首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Incineration flue gas contains polycyclic aromatic hydrocarbons (PAHs) and sulfur dioxide (SO2). The effects of SO2 concentration (0, 350, 750, and 1000 ppm), reaction temperature (160, 200, and 280 °C), and the type of activated carbon fibers (ACFs) on the removal of SO2 and PAHs by ACFs were examined in this study. A fluidized bed incinerator was used to simulate practical incineration flue gas. It was found that the presence of SO2 in the incineration flue gas could drastically decrease removal of PAHs because of competitive adsorption. The effect of rise in the reaction temperature from 160 to 280 °C on removal of PAHs was greater than that on SO2 removal at an SO2 concentration of 750 ppm. Among the three ACFs studied, ACF-B, with the highest microporous volume, highest O content, and the tightest structure, was the best adsorbent for removing SO2 and PAHs when these gases coexisted in the incineration flue gas.
ImplicationsSimultaneous adsorption of sulfur dioxide (SO2) and polycyclic aromatic hydrocarbons (PAHs) emitted from incineration flue gas onto activated carbon fibers (ACFs) meant to devise a new technique showed that the presence of SO2 in the incineration flue gas leads to a drastic decrease in removal of PAHs because of competitive adsorption. Reaction temperature had a greater influence on PAHs removal than on SO2 removal. ACF-B, with the highest microporous volume, highest O content, and tightest structure among the three studied ACFs, was found to be the best adsorbent for removing SO2 and PAHs.  相似文献   

2.
The interaction of a typical flue gas with active charcoal and bituminous coal char at temperatures between 600 and 800°C and atmospheric pressure has been studied. The SO2 in the flue gas interacts with the carbon to form primarily H2S, COS, and a carbon-sulfur surface complex. H2S and COS break through the carbon bed much in advance of SO2. At 800°C, sulfur retention on the bed exceeds at least 11% before SO2 breakthrough occurs. The reaction of H2S and COS with O2 over active charcoal at 100–140°C to produce sulfur, which deposits on the carbon, has also been studied and found to be feasible. As a result of this study, a new process is outlined for the removal of SO2 from flue gas, with the ultimate conversion  相似文献   

3.
Abstract

The control of Hg emissions from a municipal solid waste incinerator (MSWI) is very important, because more than 78% of municipal solid waste (MSW) is incinerated. The Hg content of coal used in utility boilers is relatively low in Japan. In this study, recent trends in the Hg content of MSW in Japan and activated carbon (AC) injection as a control technology of Hg emission from an MSWI are discussed. The effect of AC injection on Hg removal from flue gas in an MSWI was investigated by pilot-scale experiments using a bag filter (BF). The injection of AC increases the Hg reduction ratio by 20–30% compared with cases without AC injection. The Hg reduction ratio increases as the flue gas temperature decreases. The Hg reduction ratio is closely related to the inlet Hg concentration and was expressed with a Langmuir-type adsorption isotherm.  相似文献   

4.
We report on the rates of decomposition of a group of N-methylcarbamate (NMC) pesticides (carbaryl, carbofuran and propoxur) under pre-determined tropical field conditions. Rates of decomposition for three NMCs were determined at pH 7.08 and T?=?20?°C and pH 7.70 and T = 33?°C respectively, as follows: carbaryl (78?days and 69?days); carbofuran (143?days and 83?days) and propoxur (116?days and 79?days). Investigation on methods for removal of NMCs and their phenolic decomposition products shows that activated charcoal outperforms zeolite, alumina, diatomaceous earth, cellulose and montmorillonite clay in the removal of both NMCs and phenols from aqueous solution. Furthermore, metal complexation studies on the NMCs and phenols showed that Fe (III) forms a complex with isopropoxyphenol (IPP) within which the Fe:IPP ratio is 1:3, indicative of the formation of a metal chelate complex with the formula Fe(IPP)3.  相似文献   

5.
6.
Wang  Jiaqing  Lu  Pei  Su  Wei  Xing  Yi  Li  Rui  Li  Yuran  Zhu  Tingyu  Yue  Huifang  Cui  Yongkang 《Environmental science and pollution research international》2019,26(20):20248-20263

