首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Hydrogels are a kind of three dimensional polymeric network system which has a significant amount of water imbibing capacity despite being soluble in it. Because of the potential applications of hydrogels in different fields such as biomedical, pharmaceutical, personal care products, biosensors, and cosmetics, it has become a very popular area of research in recent decades. Hydrogels, prepared from synthetic polymers and petrochemicals are not ecofriendly. For preparing biodegradable hydrogels, most available plant polysaccharides like starch are utilized. In its structure, starch has a large number of hydroxyl groups that aid in hydrogel networking. For their easy availability and applications, starch-based hydrogels (SHs) have gained huge attention. Moreover, SHs are non-toxic, biocompatible, and cheap. For these reasons, SHs can be an alternative to synthetic hydrogels. The main focus of this review is to provide a comprehensive summary of the structure and characteristics of starch, preparation, and characterization of SHs. This review also addresses several potential multidimensional applications of SHs and shows some future aspects in accordance.

Graphic abstract
  相似文献   

2.

There is a growing need to find ways to reuse fine concrete waste from the construction industry. In this study, recycled concrete fines were granulated and used as lightweight aggregates. Ladle slag, a steel industry residue, was used as a co-binder in different ratios (0, 10, 20, and 30%). The materials were blended and granulated, and then the granules were cured in three conditions: ambient condition, humidity chamber, and carbonation chamber. The results showed that the ladle slag content of 30% cured in a humidity chamber produced the strongest granules, with a crushing strength of 127 N, which was 135% greater than a commercial lightweight aggregate. The granules generally had satisfactory density and water absorption with a higher ladle slag content. Carbonation increased the granule strength with a low ladle slag content and decreased the granules’ water absorption. The improved physical and mechanical properties of carbonated granules are attributed to the formation of calcium carbonate during the carbonation process. The granules produced in this study show good potential for use as lightweight aggregates in the construction industry.

Graphical abstract
  相似文献   

3.

The primary goal of this work is to develop a technology that allows for the recovery of metal values from waste products, thereby promoting the wise and efficient use of our nation's resources. To achieve this goal, an industrial waste of El Kriymat boiler fly Ash was used for recovering its content of vanadium, nickel and zinc. About 97, 95 and 99% respectively of these economic elements were first dissolved from boiler fly ash magnetic concentrate (after physical concentration). Leaching experiments using optimum conditions include: 180 g/L sulfuric acid concentration and 4% solid/solid proportion manganese dioxide acts as an oxidant at 80 °C. The recovery of vanadium (V) metal ions was carried out using 3% Alamine 336 in kerosene at an equilibrium pH value of 0.9. Subsequently, 15% sodium sulfide solution was used for co-precipitation of nickel and zinc metal ions in the raffinate solution at pH value of 3.5.

Graphical Abstract
  相似文献   

4.

Life cycle assessment (LCA) of waste treatment processes is often associated with considerable uncertainties. The aim of this study is to estimate the total uncertainty in the modelled composting system and the influence of material and process parameters on the uncertainty. Four composting combinations with fresh (FC) and mature substrate compost (MSC) from partially enclosed (PEC) and open composting (OC) were investigated. Perturbation analysis was used to determine the effect of parameters on the result and Monte Carlo simulation was used to estimate the total uncertainty. This study showed that the production of MSC using PEC had the lowest overall impacts across all impact categories except ozone depletion. Results of the Monte Carlo simulation showed that comparing composting options was challenging. The sensitivity ratios obtained from the perturbation analysis showed that the process parameter percentage of carbon fraction degraded was the most influential for FC. In MSC, the moisture content in the input material and the substitution factor used for peat were the most influential. Monte Carlo simulations demonstrated the overall uncertainty of the model and its relevance when comparing results between combinations. The perturbation analysis identified the parameters that required more accurate data to reduce the uncertainty in the model.

Graphical abstract
  相似文献   

5.
6.

