首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in sink effects, temperature and humidity control, air exchange, pollutant monitoring, and measurement biases), a preliminary four-laboratory evaluation of the revised test method was conducted. To minimize variability, the evaluation used a single dry-process photocopier that was shipped to each of the four laboratories along with supplies (i.e., toner and paper).

The results of this preliminary four-laboratory evaluation demonstrate that the test method was used successfully in the different chambers to measure emissions from dry-process photocopiers. Differences in chamber design and construction appeared to have had minimal effect on the results for the volatile organic compounds (VOCs). Perhaps more important than the chamber itself is the sample analysis as identified by duplicate samples that were analyzed by a different laboratory. Percent relative standard deviation (%RSD) was used to provide a simplistic view of interlaboratory precision for this evaluation. Excluding problems with suspected analytical bias observed from one of the laboratories, the precision was excellent for the VOCs with RSDs of less than 10% in most cases. Less precision was observed among the laboratories for aldehydes/ketones (RSD of 23.2% for formaldehyde). The precision for ozone emission rates among three of the laboratories was excellent (RSD of 7.9%), but emission rates measured at the fourth laboratory were much higher.  相似文献   

2.
Environmental test chambers are an important tool in the characterization of organic emissions from solid consumer and construction products and in the evaluation of their potential impact on indoor air quality. The results of extensive research concerning formaldehyde (CH2O) emissions from such products strongly support this application of environmental chambers to measure product emissions and provide useful input for the design of environmental chamber studies. The physical design and test methodology for environmental chambers are strongly influenced by several elements in a comprehensive project plan for source characterization, including the selection process for test samples and the mathematical models used to interpret the organic emissions data. The protocol for environmental chamber testing extends broadly from the acquisition, preparation and conditioning of test specimens, to the selection and control of environmental test conditions, and to the calibration and measurement of system parameters and organic emissions. The requirements for environmental control inside the test chamber can be estimated from the sensitivity of the organic emission rates of the test products (e.g. CH2O emissions from pressed-wood products) to variation in environmental parameters. The cost of the numerous, multiple-organic analyses required for environmental chamber testing of solid emitters is seen as a strong limitation to product selection strategies and modeling efforts. The modeling of organic emissions from solid emitters can be both a planning tool for development of chamber test methodology and a means to interpret test chamber results.  相似文献   

3.
Formaldehyde (CH2O) emissions from particleboard underlayment have been measured in 0.17 and 0.2 m3 chambers at separate laboratories to test the comparability of small scale environmental chamber measurements under different ventilation and product loading conditions. Absolute CH2O calibration was established through intermethod comparison of different monitoring techniques against a CH2O generation apparatus. Interlaboratory precision was enhanced via co-calibration of each laboratory’s CH2O colorimetric analyzer against the same blank and bi-level generation source at the beginning and end of the study. The results show excellent intermethod and interlaboratory agreement in both the CH2O calibration and particleboard emissions testing. The CH2O emission rates of the test specimens demonstrate a Fick’s Law dependence on CH2O vapor concentration. Measured CH2O concentrations are described by a single-compartment, single emitter model, and are inversely proportional to the ratio [N/L (m/h)] of the air exchange rate [N(h-1)] and product loading [L(m-1)]. Comparison tests at varying N and L, but uniform N/L were performed; similar CH2O concentrations were measured for N and L levels selected from an indoor compartment model, and for fivefold larger N and L values, which are more convenient for small-scale chamber testing.  相似文献   

4.
Based on the most recently published mass transfer model of volatile organic compound (VOC) emissions from dry building materials, it is found that the dimensionless emission rate and total emission quantity are functions of just four dimensionless parameters, the ratio of mass transfer Biot number to partition coefficient (Bim/K), the mass transfer Fourier number (Fom), the dimensionless air exchange rate (2/Dm) and the ratio of building material volume to chamber or room volume (/V). Through numerical analysis and data fitting, a group of dimensionless correlations for estimating the emission rate from dry building materials is obtained. The predictions of the correlations are validated against the predictions made by the mass transfer model. Using the correlations, the VOC emission rate from dry building materials can be conveniently calculated without having to solve the complicated mass transfer equations. Thus it is very simple to estimate VOC emissions for a given condition. The predictions of the correlations agree well with experimental data in the literature except in the initial few hours. Furthermore, based on the correlations, a relationship between the emission rates of a material in two different situations is deduced. With this relationship, the results for a given building material in a test chamber can be scaled to those under real conditions, if the dimensionless parameters are within the appropriate region for the correlations. The relationship also explicitly explains the impacts of air velocity, load ratio, and air exchange rate on the VOC emission rate, which determines the feasibility of assuming that the VOC emission rates in real conditions are the same as those in the test chambers.  相似文献   

