首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of recycled fine aggregates, which had been reclaimed from field-demolished concretes, on the resistance of mortar specimens to magnesium sulfate attack was investigated. Mortar specimens were prepared with recycled fine aggregates at different replacement levels (0%, 25%, 50%, 75% and 100% of natural fine aggregate by mass). The mortar specimens were exposed to 4.24% magnesium sulfate solution for about 1 year at ambient temperature, and regularly monitored for visual appearance, compressive strength loss and expansion. Additionally, in order to identify products of magnesium sulfate attack, mortar samples incorporating 0%, 25% and 100% replacement levels of the recycled fine aggregates were examined by X-ray diffraction (XRD) technique.Experimental results confirmed that the use of recycled fine aggregates up to a maximum 50% replacement level is effective under severe magnesium sulfate environment, irrespective of type of recycled fine aggregates. However, the worse performance was observed in mortar specimens incorporating 100% replacement level. It was found that the water absorption of recycled fine aggregates affected deterioration of mortar specimens, especially at a higher replacement level. XRD results indicated that the main cause of deterioration of the mortar specimens was primarily due to the formation of gypsum and thaumasite by magnesium sulfate attack. In addition, it appeared that the conversion of C–S–H into M–S–H by the attack probably influenced mechanical deterioration of mortar specimens with recycled fine aggregates.  相似文献   

2.
The use of abundant waste materials with high carbohydrate content may contribute substantially to reduction of biofuels production cost. The present study aimed at optimizing the combined effect of thermo-chemical pretreatment and enzymatic hydrolysis of kitchen wastes (KW) for maximizing the production of fermentable soluble sugars. To this end, acid pretreatment of KW samples was performed with hydrochloric acid (0–3% HCl) at 30–100 °C for 0–120 min treatment time. Alternatively, alkaline pretreatment of KW samples was performed with potassium hydroxide solution (0–11%) at constant temperature and time (0 °C and 20 min, respectively). KOH pretreatment at such conditions targets to degrade the resistant starch of KW samples. Both acid and alkaline pretreatments were followed by addition of variable levels of enzyme dosage (0–3.6% v/v α-amylase and 0–3.2% v/v amyloglucosidase-AMG) at constant pH, temperature and time (pH = 5, T = 50 °C and t = 30 min, respectively). Based on our results, glucose concentration increased by ~300% after pretreatment with either acid or KOH in combination with enzymatic hydrolysis (2% HCl, 85 °C, 80 min, 0.1% α-amylase, AMG, and 1% KOH, 0 °C, 20 min, 1.1% α-amylase, 0.4% AMG) compared to raw (untreated) KW. Estimating the different YG yields at KW loading of 5%, an increase of 192% and 121% for total soluble monosugars and total soluble sugars, respectively, was succeeded compared to untreated KW. The effect of solids loading on the obtained sugar yields using the optimum conditions for thermo-chemical pretreatment followed by enzymatic hydrolysis was also tested resulting to 27.5% increase of the soluble glucose yield when half of the solids loading (2.5%) was used. A decrease of total soluble sugars yield by 32.2% was observed when solely acid hydrolysis at optimum conditions from our previous study was applied at 30% solids loading.  相似文献   

3.
The utilization of captured CO2 as a part of the CO2 capture and storage system to produce biopolymers could address current environmental issues such as global warming and depletion of resources. In this study, the effect of feeding strategies of CO2 and valeric acid on cell growth and synthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] in Cupriavidus necator was investigated to determine the optimal conditions for microbial growth and biopolymer accumulation. Among the studied CO2 concentrations (1–20 %), microbial growth and poly(3-hydroxybutyrate) accumulation were optimal at 1 % CO2 using a gas mixture at H2:O2:N2 = 7:1:91 % (v/v). When valeric acid was fed together with 1 % CO2, (R)-3-hydroxyvalerate synthesis increased with increasing valeric acid concentration up to 0.1 %, but (R)-3-hydroxybutyrate synthesis was inhibited at >0.05 % valeric acid. Sequential addition of valeric acid (0.05 % at Day 0 followed by 0.025 % at Day 2) showed an increase in 3HV fraction without inhibitory effects on 3HB synthesis during 4 d accumulation period. The resulting P(3HB-co-3HV) with 17–32 mol  % of 3HV is likely to be biocompatible. The optimal concentrations and feeding strategies of CO2 and valeric acid determined in this study for microbial P(3HB-co-3HV) synthesis can be used to produce biocompatible P(3HB-co-3HV).  相似文献   

4.

