首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This work reports on an analysis of the cyto- and genotoxicity of poly(lactide-co-glycolide) polymer nanoparticles, in an attempt to evaluate their mutagenic effects. Fibroblast (3T3) and human lymphocyte cell cultures were exposed to solutions containing three different concentrations of nanoparticles (5.4, 54 and 540 μg/mL, polymer mass/volume of solution). The nanoparticles were characterized in terms of their hydrodynamic diameters, zeta potentials and polydispersity indices. The morphology of the particles was determined by atomic force microscopy. The PLGA nanospheres presented a size of 95 nm, a zeta potential of −20 mV and a spherical morphology. Cellular viability assays using fibroblast cells showed no significant alterations compared with the negative control. A cytogenetic analysis of human lymphocyte cells showed no significant changes in the mitotic index in relation to the control, indicating that in the concentration range tested, the particles used in the experimental models did not present cyto- or genotoxicity. For the tests conducted in this work we can conclude that biodegradable and biocompatible PLGA nanospheres are not toxic in the cell cultures tested (fibroblast and lymphocyte cells) and in the range of concentrations employed. The results provide new information concerning the toxic effects of particles produced using PLGA.  相似文献   

2.

In this research work, a novel gum acacia capped polyaniline-based nanocomposite hydrogel (GPA NCHs) was developed and evaluated for the adsorptive removal of cationic methylene blue dye (MB) from aqueous solutions. Firstly, Gum acacia (GA) capped Polyaniline (PANI) dispersion was synthesized by using dispersion polymerization. Then, a water-swellable hydrogel network consisting of GA-PANI and acrylamide (AM) was obtained by using N,N′ -methylene-bisacrylamide (MBA) as a cross-linker, and ammonium persulphate/N,N,N,N′-tetramethylethylenediamine (APS/TMEDA) as an initiating system. The developed materials were characterized by UV–visible, FTIR, XRD, SEM–EDX and TEM techniques. The microscopy studies revealed that GA-PANI nanoparticles have a granular morphological surface with an average size of?~?40–100 nm. Removal of MB dye from aqueous system was performed by adsorption studies in batch equilibrium mode with different dosage of GA-PANI, MB concentration, pH and temperatures. The adsorption data revealed that the absorption capacity of GPA NCHs highly depends on the dosage of GA-PANI, pH and concentration of the MB dye. The maximum percentage of MB removal onto GPA 1.0 NCHs was found to be 89% at pH 10 with a dye concentration of 10 mg L?1. The equilibrium adsorption data were also analyzed by different models to understand the adsorption process. The results revealed that the adsorption process followed the pseudo-second-order kinetics and it fit well in Langmuir and Freundlich adsorption isotherms with a maximum adsorption capacity of 35.41 mg g?1. These studies demonstrate that the GPA NCHs could be a promising adsorbent material for the removal of MB dye from contaminated aqueous systems.

  相似文献   

3.

This survey was performed to aim of synthesize Nano emulsion from Ferula gummosa essential oil (FEGO-NE) and to evaluate its anti-tumor effect. First, Ferula gummosa essential oil was analyzed by GC–MS method, and then the Nano emulsion was synthesized as O/W and after characterization by DLS, Zeta potential, AFM, FESEM and TEM methods, its toxicity was evaluated by MTT method. Then its pro-apoptotic effects were evaluated by qPCR (Caspase3, 9, Bax and Bcl-2) method and AO/PI staining. The cancer induction model was used to evaluate the antitumor effects in Balb/C mice. The anti-angiogenic and antioxidant effects were evaluated by qPCR (VEGF, CAT and SOD) method. The results of physicochemical studies showed the formation of droplet with dimensions of 24.6 nm, dispersion index of 0.41 and zeta potential of ? 28.5 mV with a spherical morphology. The Nano emulsion synthesized at a concentration of 2.9 μg/mL inhibited about 50% of ht-29 cells, while up to a concentration of 4 μg/mL showed no inhibitory effect on normal cells. Increase of caspase 3, 9 and Bax and decrease of BCL-2 gene expression along with increase of apoptotic cells in AP/PI staining confirmed induction of apoptosis by FEGO-NE. The FEGO-NE showed an inhibitory effect on angiogenesis and an additive effect on the expression of antioxidant genes. In addition, the reduction of tumor volume (69.72% in 14 days) in samples treated with FEGO-NE was confirmed. The results of this study showed that FEGO-NE by various mechanisms are able to inhibit cancer cells and have a reducing effect on induced tumors in the in vivo model. These results suggest FEGO-NEs as a suitable candidate for cancer therapy studies.