5.
ABSTRACT

Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9–C12); C8–C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variables, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint drying. Hexanal, the predominant aldehyde in the emissions, was not detected in the liquid paint and was apparently an oxidation product formed during drying. This paper summarizes the results of the product analyses and a series of small chamber emissions tests. It also describes the use of a mass balance approach to evaluate the impact of test variables and to assess the quality of the emissions data.  相似文献   

6.
Evaluation of Indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters.

The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA’s Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed In large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA’s IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on “sink” surfaces.  相似文献   

7.
Evaluating sources of indoor air pollution   总被引:2,自引:0,他引:2  
Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: 1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; 2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and 3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: 1) para-dichlorobenzene emissions from solid moth repellant; and 2) particle emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J. B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on "sink" surfaces.  相似文献   

8.
Two computational methods are proposed for estimation of the emission rate of volatile organic compounds (VOCs) from solvent-based indoor coating materials based on the knowledge of product formulation. The first method utilizes two previously developed mass transfer models with two key parameters – the total vapor pressure and the average molecular weight for total volatile organic compounds (TVOCs) – being estimated based on the VOC contents in the product. The second method is based on a simple, first-order decay model with its parameters being estimated from the properties of both the source and the environment. All the model parameters can be readily obtained. Detailed procedures for computing the key parameters are described by using examples. The predictive errors were evaluated with small chamber data, and the results were satisfactory. Thus, the proposed methods provide a way to predict the VOC emissions in the indoor environment without having to conduct costly chamber testing. The two proposed methods work for both TVOCs and individual VOCs. Pros and cons for each method are discussed.  相似文献   

9.
The emissions from five commonly used building products were studied in small-scale test chambers over a period of 50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of the test chamber and building product area in the test chamber. The air velocity over the building product samples was adjusted to different levels between 0.1 and 0.3 m s-1. The origin of the emitted VOCs was assessed in order to distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation, increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building products only decayed modestly over time. Consequently, it is recommended to use building products which have a low impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the long run. Some of the building products continued to affect the perceived air quality despite the concentrations of the selected VOCs resulted in odor indices less than 0.1. Therefore, odor indices less than 0.1 as an accept criterion cannot guarantee that a building product has no impact on the perceived air quality.  相似文献   

10.
Abstract

The U.S. Consumer Product Safety Commission is investigating chemical emissions from carpet systems in order to determine whether the emissions may be responsible for the numerous health complaints associated with carpet installation. As part of this effort, a study was conducted to identify and quantify volatile organic compounds (VOCs) released into the air by five major product types of new carpet cushions. Cushion samples were tested in small-volume dynamic chambers over a six-hour exposure period. Airborne VOCs collected on multisorbent samplers were identified using sensitive gas chromatography/mass spectrometry. The emissions of selected VOCs were quantitated with the small-scale chamber method and further characterized in larger environmental chambers conducted over a 96-hour period under conditions more representative of indoor environments. A separate chamber method was developed to screen polyurethane cushions for emissions of toluene diisocyanates (TDI). Over 100 VOCs, spanning a broad range of chemical classes, were emitted from 17 carpet cushions. The pattern of emitted VOCs varied between and among product types, which reflects probable differences in manufacturing processes and ingredients. No significant quantities of TDI or formaldehyde were released by any cushions. Emission profiles were characterized for total VOCs and for the predominant individual VOCs. As a group, the synthetic fiber cushion samples emitted the lowest quantities of VOCs. Cushion samples purchased from carpet retailers released lesser amounts of VOCs than samples of the same cushion types obtained directly from the manufacturing mills, suggesting that chemical losses from the bulk material may ensue as a result of transport, handling, and storage prior to installation. The data suggest that placement of carpet on top of a carpet cushion, as would occur in a residential installation, reduced the rate of some VOC emissions when compared to the cushion alone.  相似文献   