Currently, activated coke is widely used in the removal of multiple pollutants from industrial flue gas. In this paper, a series of novel FexLayOz/AC catalysts was prepared by the incipient wetness impregnation for NH3-SCR denitrification reaction. The introduction of Fe-La bimetal oxides significantly improved the denitrification performance of activated coke at mid-high temperature, and 4% Fe0.3La0.7O1.5/AC exhibited a superior NOx conversion efficiency of 90.1% at 400 °C. The catalysts were further characterized by BET, SEM, XRD, Raman, EPR, XPS, FTIR, NH3-TPD, H2-TPR, et al., whose results showed that the perovskite-type oxide of LaFeO3 and oxygen vacancies were produced on the catalysts’ surfaces during roasting. Fe-La doping enhanced the amount of acid sites (mainly Lewis and other stronger acid sites) and the content of multifarious oxygen species, which were beneficial for NOx removal at mid-high temperature. Moreover, it was investigated that the effect of released CO from activated coke at mid-high temperature on the NOx removal through the lifetime test, in which it was found that a large amount of CO produced by pyrolysis of activated coke could promote the NOx removal, and long-term escaping of CO on the activated coke carrier did not have a significant negative impact on catalytic performance. The results of the TG-IR test showed that volatile matter is released from the activated coke while TG results showed that the weight loss rate of 4% Fe0.3La0.7O1.5/AC only was 0.0015~0.007%/min at 300–400 °C. Hence, 4% Fe0.3La0.7O1.5/AC had excellent thermal stability and denitrification performance to be continuously used at mid-high temperature. Finally, the mechanisms were proposed on the basis of experiments and characterization results.

  相似文献   

7.
The control of Hg emissions from a municipal solid waste incinerator (MSWI) is very important, because more than 78% of municipal solid waste (MSW) is incinerated. The Hg content of coal used in utility boilers is relatively low in Japan. In this study, recent trends in the Hg content of MSW in Japan and activated carbon (AC) injection as a control technology of Hg emission from an MSWI are discussed. The effect of AC injection on Hg removal from flue gas in an MSWI was investigated by pilot-scale experiments using a bag filter (BF). The injection of AC increases the Hg reduction ratio by 20-30% compared with cases without AC injection. The Hg reduction ratio increases as the flue gas temperature decreases. The Hg reduction ratio is closely related to the inlet Hg concentration and was expressed with a Langmuir-type adsorption isotherm.  相似文献   

8.
Wu HL  Lu SY  Yan JH  Li XD  Chen T 《Chemosphere》2011,84(3):361-367
The fly ash used in this study was collected from a bag filter in a medical waste rotary kiln incineration system, using lime and activated carbon injection followed by their collection as mixed fly ash. Experiments were conducted on fly ash in a quartz tube, heated in a laboratory-scale horizontal tube furnace, in order to study the effect of temperature and nitrogen flow rate on the removal of PCDD/Fs. Results indicated that in this study PCDD/Fs in the fly ash mostly were removed and desorbed very little into the flue gas under thermal treatment especially when the heating temperature was higher than 350 °C, and dechlorination and destruction reactions took important part in the removal of PCDD/Fs. However, in terms of flow rate, when flow rate was higher than 4 cm s−1, destruction efficiency of PCDD/Fs decreased dramatically and the main contributors were P5CDF, H6CDF and H7CDF desorbed to flue gas, the PCDD/Fs in the fly ash decreased with enhanced flow rate.  相似文献   

9.

Activated carbon was one of the main adsorptions utilized in elemental mercury (Hg0) removal from coal combustion flue gas. However, the high cost and low physical adsorption efficiency of activated carbon injection (ACI) limited its application. In this study, an ultra-high efficiency (nearly 100%) catalyst sorbent-Sex/Activated carbon (Sex/AC) was synthesized and applied to remove Hg0 in the simulated flue gas, which exhibited 120 times outstanding adsorption performance versus the conventional activated carbon. The Sex/AC reached 17.98 mg/g Hg0 adsorption capacity at 160 °C under the pure nitrogen atmosphere. Moreover, it maintained an excellent mercury adsorption tolerance, reaching the efficiency of Hg0 removal above 85% at the NO and SO2 conditions in a bench-scale fixed-bed reactor. Characterized by the multiple methods, including BET, XRD, XPS, kinetic and thermodynamic analysis, and the DFT calculation, we demonstrated that the ultrahigh mercury removal performance originated from the activated Se species in Sex/AC. Chemical adsorption plays a dominant role in Hg0 removal: Selenium anchored on the surface of AC would capture Hg0 in the flue gas to form an extremely stable substance-HgSe, avoiding subsequent Hg0 released. Additionally, the oxygen-containing functional groups in AC and the higher BET areas promote the conversion of Hg0 to HgO. This work provided a novel and highly efficient carbon-based sorbent -Sex/AC to capture the mercury in coal combustion flue gas.