Objectives

To characterise compost workers’ exposure to dust, endotoxin and β-(1-3) glucan during various operational practices and investigate whether dust concentrations are a useful indicator of endotoxin exposure in compost workers.

Methods

This study assessed inhalable dust fractions, bacterial endotoxin and β-(1-3) glucan in 117 personal samples and 88 ambient samples from four large-scale composting facilities.

Results

Employees’ exposures to inhalable dust, endotoxin and β-(1-3) glucan exhibited a large range. Inhalable dust was found to be generally low (GM 0.99 mg/m3, GSD 2.99 mg/m3). Analysis of the biological component of the dust showed that employees’ exposures to endotoxin were elevated (GM 35.10 EU/m3, GSD 9.97 EU/m3). Employees’ exposure to β-(1-3) glucan was low (GM 0.98 ng/m3, GSD 13.39 ng/m3). Dust levels were elevated during manual sorting and screening of waste and high levels of endotoxin and β-(1-3) glucan were observed during all practices involving the movement of waste. A significant correlation was observed between the personal dust levels and personal endotoxin concentrations (r = 0.783, p < 0.05) and that personal inhalable dust concentration may be a valuable predictor for personal endotoxin concentration in the sites studied.

Conclusions

Workers at composting sites are exposed to high levels of bacterial endotoxin consistent with adverse respiratory outcomes even though in most cases, their personal dust exposure is below the suggested regulatory levels. Dose-response data for the biological components present in the dust encountered at composting sites are not well established at this time and site operators should adopt precautionary measures when assessing and managing these potential risks.  相似文献   

5.
The aim of this study is to evaluate the impact of nano-SiO2 and bark flour (BF) on the natural fiber–plastic composites engineering properties made from high density polyethylene (HDPE) and beech wood flour (WF). For this purpose, WF and BF in 60 mesh size and weight ratio of (50, 0 %), (30, 20 %), (10, 40 %) and (0, 50 %) respectively were mixed with HDPE. In order to increase the interfacial adhesion between the filler and the matrix, the maleic anhydride grafted polyethylene was constantly used at 3 wt% for all formulations as a coupling agent. The nano-SiO2 particles with weight ratio of 0, 1, 2, and 4 % were also utilized to enhance the composites properties. The materials were mixed in an internal mixer (HAAKE) and then the bark and/or wood–plastic composite samples were made utilizing an injection molding machine. The physical tests including water absorption and thickness swelling, and mechanical tests including bending characteristics and un-notched impact strength were carried out on the samples based on ASTM standard. The results indicated that as the BF content increased in the composite, mechanical and physical properties were reduced, but the given properties were increased with the addition of nano-SiO2. The addition of nano-SiO2 had a negative impact on the physical properties, but when it was up to 2 %, it increased the impact strength.  相似文献   

6.
Batch leaching tests and simulated landfill lysimeter tests were performed to evaluate the contents of heavy metals leached from spent batteries in the municipal solid waste. The toxicity characteristic leaching procedure was utilized to perform the batch leaching tests of 36 spent batteries. Four lysimeters were prepared with battery contents ranging from 0% to 100% by weight for column tests, and the experiments were performed at ambient temperature. The age of all the batteries used in the study ranged from freshly disposed up to approximately 3 years old. The results from the batch tests showed that the type of battery influenced the heavy metal concentrations in the leached solutions. The lysimeter experiment results illustrated that at lower pH levels more metals are leached than at higher pH levels. The increasing amount of batteries disposed in landfills can contribute to the leaching of more metals, especially Mn and Zn, into the environment. These results indicate that the direct disposal of spent household batteries into a MSW landfill can increase the heavy metal contents in the landfill leachate.  相似文献   

7.
The main objective of this study was to determine whether methane potential of waste could be estimated more easily by a limited number of waste characterization variables. 36 samples were collected from 12 locations and 3 waste depths in order to represent almost all waste ages at the landfill. Actual remaining methane potential of all samples was determined by the biochemical methane potential (BMP) tests. The cumulative methane production of closed landfill (cLF) samples reached 75–125 mL at the end of experiment duration, while the samples from active landfill (aLF) produced in average 216–266 mL methane. The average experimental k and L 0 values of cLF and aLF were determined by non-linear regression using BMP data with first-order kinetic equation as 0.0269 day?1–30.38 mL/g dry MSW and 0.0125 day?1–102.1 mL/g dry MSW, respectively. The principal component analysis (PCA) was applied to analyze the results for cLF and aLF along with BMP results. Three PCs for the data set were extracted explaining 72.34 % variability. The best MLR model for BMP prediction was determined for seven variables (pH–Cl–TKN–NH4–TOC–LOI–Ca). R 2 and Adj. R 2 values of this best model were determined as 80.4 and 75.3 %, respectively.  相似文献   