  相似文献   

4.

Pollution and destruction of the environment due to the accumulation of non-degradable plastics are some of the most important concerns in the world. A significant amount of this waste is related to the polymers used in food packaging. Therefore, experts in the food industry have been looking for suitable biodegradable alternatives to synthetic polymers. Preparing biocompatible and biodegradable films based on starch is a good choice. In this study, various factors affecting films of starch/polyvinyl alcohol (PVA)/containing ZnO nanoparticles such as the amount of starch, PVA, glycerol, and ZnO were evaluated by response surface methodology (RSM). Film formation by solvent casting method, mechanical properties, swelling, solubility, and water vapor permeability (WVP) were selected as responses of RSM. The results showed that hydrogen bonding interactions between polyvinyl alcohol and starch improved the film formation. The effect of glycerol and PVA content on the mechanical strength was contrary to each other. As the amount of PVA increased, the tensile strength first decreased and then increased. The value of WVP was for all Runs from 0 to 6.77?×?10??8 g m??1 s??1 Pa??1. Finally, films with high film formation, maximum tensile strength, and high elongation at break, minimum solubility, permeability, and swelling were optimized.

  相似文献   

5.

Membranes and filters made of nanofibers can have many medicines and water treatment applications. The use of silver nanoparticles (AgNPs) with antibacterial activity in these structures improve their efficiency. However, due to the toxicity of the compounds used in the chemical synthesis of AgNPs, in this study, AgNPs were obtained through a biological process using Fusarium sporotrichioides. AgNPs preparation conditions were optimized, including F. sporotrichioides medium and AgNO3 concentration. Next, a PVA nanofiber membrane with bentonite and AgNPs (Bio-AgNPs or Chem-AgNPs) was prepared using electrospinning. The optimal conditions for the production of Bio-AgNPs were the culture of F. sporotrichioides in the MGYP culture medium and 12 M of AgNO3. The Bio-AgNPs particle size and zeta potential were 58 nm and ??16.8 mV, respectively, with antibacterial activity. The PVA/NB/AgNPs nanofibers operation conditions included 7.5% w/w PVA, 3% w/w bentonite, and AgNPs 5% w/w at a voltage of 11 kV, feed rate of 0.5 mL/h, and 15 cm distance between the needle and the collector. The average diameter of the PVA/NB/Bio-AgNPs nanofibers was 230 nm. Also, the presence of silver in the nanofibers was confirmed through EDX and XRD methods. The antibacterial assay of the nanofibers showed that the inhibition zone of PVA/NB/Bio-AgNPs against E. coli and S. aureus was 0.62 and 0.36 mm, which is better than PVA/NB/Chem-AgNPs and comparable with chloramphenicol. The produced membrane is suitable for water treatment, food packaging, and wound dressing because of its good thermal, mechanical, and antibacterial properties.

  相似文献   

6.
Simple mixing and hot pressing methods were used to make composites from home waste—in particular, paper and dry leaves—using polyvinyl acetate (PVAc) as an adhesive and silica nanoparticles as filler. The optimum composition for the strongest composites, in terms of compressive strength, had a mass ratio of silica nanoparticles/PVAc/(paper + dry leaves) of 3:80:280. With this mass ratio, a compressive strength of 68.50 MPa was obtained for samples prepared at a pressing temperature of 150°C, pressing pressure of 100 MPa, and pressing time of 20 min. The addition of silica nanoparticles increased the compressive strength by about 50%, compared with composites made without the addition of nanosilica (45.60 MPa). Higher compressive strength was obtained at a higher pressing pressure. At a pressing pressure of 120 MPa, pressing temperature of 150°C, and pressing time of 20 min, a compressive strength of 69.10 MPa was obtained. When the pressing time was increased to 45 min at a pressing pressure of 120 MPa, a compressive strength of 84.37 MPa was measured. A model was also proposed to explain the effects of pressing pressure and pressing time on compressive strength. The model predictions were in good agreement with the experimental data.  相似文献   

7.