Selenium-modified porous activated carbon and the interface functional group promotes the synergistic effect of physical adsorption and chemical adsorption to promote the adsorption capacity of Hg0.

  相似文献   

10.
Unintentionally produced persistent organic pollutants (UPOPs) include polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (dl-PCBs), pentachlorobenzene (PeCBz), and hexachlorobenzene (HxCBz). With the booming of municipal waste incinerators (MWIs) in China, the emission of UPOPs has generated great concern. As an alternative technology of dioxin control, catalytic decomposition has not been used in China, mainly due to the absence of national demonstration projects. Also, the simultaneous removal of various UPOPs has not been well investigated.In this study, a pilot-scale selective catalytic oxidative (SCO) system using a self-developed honeycomb catalyst was built and tested in a typical municipal waste incinerator (MWI) of China. The original concentration of PCDD/Fs in flue gas after the treatment of activated carbon injection (ACI) still exceeded the national emission standard (0.1 ng I-TEQ/Nm3), while the concentrations of PeCBz and HxCBz were one order of magnitude higher than that of PCDD/Fs. For the testing temperature varying from 300 to 200 °C, the removal efficiency of PCDD/Fs range from 39 to 95 %, followed by dl-PCBs with the range of 56–89 %. PeCBz and HxCBz were also removed, though their removal efficiencies were lower than those of PCDD/Fs and dl-PCBs. Both temperature and degree of chlorination influence the removal efficiencies.  相似文献   

11.

Introduction

The removal of heavy metals by natural adsorbent has become one of the most attractive solutions for environmental remediation. Natural clay collected from the Late Cretaceous Aleg formation, Tunisia was used as a natural adsorbent for the removal of Hg(II) in aqueous system.

Methods

Physicochemical characterization of the adsorbent was carried out with the aid of various techniques, including chemical analysis, X-ray diffraction, Fourier transform infrared and scanning electron micrograph. Batch sorption technique was selected as an appropriate technique in the current study. Method parameters, including pH, temperature, initial metal concentration and contact time, were varied in order to quantitatively evaluate their effects on Hg(II) adsorption onto the original and pillared clay samples. Adsorption kinetic was studied by fitting the experimental results to the pseudo-first-order and pseudo-second-order kinetic models. The adsorption data were also simulated with Langmuir, Freundlich and Temkin isotherms.

Results

Results showed that the natural clay samples are mainly composed of silica, alumina, iron, calcium and magnesium oxides. The sorbents are mainly mesoporous materials with specific surface area of <250 m2 g?1. From the adsorption of Hg(II) studies, experimental data demonstrated a high degree of fitness to the pseudo-second-order kinetics with an equilibration time of 240 min. The equilibrium data showed the best model fit to Langmuir model with the maximum adsorption capacities of 9.70 and 49.75 mg g?1 for the original and aluminium pillared clays, respectively. The maximum adsorption of Hg(II) on the aluminium pillared clay was observed to occur at pH 3.2. The calculated thermodynamic parameters (?G°, ?H° and ?S°) showed an exothermic adsorption process. The entropy values varied between 60.77 and 117.59 J?mol?1 K?1, and those of enthalpy ranged from 16.31 to 30.77 kJ mol?1. The equilibrium parameter (R L) indicated that the adsorption of Hg(II) on Tunisian smectitic clays was favourable under the experimental conditions of this study.

Conclusion

The clay of the Aleg formation, Tunisia was found to be an efficient adsorbent for Hg(II) removal in aqueous systems.  相似文献   

