首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this paper was to investigate the effect of recycled polypropylene (PP) on the rheological, mechanical and thermal properties of wood flour polypropylene composites. Beforehand, the influence of wood flour treated with a coupling agent on the rheological behaviour had been looked at. By analysing moduli and viscosity curves and studying the thermal and mechanical properties of samples with 10% filler it was possible to see that the recycled PP that was added change in either its physical properties or its rheology. In the other wood plastic composites (WPC) studied, slight changes in the rheology behaviour were observed. However, the same processing parameters may be used with and without recycled PP. Recycled PP is appropriate for these kinds of composites to maintain the optimal rheological properties that make it easier to process the material by extrusion. Furthermore, it is also possible to maintain the thermal and mechanical properties in comparison with the behaviour of virgin PP/wood flour composites.  相似文献   

2.
In this paper investigation on thermoplastic elastomers (TPE) and thermoplastic vulcanizates (TPV) derived from waste polypropylene (WPP) of Municipal Solid Waste (MSW) and acrylonitrile-butadiene rubber (NBR) are reported. The WPP was segregated, cleaned, dried and melt processed with NBR at 180 °C in a Brabender Plasticorder at different blend ratios. TPV was prepared by dynamic vulcanization of the TPE with conventional sulfur accelerator curing system. The mechanical properties measured were found to decrease with increase in NBR proportion in the blend; however the dynamic vulcanization of the nitrile rubber phase enhanced the strength properties of the corresponding TPE. The crystallinity of the WPP reduced with increase in NBR ratio. The dynamic modulus decreased with nitrile rubber content in the TPE. Interestingly, the storage modulus of the TPV at higher rubber content enhanced significantly and damping characteristics increased sharply. The rheology studies reveal that the damping of the blend has been reduced with the addition of high storage modulus rubber at melt processing conditions and hence increased viscosity. The amorphous rubber content with higher storage modulus imparts higher viscosity for the polypropylene (PP) matrix at the processing temperature. The SEM study reveals that the dynamic vulcanization of the rubber phase in the blend caused a smoother and finer surface morphology.  相似文献   

3.
In this work, a series of reactive copolymers of glycidyl methacrylate (G), styrene (S) and acrylonitrile (AN), were synthesized through reversible addition-fragmentation chain transfer polymerization and evaluated as macromolecular chain extenders in reactive extrusion of recycled poly(ethylene terephthalate) (rPET). The results obtained indicate that the addition of the reactive copolymers as chain extenders modifies the chain conformation in rPET causing low crystallization rate and low crystallinity. The physical and rheological properties (melt flow and intrinsic viscosity) of chain-extended rPET improved, rendering better processability. rPET modified with polymeric chain extenders shows improved rheological properties (complex viscosity, storage and loss modulus) and also displays higher elongation at break and impact properties as the GMA content in the chain extenders increase.  相似文献   

4.
Detailed analysis of the effects of recycling process on long-term water absorption, thickness swelling and water desorption behavior of natural fiber polypropylene composites is reported. Composite materials containing polypropylene and wood flour, rice hulls or bagasse fibers were produced at constant fiber loading and were exposed to a simulated recycling process consisting of up to five times grinding and reprocessing under controlled conditions. A wide range of analytical methods including water absorption/desorption tests, thickness swelling tests, density measurement, scanning electron microscopy, image analysis, contact angle, fiber length analysis and Fourier transform infrared spectroscopy was employed to understand the hygroscopic behavior of the recycled composites. Water absorption and thickness swelling behaviors were modeled using existing predictive models. Results indicated that generally the recycled composites had considerably lower water absorption and thickness swellings as compared with the original composites which were attributed to changes in physical and chemical properties of the composites induced by the recycling process.  相似文献   

5.
Journal of Polymers and the Environment - Since biodegradable materials are unwittingly mixed with synthetic materials, this work aimed to study the feasibility of reliably identifying some...  相似文献   

6.
Journal of Polymers and the Environment - The present experimental investigation aims to discover the effect of hydrothermal aging on the mechanical properties of virgin and recycled PSU, as well...  相似文献   