In this study, it was aimed to investigate the synthesis, characterization and drug release behaviors of organo-hydrogels containing pH-sensitive Agar (A), Glycerol (G), Sweet Almond oil (Wu et al. in J Mol Struct 882:107–115, 2008). Organo-hydrogels, which contained Agar, Glycerol and different amounts of Sweet Almond oil, were synthesized via the free-radical polymerization reaction with emulsion technique using glutaraldehyde or methylene bis acrylamide crosslinkers. Then, the degree of swelling, bond structures, blood compatibility and antioxidant properties of the synthesized organo-hydrogels were examined. In addition, Organo-hydrogels which loaded with Ceftriaxone and Oxaliplatin were synthesized with the same polymerization reaction and release kinetics were investigated. In vitro release studies were performed at media similar pH to gastric fluid (pH 2.0), skin surface (pH 5.5), blood fluid (pH 7.4) and intestinal fluid (pH 8.0), at 37 °C. The effects on release of crosslinker type and sweet almond oil amount were investigated. Kinetic parameters were determined using release results and these results were applied to zero and first-order equations and Korsmeyer-Peppas and Higuchi equations. Diffusion exponential was calculated for drug diffusion of organo-hydrogels and values consistent with release results were found.

  相似文献   

8.

In this study, poly-lactic acid (PLA) and poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBH) were pyrolyzed at various temperatures (300, 350, 400, 500, 600, and 700 °C) and heating rates (5, 10, 20, 30, and 40 °C min−1) using a pyrolysis–gas chromatograph/mass spectrometer (Py–GC/MS). The results revealed that the main pyrolysis products of PLA were acetaldehyde, lactide (including meso-lactide and d-, l-lactide), and oligomers. Crotonic acid and its oligomers accounted for most of the PHBH pyrolyzates. The pyrolysis temperature significantly correlated with the product distribution, but the heating rate had a small effect on the product distribution. Lactide and crotonic acid were two kinds of high-value chemicals, and their highest yields were obtained at 400 and 600 °C with 29.7 and 72.6 area %, respectively. Secondary reactions could not be neglected at 700 °C, and acetaldehyde and crotonic acid decreased to 65.0 and 69.6 area %, respectively. These results imply that pyrolyzate selectivity can be controlled by temperature management during pyrolysis.

  相似文献   

9.
The environmental fate of many of the additives in the deicing agents used at airports is poorly understood. One and two years after deicing activities ceased, soil and groundwater samples were taken at an abandoned airport. Benzotriazole (BT), a corrosion and flame inhibitor, was found in low concentrations in soils along runways (mean 0.33 mg/kg), at a snow disposal site (0.66 mg/kg), as well as in sediments of a drainage ditch (13 mg/kg). Locally, high BT concentrations were found in the groundwater below the deicing pad, the regeneration plant and the snow disposal site (1.2 to 1100 g/l). Methyl substituted triazoles or tolytriazoles (MeBT) were found in concentrations less than 10% of the BT concentration. Propylene glycol was not detected in soil samples and in only one of the groundwater samples. Microtox tests of the water samples revealed no acute toxic response, however a reduction in nitrification rate was observed (14–43%). The nitrification response could not be related directly to the BT concentration in the samples, although samples with a high BT concentration showed the largest reduction in nitrification rate. BT showed very little sorption in various soil matrices, only peat and compost with a high organic carbon content showed significant sorption. Sorption could be best described using a Freundlich isotherm. These results indicate a high mobility and possibly long persistence of BT in soil and groundwater, which may be attributed to the absence of microbial degradation of BT.  相似文献   

10.