12.
This paper assesses F and Cl emissions as atmospheric pollutants in the Bailén area (southern Spain), originated from the raw material used in structural ceramic industries. The area is one of the most important in Spain, with a daily output over three million pieces. The Bailén area features three categories of industries taking into account F emissions (the most important pollutant from ceramic clays):Group I: Those releasing less than 150 ppm F, which use raw materials with low F contents and/or high proportion of calcite, and fire at about 850°C.Group II: Those releasing 150–300 ppm F, whose raw materials show low calcite percentages and bricks are fired between 850–1050°C.Group III: Those releasing more than 300 ppm F, which use clays containing over 1000 ppm F and firing temperatures around 900°C.The emission rate of F increases with increasing F content in the raw material and firing temperature (particularly when exceeding 1000°C). The calcite and clay mineral contents control the F emissions up to 950°C; on the other hand, a high heating rate hinders fluorine emission to some extent. The emission rate of Cl increases with increasing temperature, but in the most cases chlorine is released at concentrations below 30 ppm.Atmospheric contamination in the Bailén area can reach 3 kg/h of fluorine and up to twice of chlorine emission levels permitted, owing to the massive production of structural clay products.  相似文献   

13.
This publication concerns the dry removal of SO2 from gases using limestone absorbents. It reports bench-scale experiments made with commercial samples of powdered limestone (CaCO3) activated by addition of a cheap substance, namely CaCl2. The absorption was carried out in a fluidized bed traversed by the flue gases, between 600° and 900° C. The degree and rate of transformation of CaCO3 to CaSO4 in the presence of SO2 and air have been compared for unmodified and modified absorbents. Initial rates of reaction, and the variation of the rate of absorption with time have been measured. The influence of the SO2 content of the gas has been assessed. At 700° C, the maximum degree of transformation of activated limestone to sulfate exceeds 90%, whereas untreated CaCO3 transforms only to 16–20%. At the same temperature, more than 90% of SO2 contained In a gas carrying 0.35% SO2 is removed. Because of the much smaller quantity of solid absorbent required, dry absorption processes based on the modified absorbents might get renewed interest. The modified absorbents might also be used for in situ absorption in fluidized bed combustion, in which the temperatures are in the range studied in the present paper.  相似文献   

14.
Abstract

The primary objective of this investigation was to determine the feasibility of using acid activated clays to clarify menhaden stickwater effluent. Experiments, such as physical and chemical properties determinations, effect of changes in pH and temperature and coagulation, and coagulation followed by clay treatment were also performed to study the separation of solids in stickwater.

Analysis of the stickwater showed that it contained 4.5% crude protein, 1.4% crude fat, 6.5% total solids, 1.13% ash and 93.1% water. At a wavelength of 575 um, the sample absorbed all the light and the percent transmittance was zero. When diluted 1:100 the percent transmittance was 0.39 at the same wavelength. Measured at 25°C the sample had a viscosity of 9.0 centipoises.

The results showed that the precipitation of fat increased with increasing temperatures, while the reverse was true for protein. A pH of 4.0 gave the maximum clarification at all temperatures employed. The viscosity decreased at pH values above and below the original pH of the sample.

Among the four different acid activated clays used in this study (trade names Supact‐150, Impact‐150, Impact‐12 and Impact‐1OORR), Impact‐150 was the most effective in protein and fat precipitation, and the degree of separation of these components increased by treating stickwater with a coagulant (aluminum sulfate) prior to treatment with acid activated clay.  相似文献   

15.
Fe2O3 and CeO2 modified activated coke (AC) synthesized by the equivalent-volume impregnation were employed to remove elemental mercury (Hg0) from simulated flue gas at a low temperature. Effects of the mass ratio of Fe2O3 and CeO2, reaction temperature, and individual flue gas components including O2, NO, SO2, and H2O (g) on Hg0 removal efficiency of impregnated AC were investigated. The samples were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with optimal mass percentage of 3 % Fe2O3 and 3 % CeO2 on Fe3Ce3/AC, the Hg0 removal efficiency could reach an average of 88.29 % at 110 °C. Besides, it was observed that O2 and NO exhibited a promotional effect on Hg0 removal, H2O (g) exerted a suppressive effect, and SO2 showed an insignificant inhibition without O2 to some extent. The analysis of XPS indicated that the main species of mercury on used Fe3Ce3/AC was HgO, which implied that adsorption and catalytic oxidation were both included in Hg0 removal. Furthermore, the lattice oxygen, chemisorbed oxygen, and/or weakly bonded oxygen species made a contribution to Hg0 oxidation.  相似文献   