8.
Carrageenan-based films demonstrate good performance, the raw materials for their production are abundant in nature and can be sustainably sourced from seaweeds. Similar to other naturally-derived biopolymers, however, carrageenans are relatively expensive to purify and form into useful materials. In order to potentially lower the production costs compared to pure carrageenan, semi-refined carrageenan (SRC) plasticized with 0–50% (w/w) glycerol was investigated using a solution casting method. The film color and opacity increased along with the moisture content, whereas the water vapor permeability decreased with increasing levels of glycerol. The tensile properties of the SRC films improved significantly, particularly at glycerol additions greater than 30% (w/w). Moreover, the addition of glycerol improved the thermal stability and altered the surface morphology of the films. In general, the properties of the SRC films were comparable with refined carrageenan films suggesting that SRC has potential to be furthered developed into more cost effective primary food packaging materials.  相似文献   

9.
Continuing growth of biofuel industries is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. This research effort has quantified the effects on mechanical properties of adding DDGS and glycerol to a commercial thermoplastic starch (TPS). The methodology was to physically mix DDGS, as filler, with the TPS pellets and injection mold the blends into test bars using glycerol as a processing aid. The bars were then mechanically tested with blends from 0 to 65 %, by weight, of plasticized filler. The test bars were typically relatively brittle with little yielding prior to fracture with elongation between 1 and 3 %. The addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the starch, and up to 30 % filler, the tensile strength drops about 15 %. The 20 and 50 % blends (without glycerol) have slightly greater stiffness than pure starch. With some other blends, the presence of plasticized filler degrades the tensile modulus with 35 % filler yielding about 1/3 the stiffness. Changes in the flexural modulus are much more pronounced as 20–25 % filled TPS has a 30 % increase in flexural stiffness. In terms of surface hardness, blends up to 60 % filler are within 20 % of the TPS baseline.  相似文献   

10.
This study investigated the deplasticization and dechlorination of flexible polyvinyl chloride (PVC) containing 59.2% PVC, 29.7% dioctyl phthalate (DOP), and approximately 12% stabilizers. Flexible PVC was treated with NaOH solutions at concentrations in the range 2–16 mol/l and heated by microwaves to temperatures between 100° and 250°C for 0–120 min. DOP was extracted from flexible PVC into the NaOH solution as a phthalic acid salt; the remaining PVC was subsequently dechlorinated by increasing the temperature. On internal heating using microwaves, the plasticizer was 100% extracted during processing at 150°C for 30 min, whereas the chlorides were 100% removed during processing at 235°C for 30 min; the residue was converted into hydrocarbon compounds. The maximum weight loss ratio was 71% compared to the pretreatment state. It was also found that 100% deplasticization and dechlorination was possible using 8 mol/l NaOH solution, which is almost half the concentration employed when using conventional external heating systems.  相似文献   

11.
Dispersants were used in shallow water (4–6 m) and in the surf zone at a small spill (400 bbls) of Venezuelan Recon at the port of Acajutla, El Salvador in June 1994. Subtidal oysters were collected 1 and 4 weeks post-spill to determine the degree of exposure of benthic resources to the dispersed oil. Two samples of oysters from the area of dispersed oil contained total PAHs of 147 and 164 ppm, dry weight, compared with background levels less than 1.0 ppm. Four weeks post-spill, PAH levels decreased by 94–98%. Half-lives for individual PAH compounds were estimated and were generally consistent with results from laboratory experiments. Monitoring of bivalves during dispersant applications can document the areal and vertical extent of dispersed oil in the water column.  相似文献   

12.
Plastic blend materials consisting of poly(vinyl alcohol), glycerol and xanthan or gellan were prepared through laboratory extrusion. Their base mechanical properties were compared with the properties of poly(vinyl alcohol) foil and their biodegradability in soil, compost and both activated and anaerobic sludge were assessed. In samples with lower polysaccharide content (10–21 %w/w) the tensile strength of 15–20 MPa was found; the elongation at break of all blends was relatively close to the parameter of poly(vinyl alcohol) foil. The biodegradability levels of the blends tested corresponded to the content of natural components, and the mineralization of the samples with the highest carbohydrate proportion (42 %) reached 50–78 %, depending on the type of the environment. Complete biodegradation of all samples occurred in activated sludge.  相似文献   