Incineration is one of the key technologies in disposal of municipal waste, which produces municipal solid waste incineration (MSWI) residues with high valuable metal contents. The recycling strategy for the MSWI residues is typically focused on the recovery of scrap metals yielding processed municipal solid waste incineration residues (PIR) as the main byproduct. However, the PIR still contains valuable metals, particularly gold, which cannot be extracted by conventional methods. Here, we evaluated the feasibility of using the 0.5–2.0 mm grain size fraction of PIR containing 28.82 ± 1.62 mg/kg of gold as raw material for a two-stage extraction process. In the first stage the alkalic fine-grained PIR was acidified with a solution of 20% (v/v) of HCl-containing flue gas cleaning liquid that is obtained by the municipal waste incineration plant itself as a waste product. In the second stage we leached the acidified fine-grained PIR by thiourea with Fe3+ as an oxidant. Application of the thiourea-Fe3+ leaching system resulted in recovery of 16.4 ± 1.56 mg/kg of gold from the fine-grained PIR within 6 h of incubation. Due to high gold market prices, upscaling of the suggested technology can represent a suitable strategy for gold recovery from PIR and other MSWI residues.

  相似文献   

11.
12.

The aggregate composed of cement clinker, an intermediate cement product, improves strength development and mass transfer resistance of concrete. Fly ash (FA) is a supplementary cementitious material that can be substituted by cement. This study investigated the strength development of highly FA-substituted mortar mixed with cement clinker fine aggregate (CL) and tested its inhibitory effect against the alkali–silica reaction (ASR). In addition to these, this study provides the testing results of evaluating the effects of using cement clinker fine aggregate on delayed ettringite formation (DEF), which can be problematic for precast concrete products. The study results revealed that at 91 days of age, in the case of 80% replacement ratio of fly ash to cement, using CL exhibited similar strength development as mortar with limestone fine aggregate and no FA substitution. Furthermore, mortars with 70% and 80% FA substitution did not exhibit clear ASR-induced expansion even at 182 days of age. Lastly, mortar using clinker fine aggregate could suppress DEF-induced expansion at 182 days of age, which was similar to the effect obtained using FA. These results can promote the utilization of CL resources for concrete and using clinker as fine aggregate in precast concrete products.

  相似文献   

13.

The leaching of rare earth elements (REEs) from Egyptian Abu Tartur phosphate rock using phosphoric acid has been examined and was subsequently optimized to better understand if such an approach could be industrially feasible. Preliminary experiments were performed to properly define the design of experiments. Afterward, 24 full factorial design was implemented to optimize the leaching process. Optimum REEs leaching efficiency (96.7 ± 0.9%) was reached with the following conditions: phosphoric acid concentration of 30 wt.-% P2O5, liquid/solid ratio, mL/g, of 5:1, at 20 °C, and 120 min of leaching time. The apparent activation energy of the dissolution of REEs from phosphate rock using the phosphoric acid solution was -19.6 kJ/mol. D2EHPA was subsequently applied as an organic solvent for REEs separation from the acquired leach liquor. REEs stripping and precipitation were conducted, and finally, rare earth oxides with a purity of 88.4% were obtained. The leach liquor was further treated with concentrated sulfuric acid to recover the used phosphoric acid and produce gypsum with a purity of >95% at the same time. A flow diagram for this innovative cleaner production process was developed, and larger-scale experiments are proposed to further understand this promising approach to comprehensive phosphate rock processing.

  相似文献   

14.

