首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper cellulose nanocrystals were prepared by treating microcrystalline cellulose with 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid. Cellulose nanocrystals, after separation from ionic liquid, were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscopy (FESEM) Transmission Electron Microscope (TEM) and Thermogravimetric analysis. XRD results showed no changes in type of cellulose after the treatment with ionic liquid, however, high crystallinity index was observed in the ionic liquid treated sample. Cellulose nanocrystals, having length around 50–300 nm and diameter around 14–22 nm were observed in the ionic liquid treated sample under FESEM and TEM, and similar patterns of peaks as that of microcrystalline cellulose were observed for cellulose nanocrystals in the FTIR spectra. The thermal stability of the cellulose nanocrystals was measured low as compare to microcrystalline cellulose.  相似文献   

3.
This paper reports the preparation of galactomannan/ionic liquid composite materials from the corresponding ion gels. Three kinds of galactomannans, that is, fenugreek gum (FG), guar gum (GG), and locust bean gum (LBG) and an ionic liquid of 1-butyl-3-methylimidazolium chloride (BMIMCl) were used. When the galactomannan/BMIMCl gels were immersed in ethanol, followed by dryness under reduced pressure, the galactomannan/BMIMCl composite materials were obtained. The crystalline structures of galactomannans in the materials were evaluated by the powder X-ray diffraction measurement. The mechanical property of the FG/BMIMCl composite material under compressive mode was superior compared with the GG and LBG/BMIMCl composite materials. Then, FG films compatibilized with polymeric ionic liquids (PILs) were also prepared by in situ radical polymerization of polymerizable ionic liquids, 1-(3-acryloyloxypropyl)-3-vinylimidazolium bromide and 1-methyl-3-vinylbenzylimidazolium chloride by AIBN in mixtures of FG with BMIMCl. The mechanical properties of the resulting films were affected by the FG/PIL ratios as well as the unit ratios in PILs.  相似文献   

4.
综述了近年来离子液体吸收转化CO_2的研究进展。介绍了咪唑类离子液体物理法吸收CO_2的机理和研究成果以及季铵类、磺酸类和含氨基功能化离子液体化学法吸收CO_2的机理和研究进展。通过利用离子液体的无蒸汽压、优良的溶解和催化性能、绿色无污染等特性,结合对离子液体的功能化设计,使其在吸收转化CO_2方面的应用越来越广泛。  相似文献   

5.
利用离子液体1-己基-3-甲基咪唑六氟磷酸盐萃取模拟废水中的醋酸丁酯。萃取液经减压蒸馏回收醋酸丁酯,离子液体也得到再生。实验结果表明:萃取率随废水与离子液体体积之比(相比)的增加而减小,随萃取时间的延长而增大,随萃取温度的升高而增大;在相比为6∶1、萃取时间为40min、萃取温度为50℃的条件下,萃取率达98.98%,醋酸丁酯纯度达99.8%;回收后离子液体可重复使用且萃取率基本不变。  相似文献   

6.
新型绿色溶剂--室温离子液体   总被引:5,自引:0,他引:5  
闫有旺 《化工环保》2004,24(6):429-432
室温离子液体是一种具有特殊性质的液体,具有较低的熔点、良好的导电性和可以忽略的蒸气压等优点,已被应用到诸多领域。作为一种高效绿色溶剂,室温离子液体在化学分离、催化、电化学等方面发挥着重要的作用。对离子液体的种类、性质、制备方法及其在绿色化学中的应用进行了介绍。  相似文献   

7.
In this study, we performed the facile preparation of chitin/cellulose composite films using two ionic liquids, 1-allyl-3-methylimidazolium bromide (AMIMBr) and 1-butyl-3-methylimidazolium chloride (BMIMCl); the former dissolves chitin and the latter dissolves cellulose. First, solutions of chitin in AMIMBr and cellulose in BMIMCl were individually prepared by heating each mixture at 100 °C for 24 h. Then, the homogeneous mixture of the two solutions was thinly casted on a glass plate, followed by standing at room temperature for 2 h. After the material was subjected to successive Soxhlet extractions with ethanol for 12 h and with water for 12 h, the residue was dried at room temperature to give a composite film. The crystalline structures of the polysaccharides were evaluated by the X-ray diffraction measurement. Furthermore, the thermal stability and mechanical property of the resulting composite film were estimated by the thermal gravimetric analysis measurement and tensile testing, respectively.  相似文献   

8.