13.
The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.  相似文献   

14.
This paper identifies and estimates time periods as ‘windows-of-opportunity’ where specific response methods, technologies, equipment, or products are more effective in clean-up operations for several oils. These windows have been estimated utilizing oil weathering and technology performance data as tools to optimize effectiveness in marine oil spill response decision-making. The windows will also provide data for action or no-action alternatives. Crude oils and oil products differ greatly in physical and chemical properties, and these properties tend to change significantly during and after a spill with oil aging (weathering). Such properties have a direct bearing on oil recovery operations, influencing the selection of response methods and technologies applicable for clean up, including their effectiveness and capacity, which can influence the time and cost of operations and the effects on natural resources.The changes and variations in physical and chemical properties over time can be modeled using data from weathering studies of specific oils. When combined with performance data for various equipment and materials, tested over a range of weathering stages of oils, windows-of-opportunity can be estimated for spill response decision-making. Under experimental conditions discussed in this paper, windows-of-opportunity have been identified and estimated for four oils (for which data are available) under a given set of representative environmental conditions. These ‘generic’ windows have been delineated for the general categories of spill response namely: (1) dispersants, (2) in situ burning, (3) booms, (4) skimmers, (5) sorbents, and (6) oil-water separators. To estimate windows-of-opportunity for the above technologies (except booms), the IKU Oil Weathering Model was utilized to predict relationships—with 5 m s−1 wind speed and seawater temperatures of 15°C.The window-of-opportunity for the dispersant (Corexit 9527®) with Alaska North Slope (ANS) oil was estimated from laboratory data to be the first 26 h. A period of ‘reduced’ dispersibility, was estimated to last from 26–120 h. The oil was considered to be no longer dispersible if treated for the first time after 120 h. The most effective time window for dispersing Bonnic Light was 0–2 h, the time period of reduced dispersibility was 2–4 h, and after 4 h the oil was estimated to be no longer dispersible. These windows-of-opportunity are based on the most effective use of a dispersant estimated from laboratory dispersant effectiveness studies using fresh and weathered oils. Laboratory dispersant effectiveness data cannot be directly utilized to predict dispersant performance during spill response, however, laboratory results are of value for estimating viscosity and pour point limitations and for guiding the selection of an appropriate product during contingency planning and response. In addition, the window of opportunity for a dispersant may be lengthened if the dispersant contains an emulsion breaking agent or multiple applications of dispersant are utilized. Therefore, a long-term emulsion breaking effect may increase the effectiveness of a dispersant and lengthen the window-of-opportunity.The window-of-opportunity of in situ burning (based upon time required for an oil to form an emulsion with 50% water content) was estimated to be approximately 0–36 h for ANS oil and 0–1 h for Bonnie Light oil after being spilled. The estimation of windows-of-opportunity for offshore booms is constrained by the fact that many booms available on the market undergo submergence at speeds of less than 2 knots. The data suggest that booms with buoyancy to weight ratios less than 8:1 may submerge at speeds within the envelope in which they could be expected to operate. This submergence is an indication of poor wave conformance, caused by reduction of freeboard and reserve net buoyancy within the range of operation. The windows-of-opportunity for two selected skimming principles (disk and brush), were estimated using modeled oil viscosity data for BCF 17 and BCF 24 in combination with experimental performance data developed as a function of viscosity. These windows were estimated to be within 3–10 h (disk skimmer) and after 10 h (brush skimmer) for BCF 17. Whereas for BCF 24, it is within 2–3 d (disk skimmer) and after 3 d (brush skimmer).For sorbents, an upper viscosity limit for an effective and practical use has in studies been found to be approximately 15,000 cP, which is the viscosity range of some Bunker C oils. Using viscosity data for the relative heavy oils, BCF 17 and BCF 24 (API gravity 17 and 24), the time windows for a sorbent (polyamine flakes) was estimated to be 0–4 and 0–10 d, respectively. With BCF 24, the effectiveness of polyamine flakes, was reduced to 50% after 36 h, although it continued to adsorb for up to 10 d. For BCF 17, the effectiveness of polyamine flakes was reduced to 50% after 12 h, although it continued to adsorb for up to 4 d. The windows-of-opportunity for several centrifuged separators based upon the time period to close the density gap between weathered oils and seawater to less than 0.025 g ml−1 (which is expected to be an end-point for effective use of centrifugal separation technology), were estimated to be 0–18 (ANS) and 0–24 h (Bonnie Light) after the spill. Utilizing the windows-of-opportunity concept, the combined information from a dynamic oil weathering model and a performance technology data base can become a decision-making tool; identifying and defining the windows of effectiveness of different response methods and equipment under given environmental conditions. Specific research and development needs are identified as related to further delineation of windows-of-opportunity.  相似文献   

