首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
周礼  司士辉 《化工环保》2014,34(1):84-89
采用聚合物前驱体法制备了Ti/SnO2-Sb2O3电极,再通过恒电流电沉积法制备了 Ti/SnO2-Sb2O3/PbO2和Ti/SnO2-Sb2O3/MnO2电极。采用SEM技术对3种金属氧化物电极表面的形貌进行了表征,并分别以3种电极为阳极进行了苯酚的电催化氧化实验。实验结果表明:电解时间为2.5 h时,Ti/SnO2-Sb2O3电极、Ti/SnO2-Sb2O3/PbO2电极和Ti/SnO2-Sb2O3/MnO2电极对苯酚的降解率分别为85.9%,83.2%,44.6%;苯酚在3种电极上的电催化氧化反应均遵循一级反应动力学方程;苯酚在Ti/SnO2-Sb2O3 电极和Ti/SnO2-Sb2O3/PbO2电极上的反应速率较快,并具有较高的析氧电位;Ti/SnO2-Sb2O3/PbO2电极具有更好的耐腐蚀性和更长的使用寿命。  相似文献   

2.
曾得福  张静  冯婧  胡敏莉  何帅 《化工环保》2018,38(6):651-656
对比了UV、Cu~(2+)/H_2O_2、UV/H_2O_2、Cu~(2+)/UV/H_2O_2体系对盐酸四环素(TC)的降解效果,考察了Cu~(2+)/UV/H_2O_2体系降解TC的影响因素,并进行了动力学分析。实验结果表明:Cu~(2+)的加入明显增强了UV/H_2O_2体系对TC的降解效果,反应60 min时,Cu~(2+)/UV/H_2O_2体系对TC的降解率相比UV/H_2O_2体系提高了24.82%;Cu~(2+)的最佳投加量为120μmol/L;pH对TC的降解影响较小;H_2O_2投加量、温度、紫外灯功率的增加均会增加TC的降解率。Cu~(2+)/UV/H_2O_2体系中TC的降解可用拟二级动力学方程描述,TC降解的活化能为15.56 kJ。  相似文献   

3.
张聪  郭振华  马影利  郭强 《化工环保》2018,38(3):275-281
通过水热合成法和液相沉积法制备g-C_3N_4/C@Bi_2MoO_6复合光催化剂,并采用X射线衍射、扫描电子显微镜、氮气吸脱附、紫外-可见漫反射等技术对其进行表征。研究了可见光下g-C_3N_4/C@Bi_2MoO_6催化降解罗丹明B(Rh B)的影响因素,并对其光催化反应机理进行初步探讨。实验结果表明:g-C_3N_4掺杂量为60%(w)时g-C_3N_4/C@Bi_2MoO_6的光催化活性最高;在60%g-C_3N_4/C@Bi_2MoO_6的投加量为1.00 g/L、初始Rh B质量浓度为2.50 mg/L、可见光照射150 min的条件下,Rh B的降解率达到97.90%;在g-C_3N_4/C@Bi_2MoO_6光催化降解体系中,h~+和·O_2~-是主要活性物种。  相似文献   

4.
黄力  王虎  纵宇浩  常峥峰  张鑫 《化工环保》2012,40(2):198-202
对V2O5-MoO3/TiO2脱硝催化剂进行Ga改性处理,制备了一系列不同Ga2O3质量分数的V2O5-MoO3-Ga2O3/TiO2脱硝催化剂。采用XRD、N2-吸附脱附、H2-TPR、UV-vis、拉曼光谱、NH3-TPD等手段对催化剂进行表征。结果显示:Ga的添加对催化剂上MoOx物种的影响不大,但降低了催化剂上VOx物种的聚合度,从而提升催化剂的还原性能,同时Ga的添加还减少了催化剂的酸性位。当Ga2O3质量分数为0.2%时,V2O5-MoO3-Ga2O3/TiO2催化剂的脱硝性能最佳。  相似文献   