Nowadays, the importance of green and biodegradable plastics as viable substitutes for non-degradable petroleum-based materials is felt more than ever. Regenerated cellulose (RC) as a potential candidate suffers from poor processability and inferior properties, limiting its wide applications. In this study, it is demonstrated that citric acid (CA) enhances physical, mechanical, and thermal properties of RC films, due to RC-citric acid compatibility. 1-ethyl-3-methylimidazolium chloride (EMIMCl) as a green ionic liquid was employed for the processing of RC. The optimum properties in terms of thermal stability, mechanical strength, contact angle, water uptake, and oxygen permeability were achieved at 10 wt% of CA. However, further incorporation of CA adversely affected the film properties. This behaviour was explained by the crosslinking and plasticizing effects of CA. Furthermore, in vitro cytotoxicity test demonstrated that RC/CA films are cytocompatible, suggesting the potential advantage of using these biopolymeric films for biomaterial and biological applications.

  相似文献   

9.
This paper reports the preparation of chitin/cellulose films compatibilized with polymeric ionic liquids. In-situ (co)polymerization of polymerizable ionic liquids, 1-(3-methacryloyloxypropyl)-3-vinylimidazolium bromide (1) and 1-methyl-3-vinylbenzylimidazolium chloride (3), was carried out in the presence of a radical initiator, AIBN, in the chitin/cellulose solution with ionic liquid solvents (1-butyl-3-methylimidazolium acetate and chloride, BMIMOAc and BMIMCl, respectively), followed by the appropriate procedure to give the desired films. The presence of the polymeric ionic liquid in the film was confirmed by the IR measurement. The powder X-ray diffraction analysis suggested that crystalline structures of the polysaccharides were largely disrupted in the film, as same as that of a chitin/cellulose film prepared by the AMIMOAc/BMIMCl system. These results were different from the XRD result of a chitin/cellulose film prepared by the 1-allyl-3-methylimidazolium bromide/BMIMCl system reported in our previous study, in which some crystalline structures were still remained in the film. Furthermore, the mechanical properties of the present films were evaluated by tensile testing, which were affected by the molar ratios of the polymeric ionic liquids to the polysaccharides and the compositional ratios of the two units 1 and 3.  相似文献   

10.
采用嫁接法制备了硅胶固载季鏻双三氟甲烷磺酰亚胺盐离子液体,并将其用于对CO2的吸附,考察了吸附剂的吸附等温线及循环使用性,并运用均相表面扩散模型(HSDM)研究了吸附动力学。采用FTIR和TG等技术对试样进行了表征。表征结果显示:离子液体已成功固载到硅胶上;煅烧活化硅胶对季鏻离子液体(C-Si O2-P4T)的固载量为5.39%(w);固载试样基本保持了硅胶的孔道特征。实验结果表明:C-Si O2-P4T具有较高的CO2平衡吸附量,且能显著提高CO2/N2吸附选择性,循环使用6次仍保持良好的吸附能力;HSDM可较好地拟合CO2在C-Si O2-P4T内的扩散行为,40℃下的扩散系数在10-7 m2/s数量级,与硅胶同级,优于纯季鏻离子液体。  相似文献   

11.
Chitosan oligomers because of its water solubility has some special physiological functions, such as binding lipid, affecting the mitogenic response, restraining the growth of tumors, and was widely used in cosmetics and health. H2O2/Gly (Glycine) series ionic liquids system, a new solvable-catalytic system, was an efficient clean process for preparation of chitosan oligomers. The effects of the anions of Gly series ionic liquids on the solubility and degradation for chitosan were investigated, and the results showed that [Gly]Cl aqueous solution was of good solubility and assistant degradation for chitosan. In additional, the mechanism for oxidative degradation of chitosan in ionic liquids (ILs) was studied. The effect on the property of chitosan oligomers catalyzed by H2O2, in two different kinds of solvents (HAc and [Gly]Cl) were compared. It was found that the performance of moisture absorption and retention of chitosan oligomers using ionic liquid aqueous solution as solvent was better than that using HAc aqueous solution as solvent, and even superior to that of hyaluronic acid. Furthermore, [Gly]Cl could be easily separated from the product and reused with only slight loss. It could provide an efficient and environmental friendly method for the preparation of chitosan oligomers in H2O2/ILs system.  相似文献   

12.
This paper reports the preparation of cellulose/xanthan gum composite films and hydrogels through gelation with an ionic liquid. Mixtures of cellulose and xanthan gum in desired weight ratios with an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), were thinly placed on a Petri dish and heated at 100 °C for 9 h to obtain the solutions. Then, the solutions were left standing at room temperature for 1 day for the progress of gelation. The resulting ion gels were subjected to Soxhlet extraction with ethanol to remove BMIMCl, followed by drying under ambient conditions to obtain the composite films. The crystalline structures of the polysaccharides and the mechanical properties were evaluated by powder X-ray diffraction measurement and tensile testing of the films, respectively. The ion gels in various cellulose/xanthan gum weight ratios, which were prepared in a test tube by the same procedure, were immersed in water for the exchange of disperse media to obtain the cellulose/xanthan gum composite hydrogels. Water contents of all the materials were higher than 90 %. The mechanical properties of the hydrogels were evaluated by compressive testing.  相似文献   