This work was focused on evaluating the suitability of replacing Portland cement (PC) by 5, 10 and 15 mass % of activated alum sludge waste (AAS) as a pozzolanic material. Exploitation of low-cost nanocomposite for bolstering the physical, mechanical, and stability against firing of PC–AAS-hardened composites was inspected. CuFe2O4 spinel nanoparticle with average particle size (~ 50 nm) was prepared. Inclusion of CuFe2O4 spinel in different PC–AAS-hardened composites bolsters their physicomechanical features at almost normal curing ages as well as their stability against firing. The positive impact of synthesized CuFe2O4 spinel was affirmed via TGA/DTG and XRD techniques, which indicated the presence of diverse hydration yields such as CSHs, CASHs, CFSH, and CuSH that enhance the overall physicomechanical characteristics and thermal stability of various PC–AAS-hardened composites. The composite containing (90 PC–10 AAS waste–2 CuFe2O4) offers many benefits from the economic and environmental view.

Graphical abstract
  相似文献   

7.

Material flow analysis (MFA) is an effective tool for waste management, but low- and middle-income countries lack essential data for MFA. This study proposed a simplified MFA (sMFA) utilizing local expert judgment (LEJ) and examining the impact of simplification on its uncertainty. A stochastic sMFA model was developed for nitrogen and phosphorus in urban Mandalay, Myanmar. This model was compared with the intensive MFA (iMFA) model employing intensive surveys for primary data collection. For the total loadings to the environment, the medians of the sMFA were higher by 3% and 11%, respectively, for nitrogen and phosphorus than those of the iMFA. The widths of the 80% confidence intervals of these loadings in the sMFA, normalized by those in the iMFA, were − 0.05 and − 0.11, respectively. The three largest flows to the environment were the same for the two models: on-site sanitation effluent/leakage, greywater, and industrial wastewater. Large median gaps between the models were observed for industrial wastewater, fecal sludge, and human excreta, associated with informal waste management, whereby LEJ did not work well. Overall, the sMFA demonstrated a good estimation of nitrogen and phosphorus flows with limited increase of uncertainty, still requiring focused attention on informal waste streams.

Graphical abstract
  相似文献   

8.
The substance class of inert organic-chemical stressors (IOCS) describes organic-chemical (macro-) molecules, which demonstrate a high level of persistence upon entry in the ecosystem, and whose degradation is limited. These synthetically produced organic-chemical macromolecules, which are often derived from the polymerization of different monomers, are, in the form of plastics, indispensable in the everyday world. They enter the environmental compartments and cause great damage due to primary (industry, cosmetic, washing of textile), and secondary (degradation) entry. If these particles get into aquatic systems, this has fatal consequences for the ecosystem such as the death of marine animals, or bioaccumulation. Wastewater treatment plants are reaching their limits and require innovative ideas for the sustainable removal of microplastic. This article examines a new approach to the removal of polymers from aquatic systems (lab scale) by using sol–gel induced agglomeration reactions to form larger particle agglomerates. These enlarged agglomerates can be separated much more easily from the wastewater, since they float on the water surface. Separation systems, e.g. sand trap can easily be used. A further advantage is that the agglomeration can be carried out completely independently of the type, size, and amount of the trace substance concentration as well as of the external influences (pH value, temperature, pressure). Thus, this new type of particle separation can not only be used in sewage treatment plants, but can also be transferred to decentralized systems (e.g. implementation in industrial processes).

Graphical Abstract

  相似文献   

9.
A block copolymer {P[(R,S)-HB-b-EG]} of atactic poly[(R,S)-3-hydroxybutyrate] {P[(R,S)-HB]} and poly(ethylene glycol) (PEG) was prepared by the ring-opening polymerization of -butyrolactone in the presence of a macroinitiator (PEG/ZnEt2/H2O) which had been produced by the reaction of ,-dihydroxy PEG ( n=3000) with ZnEt2/H2O (1/0.6) catalyst. The block copolymer ( n=10,500, w/ n=1.2) was an A-B-A triblock copolymer comprising atactic P[(R,S)-HB] (A) and PEG (B) segments. The miscibility, physical properties, and biodegradability of binary blends of microbial poly[(R)-3-hydroxybutyrate] {P[(R)-HB]} with the block copolymer P[(R,S)-HB-b-EG] has been studied. The glass-transition temperature (T g) data showed that the P[(R)-HB]/P[(R,S)-HB-b-EG] blend was miscible in the amorphous state. The P[(R)-HB] film became flexible and tough by means of blending with P[(R,S)-HB-b-EG] block copolymer. The enzymatic degradation of blend films was carried out at 37°C and pH 7.4 in a 0.1M phosphate solution of an extracellular PHB depolymerase fromAlcaligenes faecalis. The enzymatic degradation took place solely on the surface of the blend films.  相似文献   