5.
分别采用传统的Fe2+活化过硫酸钠(Na2S2O8)氧化和铁碳强化Na2S2O8氧化两种方法修复模拟机油污染土壤。实验结果表明:对于传统Fe2+-Na2S2O8体系,在Na2S2O8投加量为3.0%(w)、FeSO4·7H2O投加量为0.6%(w)的优化条件下,土壤中总石油烃(TPH)的去除率仅为33.12%;而对于Fe0-C-Na2S2O8体系,在Na2S2O8投加量为1.0%(w)、还原铁粉和活性炭的投加量均为0.1%(w)的优化条件下,土壤中TPH的去除率为42.99%;Fe0-C-Na2S2O8体系较Fe2+-Na2S2O8体系对土壤具有更好的修复效果,且Na2S2O8的投加量减少了2/3。此外,Fe0-C-Na2S2O8体系较Fe2+-Na2S2O8体系对土壤pH的影响小,在实际应用中可适当提高铁粉的投加量来减小Na2S2O8对土壤pH的影响。  相似文献   

6.
采用自燃烧法制备了一组钙钛矿型复合氧化物La_(0.8)Ce_(0.2)Fe_(1-x)Co_xO_3(x=0.9,0.7,0.5,0.3,0.1),并考察了其对CO、C_3H_6和NO的三效催化活性。XRD和SEM表征结果显示,La_(0.8)Ce_(0.2)Fe_(1-x)Co_xO_3具有良好的钙钛矿型晶体结构,晶粒大小为纳米级并自组装成片状结构。催化剂的比表面积为14.73~22.43 m~2/g,含有微孔和介孔结构。催化活性评价结果表明:La_(0.8)Ce_(0.2)Fe_(0.1)Co_(0.9)O_3具有很好的三效催化活性,在理论空燃比的条件下,CO、C_3H_6和NO的起燃温度分别为195℃、264℃和290℃,完全转化温度分别为239℃、418℃和415℃,低温三效催化活性良好;Fe和Co的掺杂量同时影响着La_(0.8)Ce_(0.2)Fe_(1-x)Co_xO_3的催化效果。  相似文献   

7.
为分离回收废锂电池中的铝,在含铁及含铁锰的两种碱浸液中构建了金属(Me)-OH--CO32-,Me-OH--NH3,Me-OH--NH3-CO32-三种配合-沉淀体系,分析了三种体系在不同pH条件下的铝去除率和Al(OH)3沉淀中的铁及铁锰含量。实验结果表明:含铁碱浸液在pH为8.0~10.0的适宜条件下,Me-OH--CO32-、Me-OH--NH3和Me-OH--NH3-CO32-体系的铝去除率分别高达99.4%、99.7%和99.6%,Al(OH)3沉淀中含少量铁,Me-OH--NH3-CO32-体系生成的Al(OH)3沉淀比Me-OH--NH3 体系的Al(OH)3沉淀更易分离;含铁锰碱浸液Me-OH--CO32-、Me-OH--NH3和Me-OH--NH3-CO32-体系的铝去除率分别高达99.4%,99.7%和99.9%,Al(OH)3沉淀中几乎不含锰,含有少量铁。  相似文献   

8.
以Co_(0.5)Zn_(0.5)Fe_2O_4为磁基体,制备了Co_(0.5)Zn_(0.5)Fe_2O_4/Bi_2WO_6复合磁性光催化剂。分别采用XRD、SEM、EDS和PL光谱技术对光催化剂进行了表征。利用氙灯为光源,以环丙沙星为目标污染物,考察了光催化剂对环丙沙星的降解性能。表征结果显示:复合磁性光催化剂中Bi_2WO_6晶相含量高,且结晶度大;Co_(0.5)Zn_(0.5)Fe_2O_4与Bi_2WO_6的质量比为1∶8时,Co_(0.5)Zn_(0.5)Fe_2O_4磁基体与Bi_2WO_6基本复合(该复合磁性光催化剂以Co_(0.5)Zn_(0.5)Fe_2O_4/Bi_2WO_6(Ⅱ)表示);Co_(0.5)Zn_(0.5)Fe_2O_4/Bi_2WO_6复合光催化剂光生空穴和电子复合几率低,具有较好的光催化性能。实验结果表明,Co_(0.5)Zn_(0.5)Fe_2O_4/Bi_2WO_6(Ⅱ)具有较高的光催化活性,光催化反应140 min后对环丙沙星的降解率达82.39%,且具有良好的磁性能,易实现固液分离,便于回收再利用。  相似文献   