11.
BACKGROUND, AIMS AND SCOPE: The building materials are recognised to be major contributors to indoor air contamination by volatile organic compounds (VOCs). The improvement of the quality of the environment within buildings is a topic of increasing research and public interest. Legislation in preparation by the European Commission may induce, in the near future, European Union Member States to solicit the industries of paints, varnishes and flooring materials for taking measures, in order to reduce the VOC emissions resulting from the use of their products. Therefore, product characterisation and information about the influence of environmental parameters on the VOC emissions are fundamental for providing the basic scientific information required to allow architects, engineers, builders, and building owners to provide a healthy environment for building occupants. On the other hand, the producers of coating building materials require this information to introduce technological alterations, when necessary, in order to improve the ecological quality of their products, and to make them more competitive. Studies of VOC emissions from wet materials, like paints and varnishes, have usually been conducted after applying the material on inert substrates, due to its non-adsorption and non-porosity properties. However, in real indoor environments, these materials are applied on substrates of a different nature. One aim of this work was to study, for the first time, the VOC emissions from a latex paint applied on concrete. The influence of the substrate (uncoated cork parquet, eucalyptus parquet without finishing and pine parquet with finishing) on the emissions of VOC from a water-based varnish was also studied. For comparison purposes, polyester film (an inert substrate) was used for both wet materials. METHODS: The specific emission rates of the major VOCs were monitored for the first 72 h of material exposure in the atmosphere of a standardized test chamber. The air samples were collected on Tenax TA and analysed using thermal desorption online with gas chromatography provided with both mass selective detection and flame ionisation detection. A double exponential model was applied to the VOC concentrations as a function of time to facilitate the interpretation of the results. RESULTS AND DISCUSSION: The varnish, which was introduced in the test chamber 23 h after the application of the last layer of material, emitted mainly glycolethers. Only primary VOCs were emitted, but their concentrations varied markedly with the nature of the substrate. The higher VOC concentrations were observed for the parquets of cork and eucalyptus, which indicated that they have a much higher porosity and, therefore, a higher power of VOC adsorption than the finished pine parquet (and polyester film). The paint was introduced in the chamber just after its application. Only primary VOCs were emitted (esters, phthalates, glycolethers and white spirit) but some compounds, like 2-(2-butoxyethoxy)ethanol and diethylphthalate, were only observed for paint/polyester, which suggested that they were irreversibly adsorbed by the paint/concrete. Compared with the inert substrate, the rate of VOC emissions was lower for concrete in the wet-stage (first hours after the paint application) but slightly higher later (dry-stage) as a consequence of desorption. CONCLUSIONS: As to varnish, the substrates without finishing, like cork and eucalyptus parquets, displayed a higher power of adsorption of VOCs than the pine parquet with finishing, probably because they have a higher porosity. As concerns paint, the total masses of VOCs emitted were lower for concrete than for polyester, indicating that concrete reduces the global VOC emissions from the latex paint. Concrete is seen to have a strong power of adsorption of VOCs. Some compounds, namely 2-(2-butoxyethoxy)ethanol, diethylphthalate and TEXANOL (this partially), were either irreversibly adsorbed by the concrete or desorbed very slowly (at undetected levels). A similar behaviour had not been reported for gypsum board, a paint substrate studied before. RECOMMENDATIONS AND OUTLOOK: The present data suggest that concrete may be a recommendable substrate for paint in an indoor environment. As the nature of the substrate conditions the rate and nature of VOC emissions from wet materials, it must be explicit when emissions from composite materials are reported, in order to allow comparisons and labelling of the product in terms of indoor air quality.  相似文献   

12.
环境测试舱自吸附甲醛重释放规律与影响因素研究   总被引:2,自引:1,他引:1  
广泛用于板材污染物释放量测试、空气净化产品净化效果测试等实验中的环境测试舱,往往由于其内壁黏附性杂质而对目标测试物产生不可忽视的自吸附作用,自吸附污染物将作为二次释放源出现重释放,研究目标测试物的自吸附消耗量及重释放规律,探索有效控制措施,有利于对环境测试舱实验应用及室内污染控制提出指导性实际意义。分别选取0.2%甲醛溶液、大芯板作为同一自制玻璃环境测试舱2期实验(I期、Ⅱ期)的不同甲醛释放源,通过近90 d追踪测试,经不同释放源、不同控制条件下舱内壁自吸附甲醛的多次重释放实验,结合非线性拟合分析方法,总结出舱内壁自吸附甲醛重释放甲醛浓度变化符合一阶递增指数函数:y=A1×exp(-x/t1)+y0,(A1<0、t1>0)。曲线参数y0值可用于评价实验条件下测试舱内自吸附甲醛残余量;y0值与环境舱舱体材质、环境温湿度、舱外甲醛浓度及空气交换手段有关,而与释放源及其释放平衡浓度高低无明显关系。大开舱门短时间抽气式空气交换对舱内自吸附甲醛残余有适度清除效果,使y0值降低,同时有利于再次平衡状态的快速建立;而长时间的无动力空气交换,或者自来水洗及去离子水洗等处理手段对舱内壁自吸附甲醛残余无明显清除作用。  相似文献   

