with a different weight ratio of silver nanoparticles (AgNPs)...  相似文献   

20.
Poly(3-hydroxybutyrate) (PHB) was evaluated in blends with poly(ethyleneglycol) (PEG) of different weight average molecular weight (Mw = 300, 600, 1,000 and 6,000). Irradiation of the PHB/PEG films was carried out to different levels of irradiation doses (5 and 10 kGy) and the effects were investigated talking into consideration: thermal properties by differential scanning calorimetry (DSC), perforation resistance, water vapor transmission rate and biodegradation in simulated soil. The addition of plasticizer alters thermal stability and crystallinity of the blends. The improvement in perforation resistance due to irradiation was regarded to be a result of the crosslinking effect. Also, biodegradation assays resulted in mass retention improvements with increases in PEG molar masses, PEG concentration and irradiation dose. The irradiation process was shown to hamper the biodegradation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号