10.
Cellulose micro/nanofibrils were successfully extracted from softwood Douglas fir in three distinct stages. Initially raw Douglas fir wood chips were subjected to a hot water extraction (HWE) treatment. Then HWE treated cellulosic fibers underwent a bleaching process followed by a mild ultrasonication. Chemical composition analysis according to ASTM standards confirmed that most of hemicelluloses and nearly all lignin were removed during the first two stages, respectively. Microscopy studies showed formation of nanofibrils during the ultrasonication process, and increasing ultrasonication time led to generation of greater percentage of nanofibrils. With the removal of the matrix materials, the crystallinity of the cellulosic fibers was increased, whereas thermal stability was maintained. HWE opened up the cell wall structure, thereby facilitating the subsequent fractionation into micro/nanofibrils. The obtained cellulose micro/nanofibrils could serve as reinforcing material in composite products or raw material for other applications, such as filtration membrane.  相似文献   

11.
This study explores the effects of bleached softwood kraft pulp (BSWK) as a conventional reinforcing material in comparison with cellulose nanofiber (CNF) as an emerging bionanomaterial on the bleached soda sugarcane bagasse (BSSB) paper furnish. Cationic polyacrylamide was selected as a retention aid along with the CNF addition to retain it on fiber surfaces during the papermaking process. The results showed that though the effects of CNF were similar to those of BSWK in the most of properties but there were some important differences which can industrially be noticeable. In one hand, both of cellulosic elements, when substituted for the BSSB at the 5 or 10 % levels, gave increases in the paper strength, i.e. samples containing 10 % CNF yielded similar tensile strength (53 N m/g) and a more consolidated structure (14 % increment of the density) than those produced with 10 % BSWK. CNF addition had opposite effects on the air-permeability of the resulting paper. Unlike BSKW, the addition of CNF had a strong favorable effect on tear strength, but it was markedly slowed the rate of drainage time when it was especially added at 10 % level of the final furnish.  相似文献   

12.
Testing biodegradability of plastics under varied conditions of the environment as well as under laboratory conditions in accordance with valid international standards is very laborious, lengthy and often also economically demanding. For this reason, applicability was verified of gas chromatography to analyze gaseous phase when investigating the biodegradation course of plastics in an aqueous environment as an alternative to customary employed methods. A mathematical model of acid–basic CO2 equilibrium in a gas–liquid system was worked out, enabling to determine quantity of produced CO2 through chromatographic analysis of gaseous phase, in dependence on ratio of liquid and gas phase volumes (V l/V g) and on actual pH of liquid phase. Experimental conditions for organizing the tests were optimized. A ratio that proved suitable was V l/V g ≅ 0.1 at pH ≈ 7.1 of liquid phase. Under these test conditions, biodegradability of model samples, PHB, Gellan gum and Xanthan gum, was explored; course of biodegradation was studied through produced CO2 (values ) determined by analyzing gaseous phase through gas chromatography on the one hand, and through customary “titration” procedure on the other. With water-soluble polymers, the decrement in dissolved organic carbon (values D DOC) was also studied. Difference between values does not exceed 5%. The procedures in question are alternative “substituting” procedures for observing course of aerobic biodegradation of substances in an aqueous environment.  相似文献   