9.
以溶剂热法制备Fe_3O_4磁性粒子,通过改良的St?ber法在其上包覆Si O_2,并用3-氨丙基三乙氧基硅烷对表面进行氨基修饰,制得Si O_2-NH_2/Fe_3O_4磁性复合材料,并将其用于制药废水二级出水的吸附处理(吸附剂投加量1 g/L、吸附时间120 min)。表征结果显示:Si O_2-NH_2/Fe_3O_4为粒径(510.0±3.6)nm的球形粒子。实验结果表明:在废水p H为5时,Si O_2-NH_2/Fe_3O_4对TOC、蛋白质、腐殖酸的吸附效果最佳,三者的去除率分别达44.14%,35.58%,33.07%,与Fe_3O_4相比分别提高了25.27,21.76,21.05百分点;废水p H为6时,Si O_2-NH_2/Fe_3O_4对多糖和色度的去除效果最佳,二者的去除率分别达26.03%和62.94%,与Fe_3O_4的最高去除率(p H=5时)相比分别提高了17.84百分点和22.45百分点;Si O_2-NH_2/Fe_3O_4重复使用4次,TOC和色度去除率均达初次使用时的87%以上。  相似文献   

10.
O3-H2O2氧化法处理印染废水   总被引:2,自引:0,他引:2       下载免费PDF全文
彭人勇  邱晓 《化工环保》2013,33(4):308-311
采用O3-H2O2氧化法对印染废水进行氧化处理,比较了O3氧化法和O3-H2O2氧化法对印染废水的处理效果,考察了初始废水pH、H2O2加入量、O3流量和反应时间对废水的色度去除率和COD去除率的影响。实验结果表明:O3-H2O2氧化法对废水的COD和色度的去除效果比O3氧化法更好;在初始废水pH为11、H2O2加入量为13mmol/L、O3流量为6g/h、反应时间为60min的最佳工艺条件下,处理后废水COD为61.50mg/L,COD去除率为95.73%,废水色度为5倍,色度去除率为99.75%,TOC为37.84mg/L,TOC去除率为85.10%,BOD5为22.76mg/L,BOD5去除率为90.20%,BOD5/COD为0.37。  相似文献   

11.
龚政  崔宇晗 《化工环保》2019,39(3):289-295
采用共沉淀法合成了三元类水滑石Mg_3Mn_xAl_(1-x)CO_3,通过高温煅烧得到其衍生氧化物Mg_3Mn_xAl_(1-x)O_m,再经浸渍负载Pt或BaO后制得新型NO_x存储/再还原(NSR)催化剂。XRD及SEM表征结果显示,当Mn与Al的摩尔比(Mn/Al)大于1时所制备的Mg_3Mn_xAl_(1-x)O_m有杂晶相出现且发生团聚,结合NO_x存储性能评价结果,确定最优Mn/Al为1。BaO负载不利于NO_x的存储,而当Pt负载量为1%(w)时NO_x存储性能最优,250℃条件下的存储量由负载前的0.52 mmol/g提升至0.61 mmol/g。CO_2与NO_x之间存在较强的竞争吸附。负载1%Pt催化剂的NSR性能评价结果表明,8个稀燃-富燃循环后NO_x的去除率为68%,表明催化剂的还原性能仍需加强。  相似文献   

12.
采用模板法在CuO外包裹一层具有介孔结构的SiO_2,制备了CuO/AC@SiO_2。采用X射线衍射仪对CuO/AC@SiO_2的结构和催化活性位点进行了表征。通过固定床气固吸附实验,研究了CuO/AC@SiO_2对H_2S的吸附脱除性能。表征结果显示,CuO是催化氧化H_2S的活性中心,被氧化成Cu2O后吸附脱除H_2S的性能下降。实验结果表明:CuO/AC吸附H_2S时的有效穿透时间为117 min,CuO/AC@SiO_2的有效穿透时间提高到141 min,CuO/AC@SiO_2对H_2S的吸附性能明显提高;以Cu(NO_3)_2为前驱体的CuO/AC@SiO_2对H_2S的吸附量高于以Cu(AC)_2为前驱体;在Cu(NO_3)_2为前驱体、m(正硅酸乙酯)∶m(CuO/AC)=0.7、吸附温度为90℃的最佳条件下,CuO/AC@SiO_2对H_2S的吸附量达17.40 mg/g。  相似文献   