7.
Recycled plastics are considered low performance materials because their properties are expected to decrease drastically with recycling. The objective of this study was to characterize a 15 wt.% glass filled polyethylene terephthalate (rPET-15GF) using six recycle generations and four recycle ratios. Mechanical properties such as tensile strength, elastic modulus, and percent elongation to failure of the PET composite were determined for various recycle generations and recycle ratios. Results show that the mechanical properties of rPET-15GF decrease slightly per recycle generation. In contrast, thermal properties of rPET-15GF were not at all affected by the recycling process. This data demonstrates that recycled glass filled PET can be used effectively to fabricate components without significantly affecting their mechanical performance.  相似文献   

8.
Journal of Polymers and the Environment - Media composition and culture conditions for levan production by Bacillus mojavensis (BM-levan) were optimized using Plackett–Burman and Box-Behnken...  相似文献   

9.
With an industrial trend of going green, the use of natural fibers in polymer composites is growing rapidly, especially in the automotive industry. The objectives of this research are to investigate mechanical performance of kenaf/polypropylene nonwoven composites (KPNCs) in production of automotive interior parts, and to develop preliminary linear models for quantifying elastic range of the KPNCs under various loading conditions. Using polypropylene (PP) fiber as bonding fiber, the KPNCs were fabricated with 50/50 blend ratio by weight. Unlike the manufacturing method of fiber reinforced plastics, all KPNCs were produced by carding and needle-punching techniques and thermally bonded by a panel press with 3-mm thickness gauge. Mechanical properties of the KPNCs in terms of uniaxial tensile, open-hole tensile, tensile at different strain rates, flexural, and in-plane shear were measured instrumentally. It was found that sample which was processed at higher temperature (230?°C) but shorter time (60?s) had the best mechanical performance. KPNCs were relatively insensitive to the notch but sensitive to strain rates. The linear elastic finite element model of KPNCs agreed well with the experimental results in the valid strain range of 0?C0.5?% for uniaxial tensile test and 0?C1?% for flexural test.  相似文献   

10.
Green composites obtained from biodegradable renewable resources have gained much attention due to environmental problems resulting from conventionally synthetic plastics and a global increasing demand for alternatives to fossil resources. In this work we used different cellulose fibers from used office paper and newspaper as reinforcement for thermoplastic starch (TPS) in order to improve their poor mechanical, thermal and water resistance properties. These composites were prepared by using tapioca starch plasticized by glycerol (30 % wt/wt of glycerol to starch) as matrix reinforced by the extracted cellulose fibers with the contents ranging from 0 to 8 % (wt/wt of fibers to matrix). Properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetric analysis, water absorption measurements, scanning electron microscopy, and soil burial tests. The results showed that the introduction of either office paper or newspaper cellulose fibers caused the improvement of tensile strength and elastic modulus, thermal stability, and water resistance for composites when compared to the non-reinforced TPS. Scanning electron microscopy showed a good adhesion between matrix and fibers. Moreover, the composites biological degraded completely after 8 weeks but required a longer time compared to the non-reinforced TPS. The results indicated that these green composites could be utilized as commodity plastics being strong, inexpensive, plentiful and recyclable.  相似文献   

11.
In the present work, sawdust reinforced polypropylene composites were fabricated using an extruder and an injection molding machine. Raw sawdust was chemically treated with benzene diazonium salt in order to improve the mechanical properties of the composites. The effect of the chemically treated sawdust reinforced PP composites was evaluated from their mechanical and surface morphological properties. The values of the mechanical properties of the chemically treated sawdust–PP composites were found to be significantly higher than those of the raw ones. Water uptake tests revealed that composites prepared from the chemically treated sawdust absorb lower amount of water compared to the ones prepared from raw sawdust, suggesting that hydrophilic nature of the cellulose in the sawdust has significantly decreased upon chemical treatment. The surface morphology obtained from scanning electron microscopy (SEM) showed that raw sawdust–PP composites possess surface roughness with extruded filler moieties, and weak interfacial adhesion between the matrix and the filler while the chemically treated one showed improved filler–matrix interaction. This indicates that better dispersion of the filler with the PP matrix has occurred upon chemical treatment of the filler.  相似文献   