To date, heavyweight concretes have been produced from various heavy aggregates as radiation insulation materials, and their gamma ray absorption levels have been investigated. Many of the studies have used heavy aggregates instead of cement or coarse aggregates from composite material components. The present study prepared lightweight concretes using copper mine tailings, clay brick dust, and fly ash instead of fine aggregates. Some mechanical tests (density, compressive strength, and ultrasonic pulse velocity) were performed on composite blocks with dimensions of 5*5*5 cm, and radiation interaction parameters [linear absorption coefficient (cm−1), mass attenuation coefficient (cm2/gr), HVL (half-value layer) (cm), MFP (cm), and permeability (%)] were measured. Radiation interaction parameters were obtained using a HPGe gamma detector. Radiation measurements were performed at five different photon energies: 583 keV (133Ba), 609 keV (133Ba), 662 keV (137Cs), 911 keV (133Ba), 1173 keV (60Co), and 1332 keV (60Co). Additionally, the compressive strength and UPV values of composite materials were associated with their gamma ray permeability. Tests revealed that samples with the addition of copper mine tailings yielded the best energy absorption at all energy levels and that absorption decreased as the energy level increased. For example, with the increasing of the energy level, mass attenuation coefficients decreased. The highest mass attenuation coefficients were obtained as 0.128 cm2/g at an energy level of 583 keV in composites produced from copper mine tailings. On the other hand, it was measured at the same energy level as 0.069 cm2/g (a 46% decrease) in the composites produced with fly ash. In addition, it was observed that fly ash used as a fine aggregate did not have a significant effect on mass attenuation coefficient and could be used as a gamma shield if the material thickness was increased to an average of 14 cm. This study revealed that tailings materials could be used as radiation shields. This study also demonstrated that not using heavy aggregates and producing lightweight concrete in radiation shield production significantly reduced shield production cost.

  相似文献   

15.

Producing high-quality graphene sheets from plastic waste is regarded as a significant economic and environmental challenge. In the present study, unsupported Fe, Co, and Fe–Co oxide catalysts were prepared by the combustion method and examined for the production of graphene via a dual-stage process using polypropylene (PP) waste as a source of carbon. The prepared catalysts and the as-produced graphene sheets were fully characterized by several techniques, including XRD, H2-TPR, FT-IR, FESEM, TEM, and Raman spectroscopy. XRD, TPR, and FT-IR analyses revealed the formation of high purity and crystallinity of Fe2O3 and Co3O4 nanoparticles as well as cobalt ferrite (CoFe2O4) species after calcining Fe, Co, and Fe–Co catalysts, respectively. The Fe–Co catalyst was completely changed into Fe–Co alloy after pre-reduction at 800 °C for 1 h. TEM and XRD results revealed the formation of multi-layered graphene sheets on the surface of all catalysts. Raman spectra of the as-deposited carbon showed the appearance of D, G, and 2D bands at 1350, 1580, and 2700 cm−1, respectively, confirming the formation of graphene sheets. Fe, Co, and Fe–Co catalysts produced quasi-identical graphene yields of 2.8, 3.04, and 2.17 gC/gcat, respectively. The graphene yield in terms of mass PP was found to be 9.3, 10.1, and 7.2 gC/100gPP with the same order of catalysts. Monometallic Fe and Co catalysts produced a mix of small and large-area graphene nanosheets, whereas the bimetallic Fe–Co catalyst yielded exclusively large-area graphene sheets with remarkable quality. The higher stability of Fe–Co alloy and its carbide phase during the growth reaction compared to the Fe and Co catalysts was the primary reason for the generation of extra-large graphene sheets with relatively low yield. In contrast, the segregation of some metallic Fe or Co particles through the growth time was responsible for the growth small-area graphene sheets.

  相似文献   

16.
17.
The methods of synthesizing carbon nanotube (CNTs)-Cu/ZnO nanocomposites using a Cu hyperaccumulator (Brassica juncea L.) constitute a new insight into the recycling of hyperaccumulators and provide a new route for the further development of green nanostructure syntheses. In this paper, CNTs-Cu/ZnO nanocomposites have been synthesized using B. juncea plants as the sources of C, Cu, and Zn. The synthesized CNTs-Cu/ZnO nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectra (EDS). The synthesized CNTs were characterized further by selected area diffraction (SAD) patterns and Raman spectroscopy. The results demonstrated that the structure of individual CNTs was middle-hollow, with an outer diameter of about 80 nm. The synthesized CNTs were not at all crystalline and there were a few defects in the walls. The outer diameter of CNTs-Cu/ZnO nanocomposites was 110 nm. The diameters of Cu/ZnO nanoparticles were 29.5/32.7 nm, respectively. Cu/ZnO nanoparticles that had grown onto the CNT surface were nonuniform and agglomerated. The Cu/ZnO nanoparticles were pure.  相似文献   

18.