13.
采用有机物前驱法制备了3种尖晶石型铝酸盐催化剂(CoAl_2O_4,ZnAl_2O_4,CoAl_2O_4)。采用FTIR,XRD,UV-Vis DRS等技术对催化剂进行表征,并将催化剂应用于CO_2的光催化还原。表征结果显示:除CoAl_2O_4外,CoAl_2O_4和ZnAl_2O_4在煅烧时均直接形成尖晶石相;CoAl_2O_4,CoAl_2O_4,ZnAl_2O_4的平均粒径分别为25.21,21.35,23.26 nm,禁带宽度分别为1.77,1.45,3.82 eV。分别以煅烧温度为900℃、煅烧时间为4 h时制得的ZnAl_2O_4,CoAl_2O_4,CoAl_2O_4为催化剂,在催化剂加入量为1.5 g/L、CO_2流量为200 mL/min、反应温度为60℃的条件下光催化反应8 h,甲酸产生量分别为443.54,365.65,241.39μmol/g。  相似文献   

14.
采用水洗再生、N_2及N_2+NH_3气氛下的热再生以及微波辐射再生的方式对饱和ZnFe_2O_4/活性炭(AC)脱硫剂进行再生,并通过SEM,XRD,TG等技术进行表征。实验结果表明:水洗温度为90℃时,第一次水洗后ZnFe_2O_4/AC脱硫剂对SO_2的吸附容量(硫容)为122.0 mg/g;N_2氛围下热再生的最佳温度为500℃,ZnFe_2O_4/AC脱硫剂的硫容可达97.2 mg/g;N_2+NH_3氛围下热再生的最佳温度为400℃,ZnFe_2O_4/AC脱硫剂的硫容达到101.2 mg/g;当微波功率为100 W时,ZnFe_2O_4/AC脱硫剂的硫容为87.2 mg/g。对比三种再生方式,一次水洗再生具有更好的再生效果。  相似文献   

15.
针对电镀生产过程产生的难降解、高浓度的有机废水,采用Fe~(2+)活化过硫酸钠产生硫酸根自由基的高级氧化技术对其进行预处理。重点探讨了S_2O_8~(2-)投加量、n(Fe~(2+))∶n(S_2O_8~(2-))、废水pH等因素对有机物去除及废水可生化性的影响。实验结果表明,常温下,在S_2O_8~(2-)投加量为4.0 g/L、n(Fe~(2+))∶n(S_2O_8~(2-))为1.00、废水pH为7.0的条件下,废水的处理效果最佳,反应20 min后COD去除率可达70%,BOD_5/COD从原水的0.21升至0.40,废水的可生化性大幅提高,能够满足深度生化处理的要求。  相似文献   

16.
采用水热合成法将Mn O_2包覆于纳米Fe_3O_4的表面,制备出纳米Mn O_2/Fe_3O_4,并将其用于含镉溶液的吸附。考察了吸附效果的影响因素,并研究了纳米Mn O_2/Fe_3O_4的重复使用性能。实验结果表明:在初始镉离子质量浓度为10 mg/L、吸附剂投加量为4 g/L、吸附温度为20℃、溶液p H为6.0、吸附时间为12 h的条件下,镉离子去除率由使用纳米Fe_3O_4时的3%增至使用纳米Mn O_2/Fe_3O_4时的96%;在初始镉离子质量浓度为50 mg/L、纳米Mn O_2/Fe_3O_4投加量为4 g/L、吸附温度为20℃、溶液p H为6.0、吸附时间为1 h的条件下,镉离子去除率达78%,吸附量为9.7 mg/g;经5次重复使用后,纳米Mn O_2/Fe_3O_4对镉离子的去除率仅比首次使用时降低了10百分点,具有良好的重复使用性能。  相似文献   