12.
The polypropylene (PP)/poly(ethylene-co-octene) (POE) blends was prepared by means of a twin screw extruder in a range of temperature from 185 to 195 °C. The mechanical properties including tensile, flexural and impact of the PP/POE blends were measured at room temperature to identify the effect of the POE content on the mechanical properties. It was found that the Young’s modulus, tensile strength and tensile elongation at break decreased nonlinearly with increasing the POE weight fraction. While the V-notched and unnotched impact fracture strength increased nonlinearly with an increase of the POE weight fraction. The flexural modulus and strength decreased roughly linearly with increasing the POE weight fraction. Furthermore, the impact fracture surface of the blends was observed by using a scanning electronic microscope and the toughening mechanisms were discussed.  相似文献   

13.
In this study, effects of saturated acids on physical properties, including hardness, impact strength, flexural properties and thermal properties, of unsaturated polyester or UPE resins prepared from recycled PET bottles and fabrics were investigated. PET was depolymerized by glycolysis reaction with the excess propylene glycol in the presence of zinc acetate as a catalyst. UPE resins were then synthesized by polyesterification of these glycolyzed products with maleic anhydride as an unsaturated diacid as well as succinic acid and adipic acid as a saturated diacid. With the addition of styrene monomer, UPEs were subsequently casted into specimens by crosslinking reaction using methyl ethyl ketone peroxide and cobalt octoate as an initiator and a catalyst, respectively. Physical properties of the cured specimens were then studied. The results showed that, when a saturated acid was incorporated, the hardness of the cured UPE resins decreased due to the decreasing amount of crosslinks. The extended distance between crosslinking sites on molecular chains facilitated load distribution, resulting in the significant improvement of impact strength. The flexural strength was also improved when the small amount of saturated acid was used. The onset thermal degradation temperatures and the glass transition temperatures of the prepared UPE resins were almost unchanged.  相似文献   

14.
In accelerated weathering tests, specimens are exposed to higher radiation intensity, temperature and humidity than is likely under natural weathering in order to achieve rapid degradation of the polymer in a convenient short time. In the current work, a correlation between the two environments is attempted so that a prediction of lifetimes in the natural environment can be achieved. During aging, surface flaws are created due to the chain scission process. This is initiated by the absorption of ultra-violet light and directly affects visual appearance and impact strength. After natural weathering, the material shows only plastic deformation in an impact test. However, after artificial weathering to 5000 h of UV exposure, there is a decrease of 85% in impact strength. Colour change occurs at a high rate in the early stages of UV exposure. Beyond 2000 h of exposure, the colour change approaches a steady state and a correlation between the changes under natural and artificial weathering becomes apparent for a potential prediction of lifetimes. From the analysis including the specular component (SCI), taking surface roughening into account, 1 year under natural weathering was found to be equivalent to 25 days under accelerated weathering.  相似文献   

15.
Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s   总被引:2,自引:0,他引:2  
Poly(lactic acid) is the subject of considerable commercial development by a variety of organizations around the world. In this work, the thermal and rheological properties of two commercial-grade poly(lactic acid)s (PLAs) are investigated. A comparison of the commercial samples to a series of well-defined linear and star architecture PLAs provides considerable insight into their flow properties. Such insights are valuable in deciding processing strategies for these newly emerging, commercially significant, biodegradable plastics. Both a branched and linear grade of PLA are investigated. The crystallization kinetics of the branched polymer are inferred to be faster than the linear analog. Longer relaxation times in the terminal region for the branched material compared to the linear material manifests itself as a higher zero shear rate viscosity. However, the branched material shear thins more strongly, resulting in a lower value of viscosity at high shear rates. Comparison of the linear viscoelastic spectra of the branched material with the spectra for star PLAs suggests that the branched architecture is characterized by a span molecular weight of approximately 63,000 g/mol. The present study conclusively demonstrates that a wide spectrum of flow properties are available through simple architectural modification of PLA, thus allowing the utilization of this important degradable thermoplastic in a variety of processing operations.  相似文献   