13.
Basing on the material emission data obtained in a test chamber, chemical mass balance (CMB) was used to assess the source apportionment of volatile organic compound (VOC) concentrations in three newly built timber frame houses. CMB has been proven to be able to discriminate the source contributions for two contrasted environmental conditions (with and without ventilation). The shutdown of the ventilation system caused an increase in the VOC concentrations due to the increased contribution of indoor surface materials like the door material and furniture explaining together over 65% of total VOCs. While the increase in formaldehyde concentration is mainly due to furniture (contribution of 70%), the increase in α-pinene concentration is almost exclusively attributable to the emission of door material (up to 84%). The apportionment of VOC source contributions appears as highly dependent on the position of source materials in the building (surface materials or internal materials) and the ventilation conditions explaining that the concentrations of compounds after the shutdown of ventilation system do not increase in equivalent proportion. Knowledge of indoor sources and its contributions in real conditions may help in the selection of materials and in the improvement of construction operations to reduce the indoor air pollution.  相似文献   

14.
EPA Reference Method 25 for measurement of total gaseous nonmethane organics as carbon in source emissions was evaluated in the laboratory and through field testing. Laboratory evaluation included development and testing of a nonmethane organic analyzer. In addition, a series of tests was performed on the condensate trap recovery system. The tests involved evaluation of two different condensate trap recovery system designs. The first design was very similar to the Federal Register design and the second design was a modified system for minimizing interference from trapped carbon dioxide. Field testing of the method was performed at two different printing plants. Both plants used carbon bed adsorption for solvent recovery and control of VOC emissions. Samples were collected from the inlet and outlet streams of adsorption units at both plants. In addition to Method 25 samples, Method 18 samples were collected for analysis by gas chromatography with flame ionization detection. The results of all the laboratory and field test samples are described.  相似文献   

15.
Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006–2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.  相似文献   

16.
In 1997, Homeswest in western Australia and Murdoch University developed a project to construct low-allergen houses (LAHs) in a newly developed suburb. Before the construction of LAHs, all potential volatile organic compound (VOC) emission materials used in LAHs are required to be measured to ensure that they are low total VOC (TVOC) emission materials. This program was developed based on this purpose. In recent times, the number of complaints about indoor air pollution caused by VOCs has increased. A number of surveys of indoor VOCs have indicated that many indoor materials contribute to indoor air pollution. Although some studies have been conducted on the characteristics of VOC emissions from adhesives, most of them were focused on VOC emissions from floor adhesives. Few measurements of VOC emissions from adhesives used for wood, fabrics, and leather are available. Furthermore, most research on VOC emissions from adhesives has been done in countries with cool climates, where ventilation rates in the indoor environment are lower than those in Mediterranean climates, due to energy conservation. VOCs emitted from adhesives have not been sufficiently researched to prepare an emission inventory to predict indoor air quality and to determine both exposure levels for the Australian population and the most appropriate strategies to reduce exposure. An environmental test chamber with controlled temperature, relative humidity, and airflow rate was used to evaluate emissions of TVOCs from three adhesives used frequently in Australia. The quantity of TVOC emissions was measured by a gas chromatography/flame ionization detector. The primary VOCs emitted from each adhesive were detected by gas chromatography/mass spectrometry. The temporal change of TVOC concentrations emitted from each adhesive was tested. A double-exponential equation was then developed to evaluate the characteristics of TVOC emissions from these three adhesives. With this double-exponential model, the physical processes of TVOC emissions can be explained, and a variety of emission parameters can be calculated. These emission parameters could be used to estimate real indoor TVOC concentrations in Mediterranean climates.  相似文献   