13.
The biodegradability of cellulose-based materials was compared in the standard Sturm test and by enzymatic hydrolysis. Trichoderma reesei culture filtrate, the purified enzymes endoglucanase I and II from T. reesei, and -glucosidase from Aspergillus niger were used in the experiments. The unpurified Trichoderma reesei culture filtrate was found to contain a mixture of enzymes suitable for cellulose degradation. However, when purified enzymes were used the right balance of the individual enzymes was necessary. The addition of -glucosidase enhanced the enzymatic hydrolysis of cellulose materials when both culture filtrate and purified enzymes were used. In the Sturm test the biodegradability of most of the cellulose materials exceeded 70% carbon dioxide generation, but, in contrast, the biodegradability of the highly substituted aminated cellulose and cellulose acetate was below 10%. The results concerning enzymatic hydrolysis and biodegradability were in good agreement for kraft paper, sausage casing, aminated cellulose, and cellulose acetate. However, diverging results were obtained with cotton fabric, probably as a result of its high crystallinity.  相似文献   

14.
The aerodynamic behaviour of large urbanagglomerations must be represented in increasingly greaterdetail, as large-scale numerical weather prediction and airpollution dispersion models are refined. The present studyprovides detailed measurements of the flow field in regulararrays of obstacles to obtain representative data on meanflow and turbulence statistics in urban-type areas. Obstacle arrays consisting of simple cubes and flat plateroughness commonly used in boundary layer simulations wereplaced in a simulated atmospheric boundary layer flow in ahydraulic flume. The scale factor was about 1:200 based onthe obstacle height (50 mm). The results show noappreciable `constant stress' region in the internalboundary layer above the buildings, since in any finite-length test array the boundary layer is always developing.However, if the RMS turbulence components are scaled by thelocal values of the shear stress, then there seems to be auniversal scaling, with u/u* = 2.1,v/u* = 1.65 and w/u* = 1.2. This greatly simplifies the parameterization of the first orderturbulence statistics in obstacle arrays. It was alsoobserved during the experiments that, compared to results inthe cube arrays, the turbulence kinetic energy and theReynolds stresses were almost doubled in the flat plateroughness arrays.  相似文献   

15.
The molecular weight changes in abiotically and biotically degraded LDPE and LDPE modified with starch and/or prooxidant were compared with the formation of degradation products. The samples were thermooxidized for 6 days at 100°C to initiate degradation and then either inoculated with Arthobacter paraffineus or kept sterile. After 3.5 years homologous series of mono- and dicarboxylic acids and ketoacids were identified by GC-MS in abiotic samples, while complete disappearance of these acids was observed in biotic environments. The molecular weights of the biotically aged samples were slightly higher than the molecular weights of the corresponding abiotically aged samples, which is exemplified by the increase in from 5200 g/mol for a sterile sample with the highest amount of prooxidant to 6000 g/mol for the corresponding biodegraded sample. The higher molecular weight in the biotic environment is explained by the assimilation of carboxylic acids and low molecular weight polyethylene chains by microorganisms. Assimilation of the low molecular weight products is further confirmed by the absence of carboxylic acids in the biotic samples. Fewer carbonyls and more double bonds were seen by FTIR in the biodegraded samples, which is in agreement with the biodegradation mechanism of polyethylene.  相似文献   

16.

The current study proposes a novel and improved cigarette filtration design comprising cellulose nanofibers (CNFs) and powdered activated carbons (PACs) with different dry matter contents. The proposed filter samples were primarily analyzed to verify their applicability as cigarette filters via measurements and standard tests, such as SEM, BET, DSC, and airflow permeability analysis. The results were compared with the cellulose acetate (CA) sample used as a conventional cigarette filter. The preliminary results indicated noticeable improvement compared to the reference CA. Also, the cigarettes were tested using a smoking machine, and the filtered smoke was analyzed using GC–MS to evaluate the filters' performance in reducing the harmful substances present in the smoke. The results showed that the filters made of CNF and PAC significantly decreased the toxic substances compared with the reference but did not affect the nicotine substantially and therefore will not negatively impact the trance level of smokers.