16.
Increasing demand in the use of poly(lactic acid) (PLA) leads to a debate about using potential foodstuffs for plastic production and a moral issue when starvation problem is taken into account. One of the solutions is recycling of PLA; however, recycling results in property losses during melt processing due to low thermal stability of PLA. This study focuses on using chain extenders to offset thermal degradation of recycled PLA. The effects of a diisocyanate and a polymeric epoxidized chain extender on the properties of the recycled poly(lactic acid) were investigated. In order to mimic the recycling process, PLA was subjected to thermo-mechanical degradation using a laboratory scale compounder. Chain extender type, loading and mixing time were investigated. On-line rheology and intrinsic viscosity measurements of PLA before and after chain extension confirmed that the molecular weight increased. Dynamic mechanical analysis, rheology and tensile tests revealed that the chain extenders led to a significant increase in modulus, strength and melt-viscosity. It was found that diisocyanate had slightly higher and faster chain extension reactivity than polymeric extender. Differential scanning calorimetry results showed an increase in the crystallization temperature due to the branched and extended chain structure.  相似文献   

17.
The rheologies, morphologies, crystallization behaviors, mechanical and thermal properties of poly(lactic acid) (PLA)/polypropylene (PP) blends and PLA/PP/maleic anhydride-grafted PP (MAPP) blends were investigated. The results showed that the complex viscosities of PLA/PP blends were between those of neat PLA and neat PP, and MAPP had a thinning effect on those of the blends. PLA/PP blends exhibited the distinct phase separation morphologies due to the limited partial miscibility of the blend components. MAPP slightly improved the miscibility between PLA and PP. Both the cold crystallization of PLA component and melt crystallization of PP component were enhanced, probably because PLA and PP were reciprocal nucleating agents. The tensile strength and flexural modulus decreased, while the tensile strain at break and heat deflection temperature (HDT) increased with the increasing PP content. MAPP had the positive effects on the notched impact strength and HDT of PLA-rich blends and also increased the flexural modulus of the binary blends. The thermal stability of the blend was improved by PP, and the incorporation of MAPP further enhanced the thermal stability.  相似文献   

18.
The aim of this work is to evaluate the use of Poly(lactic acid) (PLA) industrial waste as a source of raw material for certain applications, as well as to understand the effects of the annealing on the fracture behavior of PLA. PLA waste has been simulated by an initial step of extrusion in a single screw extruder and pelletizing. Specimens of virgin and reprocessed PLA were obtained by injection molding. An annealing treatment capable of increasing the percentage of crystallinity (determined by differential scanning calorimetry) was also analyzed in reprocessed and non reprocessed specimens. The fracture behavior was studied at slow and high testing speed, applying the linear elastic fracture mechanics (LEFM) on single edge notched bend (SENB) specimens. This study revealed that the fracture toughness of the reprocessed PLA was basically the same that the virgin PLA and also that the increase in the crystalline fraction produced an improvement on the fracture toughness, at slow loading rate.  相似文献   

19.
20.
The use of composites made from non-biodegradable conventional plastic materials (e.g., polypropylene, PP) is creating global environmental concern. Biodegradable plastics such as poly(butylene succinate) (PBS) are sought after to reduce plastic waste accumulation. Unfortunately, these types of plastics are very costly; therefore, natural lignocellulosic fibers are incorporated to reduce the cost. Kenaf fibers are also incorporated into PP and PBS for reinforcing purposes and they have low densities, high specific properties and renewable sourcing. However without good compatibilization, the interfacial adhesion between the matrix and the fibers is poor due to differences in polarity between the two materials. Maleic anhydride-grafted compatibilizers may be introduced into the system to improve the matrix-fiber interactions. The overall mechanical, thermal and water absorption properties of PP and PBS composites prepared with 30 vol.% short kenaf fibers (KFs) using a twin-screw extruder were being investigated in this study. The flexural properties for both types of composites were enhanced by the addition of compatibilizer, with improvements of 56 and 16 % in flexural strength for the PP/KF and PBS/KF composites, respectively. Good matrix-fiber adhesion was also observed by scanning electron microscopy. However, the thermal stability of the PBS/KF composites was lower than that of the PP/KF composites. This result was confirmed by both DSC and TGA thermal analysis tests. The water absorption at equilibrium of a PBS composite filled with KFs is inherently lower than of a PP/KF composite because the water molecules more readily penetrate the PP composites through existing voids between the fibers and the matrix. Based on this research, it can be concluded that PBS/KF composites are good candidates for replacing PP/KF composites in applications whereby biodegradability is essential and no extreme thermal and moisture exposures are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号