17.
采用催化臭氧氧化深度处理某石化厂炼油废水,制备了活性炭复合材料负载催化剂(Fe_2O_3/ACNT),与几种常见负载催化剂进行了物性和COD去除效果的对比,并对Fe_2O_3/ACNT的催化效果和稳定性进行了详细分析。结果表明:催化剂的催化臭氧氧化活性由高到低的顺序为Fe_2O_3/ACNTFe_2O_3/活性炭Fe_2O_3/Al2O3Fe_2O_3/陶粒;Fe_2O_3/ACNT催化剂具有较高的比表面积、孔体积、强度和吸水率,使COD去除率由单独臭氧氧化时的约20%提高到66.8%。在催化剂填充量200 m L、废水pH 7.6、臭氧投加量200 mg/L、体积空速1 h~(-1)的条件下运行30d,COD去除率平均达65.1%,出水COD均值为40.8 mg/L,最高值为44.3 mg/L,满足外排水COD小于50 mg/L的指标。催化剂稳定性良好,运行30 d活性未见明显降低,具有在环保领域应用的前景。  相似文献   

18.
以Fe Cl_3·6H_2O和正硅酸四乙酯为原料,通过溶胶-凝胶法结合醇溶剂热法制备了Fe_3O_4@Si O_2复合气凝胶。采用XRD,FTIR,SEM,EDS等技术对Fe_3O_4@Si O_2的结构进行了表征。考察了Fe_3O_4@Si O_2对刚果红溶液的吸附性能。表征结果显示,Fe_3O_4@Si O_2复合气凝胶是由直径为10~20 nm的近球形颗粒组装而成的具有三维网络结构的纳米材料,比表面积为457.93 m~2/g,平均孔径为10.7 nm。在溶液p H为5、吸附时间为35 min的最佳工艺条件下,采用Fe_3O_4@Si O_2吸附处理质量浓度为10 mg/L的刚果红溶液,刚果红去除率为99.39%,此时溶液中刚果红的质量浓度仅为0.052 mg/L。Fe_3O_4@Si O_2复合气凝胶吸附刚果红后具有较好的解吸和再生能力。  相似文献   

19.
孙亚月  佘铜 《化工环保》2014,34(6):590-594
以钠基蒙脱土(MMT)为载体,先采用溶胶-凝胶法将纳米TiO2引入到MMT层间,再采用化学沉积法将纳米Cu2O负载在TiO2/MMT上,制备出TiO2-Cu2O/MMT纳米复合光催化剂。采用XRD、SEM、紫外-可见漫反射技术对催化剂进行了表征。以甲基橙为目标污染物,考察了催化剂的光催化性能。表征结果显示:TiO2与Cu2O均匀分布在MMT的表面与片层孔隙中;TiO2-Cu2O/MMT结合了TiO2和Cu2O的特性,拓宽了催化剂的光吸收范围。实验结果表明,在光源为可见光、初始甲基橙质量浓度为20 mg/L、光催化剂加入量为2 g/L的条件下,TiO2-Cu2O/MMT纳米复合光催化剂对甲基橙的光催化降解效果明显优于单一负载的Cu2O/MMT和TiO2/MMT,大幅提高了催化剂的光催化效率,反应300 min时TiO2-Cu2O/MMT对甲基橙溶液的脱色率达到93%。  相似文献   

20.
在离子液体1-丁基-3-甲基咪唑四氟化硼([C4MIM]BF4)的辅助下,采用溶胶-凝胶法制备了Nd掺杂Ti O2光催化剂(Nd-Ti O2(IL))。实验结果表明:在加入[C4MIM]BF4、n(Nd)∶n(Ti O2)=2.5%的条件下制得的Nd-Ti O2(IL)(记作2.5%Nd-Ti O2(IL))的光催化性能最好;在初始亚甲基蓝质量浓度10 mg/L、2.5%Nd-Ti O2(IL)加入量1 g/L的条件下,光催化反应180 min,亚甲基蓝降解率为84%,2.5%Nd-Ti O2(IL)光催化降解亚甲基蓝的表观速率常数为0.010 9 min-1。表征结果显示:Nd的掺杂抑制了Ti O2晶粒长大,增大了Ti O2的比表面积,2.5%Nd-Ti O2(IL)的比表面积为80.77 m2/g;[C4MIM]BF4的加入提高了Ti O2的晶化度;Nd以Nd3+的形式,通过晶格取代方式进入Ti O2晶格。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号