15.
Indications of possible negative effects of lead (Pb) and mercury(Hg) on microbial respiration in Southern Swedish forest humus layers led to experiments on dose-response relationships by additions of metal salts in the laboratory. Respiration rates andweight loss due to decomposition of organic material were measured. For relevance to field situations metal doses were low,the time span was long, 550 days including freeze storage, and microbial activity was kept up by plant litter additions. We looked for effects of Pb and Hg at levels moderately elevated above the Southern Swedish reference, as well as combined effectsof Pb + Hg. A reduction in respiration and decomposition of10% was found at about 225–245 g g-1 of total Pb, i.e. ata Pb level elevated 3.5 times. Although small effects of Hg werefound even at the lowest dose level, 10% inhibition of microbialactivity appeared temporarily at about 2–3 g g-1 of total Hg, i. e. at 6–8 times the reference level. There were nolong-term additive effects of Pb and Hg on decomposition. Type of anion had a strong influence on the test, chlorides of Pbbeing more toxic than nitrates. Long-term monitoring and maintenance of microbial activity during the experiment were prerequisites for the occurrence of effects at low metal levels.  相似文献   

16.
This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.  相似文献   

17.
Hemp bast holocellulose fiber (Cannabis sativa L. Subsp. Sativa) was oxidized by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation at various NaClO addition levels in water at pH 10. When carboxylate contents of the oxidized products were 1.5–1.7 mmol/g, TEMPO-oxidized cellulose nanofibrils almost completely dispersed at the individual nanofibril were obtained by mechanical disintegration of the TEMPO-oxidized hemp bast holocelluloses in water, where the nanofibrillation yields were 98–100 %. The sugar composition analysis revealed that most of hemicelluloses originally present in the hemp bast holocellulose were degraded and removed from the solid oxidized products, providing almost pure TEMPO-oxidized celluloses. X-ray diffraction patterns of all TEMPO-oxidized hemp bast holocelluloses had the same cellulose I crystal structure and similar crystallinity indices and crystal widths, indicating that carboxylate groups formed by the oxidation were selectively present on the crystalline cellulose microfibril surfaces in the holocellulose. However, the weight recovery ratios and viscosity-average degrees of polymerization of the TEMPO-oxidized hemp bast holocelluloses decreased to 69–59 % and 470–380, respectively, when their carboxylate contents increased to 1.5–1.7 mmol/g by the TEMPO-mediated oxidation. Atomic force microscopy height images showed that the nanofibril widths were 2.7–2.9 nm, and the average nanofibril lengths decreased from 590 to 400 nm as the NaClO addition level was increased from 7.5 to 12.5 mmol/g in the TEMPO-mediated oxidation.  相似文献   

18.
Micro-aeration is known to promote the activities of hydrolytic exo-enzymes and used as a strategy to improve the hydrolysis of particulate substrate. The effect of different micro-aeration rates, 0, 129, 258, and 387 L-air/kg TS/d (denoted as LBR-AN, LBR-6h, LBR-3h and LBR-2h, respectively) on the solubilization of food waste was evaluated at 35 °C in four leach bed reactors (LBR) coupled with methanogenic upflow anaerobic sludge blanket (UASB) reactor. Results indicate that the intensity of micro-aeration influenced the hydrolysis and methane yield. Adequate micro-aeration intensity in LBR-3h and LBR-2h significantly enhanced the carbohydrate and protein hydrolysis by 21–27% and 38–64% respectively. Due to the accelerated acidogenesis, more than 3-fold of acetic acid and butyric acid were produced in LBR-3h as compared to the anaerobic treatment LBR-AN resulting in the maximum methane yield of 0.27 L CH4/g VSadded in the UASB. The performance of LBR-6h with inadequate aeration was similar to that of LBR-AN with a comparable hydrolysis degree. Nevertheless, higher aeration intensity in LBR-2h was also unfavorable for methane yield due to significant biomass generation and CO2 respiration of up to 18.5% and 32.8% of the total soluble hydrolysate, respectively. To conclude, appropriate micro-aeration rate can promote the hydrolysis of solid organic waste and methane yield without undesirable carbon loss and an aeration intensity of 258 L-air/kg TS/d is recommended for acidogenic LBR treating food waste.  相似文献   

19.
The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 °C), Cu2+ concentration (250-750 mg L−1) and H2O2 concentration (0-1500 mg L−1) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L−1, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H2O2 to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 °C, 250 mg L−1 Cu2+ and 0-1500 mg L−1 H2O2 resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H2O2 concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H2O2 concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号