Recovering fluorine from end-of-life products is crucial for the sustainable production and consumption of fluorine-containing compounds because fluorspar, an important natural resource for fluorine, is currently at a supply risk. In this study, we investigated the feasibility of chemically recycling a fluorine-containing photovoltaic (PV) backsheet for fluoropolymer recycling. Herein, a PV backsheet consisting of laminated polyethylene terephthalate (PET) and polyvinylidene fluoride (PVDF) was treated with different concentrations of sodium hydroxide (NaOH) to hydrolyze the PET layer to water-soluble sodium terephthalate (Na2TP) and to separate pure PVDF layer as a solid material. Optimized alkaline conditions (up to 10 M NaOH at 100 °C for 2 h) were determined, under which 87% of the PET layer could be decomposed without any significant deterioration of the PVDF layer. The hydrolysis kinetics of PET layer in NaOH could be explained by the modified shrinking-core model. Considering that the mass of end-of-life PV panels in Japan is estimated to increase to approximately 280,000 tons per year by 2036, PV backsheets are attractive candidates for fluoropolymer recycling, which can be effectively achieved using chemical recycling approach demonstrated in this study.

  相似文献   

19.

Membrane separation has been widely used for various applications including microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF) processes in the fields of biomedicine, food, and water purification. In this work, a facile synthesis of new polyamide thin-film composite nanofiltration membranes (NF-TFC) for water purification was described. The polyamide thin film was deposed over a synthetic cellulose acetate (CA) support by interfacial polymerization method. 1,3 cyclohexane bis (methylamine) (CHMA) and trimesoyl chloride (TMC) were used as monomers. The membranes were characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared spectroscopy (FT-IR), water uptake, porosity, contact angle, water permeability and rejection towards specific salt and dye molecules. The effect of the variation of the CHMA concentration (0.2–2 wt.%) on the morphology, porosity, water permeation and rejection properties of the prepared membranes was studied. SEM results displayed the growth of the membrane thickness when the CHMA concentration increased from 0.2 to 2 wt.%. The strong adhesion between the cellulose acetate substrate and the polyamide layer explained by the formation of the polyamide film in the substrate surface and inside the pores. The water permeability varied from 36.02 to 17.09 L h?1 m?2 bar?1. The salt rejection of Na2SO4 and NaCl increased from 9 to 68% and from 38.41% to 89.4%, respectively, when the CHMA concentration was changed from 0.2 to 2 wt.%. The prepared membranes were further applied successfully for the removal of malachite green and congo red. The results indicated that the maximum rejection reached 89% and 85% for malachite green and congo red, respectively.

  相似文献   

20.

This work investigated the elimination of Methyl Orange (MO) using a new adsorbent prepared from Activated Carbon (AC) with polyaniline reinforced by a simple oxidation chemical method. The prepared materials were characterized using XRD, TGA, FTIR and nitrogen adsorption isotherms. Furthermore, PANI@CA highest specific surface area values (near 332 m2 g?1) and total mesoporous volume (near 0.038 cm3 g?1) displayed the better MO removal capacity (192.52 mg g?1 at 298 K and pH 6.0), which is outstandingly higher than that of PANI (46.82 mg g?1). Besides, the process’s adsorption, kinetics, and isothermal analysis were examined using various variables such as pH, MO concentration and contact time. To pretend the adsorption kinetics, various kinetics models, the pseudo first- and pseudo second- orders, were exercised to the experimental results. The kinetic analysis revealed that the pseudo second order rate law performed better than the pseudo first order rate law in promoting the formation of the chemisorption phase. In the case of isothermal studies, an analysis of measured correlation coefficient (R2) values showed that the Langmuir model was a better match to experimental results than the Freundlich model. By regeneration experiments after five cycles, acceptable results were observed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号