16.
Thermal desorption is widely used for remediation of soil contaminated with volatiles, such as solvents and distillates. In this study, a soil contaminated with semivolatile polychlorinated biphenyls (PCBs) was sampled at an interim storage point for waste PCB transformers and heated to temperatures from 300 to 600 °C in a flow of nitrogen to investigate the effect of temperature and particle size on thermal desorption. Two size fractions were tested: coarse soil of 420–841 μm and fine soil with particles <250 μm. A PCB removal efficiency of 98.0 % was attained after 1 h of thermal treatment at 600 °C. The residual amount of PCBs in this soil decreased with rising thermal treatment temperature while the amount transferred to the gas phase increased up to 550 °C; at 600 °C, destruction of PCBs became more obvious. At low temperature, the thermally treated soil still had a similar PCB homologue distribution as raw soil, indicating thermal desorption as a main mechanism in removal. Dechlorination and decomposition increasingly occurred at high temperature, since shifts in average chlorination level were observed, from 3.34 in the raw soil to 2.75 in soil treated at 600 °C. Fine soil particles showed higher removal efficiency and destruction efficiency than coarse particles, suggesting that desorption from coarse particles is influenced by mass transfer.  相似文献   

17.
The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbents for flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a laboratory scale grinder prior to slurring in order to decrease the slurring time needed for the sorbent to be reactive with SO2. Reactivity of ADVACATE sorbents with SO2 in the bench-scale reactor correlated with their surface area.

ADVACATE sorbents produced with ground fly ash were evaluated in the 50 cfm (85 m3/h) pilot plant providing 2 s duct residence time. ADVACATE sorbent was produced by slurrying ground fly ash (median particle size of 4.3 µm) with Ca(OH)2 at the weight ratio of 3:1 at 90°C (194°F) for 3hto yield solids with 30 weight percent of initial free moisture. When this sorbent was injected into the duct with 1500 ppm SO2 and at 11°C (20°F) approach to saturation, the measured SO2 removal was approximately 60percent at a Ca/S stoichiometric ratio of 2. Previously, when ADVACATE sorbent was produced at 90°C (194°F) and at the same fly-ash-to-Ca(OH)2 weight ratio using unground fly ash, removal under the same conditions in the duct was approximately 50 percent following 12 h slurring. The report presents the results of pilot-scale recycle tests at the recycle ratio of 2. Finally, the report discusses future U.S. Environmental Protection Agency plans for commercialization of ADVACATE.  相似文献   

18.
A novel technique has been developed for flue gas NOX reduction through the injection of plasma-treated ammonia and its decomposition products. Numerical investigation of the chemical kinetics shows nearly complete NO removal when ammonia radicals are injected into the flue gas. The feasibility of this new technique was experimentally explored on a small-scale laboratory combustor at Carnegie Mellon University and concurrently on a larger-scale combustor at the DOE Pittsburgh Energy Technology Center. Preliminary experimental results have shown that ammonia plasma-injection is more effective than simple ammonia-injection at low flue gas temperatures. NOX reduction of 85 to 90 percent was achieved at a low plasma power input. This technique is expected to provide additional opportunities for inexpensive and effective NOX reduction in stationary sources.  相似文献   

19.
The breakthrough curve for NO adsorption on the activated carbon fibers treated in iron salt solutions was determined. They can adsorb much more NO than granular activated carbon by a factor of more than 10 from a flowing 300 ppm NO-N2 mixed gas at 100°C and 20 ml min−1; the most effective one of the iron-treated carbon fibers of 0.2 g is able to reduce the NO concentration from 300 ppm to 30 ppm. These adsorbents can adsorb the same amount of NO from even a 300 ppm NO-500 ppm SO2-10% CO2-10% H2O-1% O2-N2 mixed gas.  相似文献   

20.
The present study reviews the sampling environments and chemical transformations of nitrogen oxides that may occur within probes and sample lines while sampling combustion products. Experimental data are presented for NOx transformations in silica and 316 stainless steel tubing when sampling simulated combustion products in the presence of oxygen, carbon monoxide, and hydrogen. A temperature range of 25° to 400°C is explored. In the absence of CO and H2, 316 stainless steel is observed to promote the reduction of nitrogen dioxide to nitric oxide at temperatures in excess of 300°C, and silica is found to be passive to chemical transformation. In the presence of CO, reduction of N02 to NO is observed in 316 stainless steel at temperatures in excess of 100°C, and reduction of NO2 to NO in silica is observed at 400°C. In the presence of H2, NO2 is reduced to NO in 316 stainless steel at 200°C and NOx is removed at temperatures exceeding 200°C. In silica, the presence of H2 promotes the reduction of NO2 to NO at 300°C and the removal of NOx above 300°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号