13.
This article attempts to put the light on the air quality of the Black Sea region of Turkey. In addition to that, it endeavors to locate the possible sources of the different pollutants at local, regional and long range transported scales. About 196 rainwater samples were collected over the Black Sea region of Amasra between 1995 and 1999, and analyzed for major ions and trace elements using spectrophotometric techniques. Andersen wet only rain samples were used to collect rain events, where the rain sample was filtered inline using 0.45 m cellulose acetate filters. Major anions (SO4 2-, NO3 - and Cl-) were determined using ion chromatography, whereas metals (Ca, Mg, Al, Fe, Na, K), werequantified using ICP-AES. This study shows that, the Black Sea region receives different amounts and types of anthropogenic pollutants via long-range transport according to trajectory models. Although the pH of rain water is not considered acidic (pH = 5.21) yet the neutralizing species are lower than other sites around Europe.  相似文献   

14.
With the increasing emphasis on the environment and the need to find environmentally friendly solvent systems, ionic liquids (IL)s have been emerging as promising green solvents to replace conventional solvents in recent years. They possess unique properties such as nonvolatility, low toxicity, ease of handling, nonflammability and high ionic conductivity; thus they have received much attention as green media for various chemistry processes. This report provides an extensive overview of use of ILs in polymers chemistry and technology.  相似文献   

15.
With the increasing emphasis on the environment and the need to find environmentally friendly solvent systems, ionic liquids (IL)s have been emerging as promising green solvents to replace conventional solvents in recent years. They possess unique properties such as nonvolatility, low toxicity, ease of handling, nonflammability and high ionic coductivity; thus they have received much attention as green media for various chemistry processes. This report provides an extensive overview of use of ILs in polymers chemistry and technology.  相似文献   

16.
The effects of ionic liquid BMIMCL (1-buthyl-3-methyl-imidazolium-chloride) on the solution of soy protein isolate (SPI) were first studied. In situ polymerization of acrylonitrile monomer in the presence of SPI was conducted in a BMIMCL/dimethyl sulfoxide (DMSO) mixture solvent to produce SPI-g-PAN. This graft polymer was blended with pure PAN in BMIMCL/DMSO (1:5) and spun into fiber using a wet spinning method. The effects of SPI content and solution temperature on the viscoelasticity of the spinning dope were studied. FTIR, DSC and solution studies were used to confirm the grafting of PAN. Microstructure and mechanical properties of the spun fibers under different draw ratios were investigated.  相似文献   

17.
Journal of Polymers and the Environment - As a promising biodegradable polymer, cellulose triacetate (CTA) was synthesized and plasticized with ionic liquids to produce flexible biocomposite films...  相似文献   

18.
A new approach to vapor phase elemental mercury capture has been explored; this approach exploits an ionic liquid coating layer to oxidize elemental mercury for subsequent immobilization by chelating ligands. The room temperature ionic liquid 1-butyl-1-methyl pyrrolidinium bis(trifluoromethane sulfonyl)imide (P14) was selected for study based on its oxidation potential window, thermal stability, and low vapor pressure. Tests were also completed in which KMnO4 was added to P14 to form a new ionic liquid, P14–KMnO4, with a higher oxidation potential. In room-temperature bulk liquid phase capture experiments, 59% of the elemental mercury in the inlet gas was captured using P14 alone; mercury capture using P14–KMnO4 was quantitative. P14 and P14–KMnO4 coatings were successfully applied to mesoporous silica substrates and to silica substrates functionalized with mercury chelating ligands. The coating layers were found to be thermally stable up to 300°C. Fixed-bed tests of nonfunctionalized silica coated with P14 showed an elemental mercury uptake of 2.7 mg/g adsorbent at 160°C; at the same temperature, functionalized silica coated with P14–KMnO4 showed an elemental mercury capacity of at least 7.2 mg/g adsorbent, several times higher than that of activated carbon. The empty bed gas residence time in these tests was 0.04 s. A chelating adsorbent incorporating P14 in the coating layer, may be capable of simultaneous removal of elemental and oxidized mercury from coal combustion flue gases.  相似文献   

19.
Journal of Polymers and the Environment - Biocomposites based on polyethylene from renewable resources derived from sugar cane as raw material were modified with phosphonium ionic liquids....  相似文献   

20.
Journal of Polymers and the Environment - Considering the recent plastic loads in water bodies we studied the aggregation, charging, and aggregate strength of polyethylene microsphere (PEM)...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号