  相似文献   

17.
Hemp bast holocellulose fiber (Cannabis sativa L. Subsp. Sativa) was oxidized by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation at various NaClO addition levels in water at pH 10. When carboxylate contents of the oxidized products were 1.5–1.7 mmol/g, TEMPO-oxidized cellulose nanofibrils almost completely dispersed at the individual nanofibril were obtained by mechanical disintegration of the TEMPO-oxidized hemp bast holocelluloses in water, where the nanofibrillation yields were 98–100 %. The sugar composition analysis revealed that most of hemicelluloses originally present in the hemp bast holocellulose were degraded and removed from the solid oxidized products, providing almost pure TEMPO-oxidized celluloses. X-ray diffraction patterns of all TEMPO-oxidized hemp bast holocelluloses had the same cellulose I crystal structure and similar crystallinity indices and crystal widths, indicating that carboxylate groups formed by the oxidation were selectively present on the crystalline cellulose microfibril surfaces in the holocellulose. However, the weight recovery ratios and viscosity-average degrees of polymerization of the TEMPO-oxidized hemp bast holocelluloses decreased to 69–59 % and 470–380, respectively, when their carboxylate contents increased to 1.5–1.7 mmol/g by the TEMPO-mediated oxidation. Atomic force microscopy height images showed that the nanofibril widths were 2.7–2.9 nm, and the average nanofibril lengths decreased from 590 to 400 nm as the NaClO addition level was increased from 7.5 to 12.5 mmol/g in the TEMPO-mediated oxidation.  相似文献   

18.
Composites were prepared by two methods, (i) graft copolymerization (GFC) of isotactic polypropylene (PP) with maliec anhydride, (MAH) followed by esterification with coir fiber and (ii) by direct reactive mixing (DFC) of polypropylene (PP) and ethylene–propylene (EP) copolymers with MAH and peroxide with coir fiber. These composites, after molding in films (5×5 cm, m thickness) were examined for susceptibility to biological attack by measuring the percentage weight loss in compost upto 6 months, periodically, and fungal colonization on surface of the samples, when kept as sole carbon source for the growth of Aspergillus niger in culture medium upto 40 days. Photodegradation was evaluated by monitoring the variations in FT-IR spectrum and crack formation after successive treatment with UV light (≥290 nm) for 0, 20, 50 and 100 h at 60°C in the presence of air. Specimens of virgin PP were taken as a reference during all period of photo and biodegradation studies. Significant changes were observed depending on the preparation methods during photodegradation and biodisintegration of composites. DFCs samples were disintegrated faster than GFCs during the composting whereas, in culture, GFCs were covered highly in well uniform way by fungi. It was observed that photo-oxidative ageing directly enhanced the biodegradability of composites as the increase in fungal growth rate and decrease in weight during composting were found. It was concluded that extent of compatibilization had a profound effect on photo-oxidation and biodisintegration of composite material; consequently ester bonds were main units during fungal consumption. Composition of monomers in copolymers was also showing significant effect on the degradability which decreased with increasing content of ethylene in ethylene–propylene (EP) copolymers.  相似文献   

19.
A novel process has been developed for separation of the cellulose, i.e. cotton and viscose, from blended-fibers waste textiles. An environmentally friendly cellulose solvent, N-methylmorpholine-N-oxide (NMMO) was used in this process for separation and pretreatment of the cellulose. This solvent was mixed with blended-fibers textiles at 120 °C and atmospheric pressure to dissolve the cellulose and separate it from the undissolved non-cellulosic fibers. Water was then added to the solution in order to precipitate the cellulose, while both water and NMMO were reused after separation by evaporation. The cellulose was then either hydrolyzed by cellulase enzymes followed by fermentation to ethanol, or digested directly to produce biogas. The process was verified by testing 50/50 polyester/cotton and 40/60 polyester/viscose-blended textiles. The polyesters were purified as fibers after the NMMO treatments, and up to 95% of the cellulose fibers were regenerated and collected on a filter. A 2-day enzymatic hydrolysis and 1-day fermentation of the regenerated cotton and viscose resulted in 48 and 50 g ethanol/g regenerated cellulose, which were 85% and 89% of the theoretical yields, respectively. This process also resulted in a significant increase of the biogas production rate. While untreated cotton and viscose fibers were converted to methane by respectively, 0.02% and 1.91% of their theoretical yields in 3 days of digestion, the identical NMMO-treated fibers resulted into about 30% of yield at the same period of time.  相似文献   

20.
The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism, resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization (DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage (up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water. In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions, sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved, however, is far beyond the scope of the presented overview.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号