17.
The emission of volatile organic compounds (VOC) from air filters of HVAC systems was to be evaluated. In a first study carbonyl compounds (14 aldehydes and two ketones) were measured by reacting them with 2,4-dinitrophenylhydrazine (DNPH). Analysis was done by HPLC and UV detection. In laboratory experiments pieces of used and unused HVAC filters were incubated in test chambers. Filters to be investigated were taken from a filter bank of a large HVAC system in the centre of Berlin. First results show that – among those compounds – formaldehyde and acetone were found in higher concentrations in the test chambers filled with used filters in comparison to those with unused filters. Parallel field measurements were carried out at the prefilter and main filter banks of the two HVAC systems. Here measurements were carried out simultaneously before and after the filters to investigate whether those aldehydes or ketones arise from the filter material on site. Formaldehyde and acetone significantly increased in concentration after the filters of one HVAC system. In parallel experiments microorganisms were proved to be able to survive on air filters. Therefore, a possible source of formaldehyde and acetone might be microbes.  相似文献   

18.
Non-methane volatile organic compounds (VOCs) emitted from boreal peatland microcosms were semiquantitatively determined using gas chromatography–mass spectrometry techniques in a growth chamber experiment. Furthermore, effects of vegetation composition and different ozone concentrations on these emissions were estimated by multivariate data analyses. The study concentrated on the less-studied VOCs, and isoprene was not analyzed. The analyses suggest that a sedge Eriophorum vaginatum is associated with emissions of the four most-emitted VOC groups (cyclic, aromatic, carbonyl and aliphatic hydrocarbon compounds) and also with VOCs emitted in smaller amounts (terpenoids and N-containing compounds). A woody dwarf shrub Andromeda polifolia was strongly associated with emissions of aromatic, carbonyl and terpenoid compounds. Results suggest that exposure to an ozone concentration of 150 ppb leads to an increased emission of most VOC groups. Emission of aromatic compounds seems to increase linearly with increasing ozone concentration. These observations indicate that peatlands may be a source of a vast range of volatile compounds to the atmosphere. For more accurate assessment of the impact of elevated tropospheric ozone on the terpenoid and non-terpenoid VOC emissions from peatlands, well-replicated open-air ozone-exposure experiments should be conducted.  相似文献   

19.
While emission rates of volatile organic compounds (VOCs) have been obtained for building materials, furnishings and processes in chambers, field measurements are more difficult. Procedures to estimate emission rates using transient analysis of VOC concentrations are described and applied in a two-story classroom/office building. The analysis employs semi-real-time VOC concentrations determined with a portable GC/FID and simultaneous air change rate measurements using tracer gas decay. The results of the analysis yield consistent values of emission rates for building materials ranging from 0.20 to 0.40 mg m−2 h−1 when normalized by floor area. Occupancy-related emissions were more difficult to estimate and covered a wider range from roughly 0.1 to 1.5 mg m−2 h−1. The test data were also analyzed in an attempt to determine sink parameters, but these efforts were not particularly successful. Furthermore, in these tests, the inclusion of sink effects did not significantly impact the estimated emission rates. While this paper offers a transient analysis approach that may lead to improved field estimates of VOC emission rates, it is not presented as a definitive methodology. Nevertheless, transient analysis has potential for use in other buildings, but simultaneous air change rate measurements are critical in its application in estimating VOC emission rates in the field.  相似文献   

20.
Heat-treated wood is an increasingly popular decoration material. Heat-treatment improves dimensional stability of the wood and also prevents rot fungus growth. Although production of heat-treated wood has been rapidly increasing, there is only little information about the VOC emissions of heat-treated wood and its possible influences on indoor air quality. In the present study, VOC emissions from three untreated (air-dried) and heat-treated wood species were compared during a four weeks test period. It appeared that different wood species had clearly different VOC emission profiles. Heat-treatment was found to decrease VOC emissions significantly and change their composition. Especially, emissions of terpenes decreased from softwood samples and aldehydes from European aspen samples. Emissions of total aldehydes and organic acids were at the same level or slightly higher from heat treated than air-dried softwood samples. In agreement with another recent study, the emissions of furfural were found to increase and those of hexanal to decrease from all the wood species investigated. In contrast to air-dried wood samples, emissions of VOCs were almost in steady state from heat treated wood samples even in the beginning of the test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号