首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Distribution and sources of 16 parent polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments from Port Dickson, Malaysia. Total PAHs varied from 481.3 to 976.6 with a mean value of 679.3 ng g?1 dry weight, which can be classified as moderate level of pollution. The toxic assessment suggested that the PAHs in sediments will not cause immediately adverse biological effects. Both petrogenic and pyrogenic PAHs were recorded in the study area with dominance of pyrogenic. The authors believe that effective monitoring and implementation of environmental regulations have resulted in a tremendous improvement of sediment quality in the Malaysian aquatic ecosystem.  相似文献   

2.
A total of 112 surface sediment samples covering virtually the entire Bohai Sea were analyzed for polycyclic aromatic hydrocarbons (PAHs), in order to provide the extensive information of recent occurrence levels, distribution, possible sources, and potential biological risk of these compounds in this area. Surface sediment samples were collected from the Bohai Sea using a stainless steel grab sampler. Sixteen PAHs were determined by a Finnigan TRACE DSQ gas chromatography/mass spectrometry. Diagnostic ratios, cluster analysis, and principal component analysis (PCA) with multivariate linear regression (MLR) were performed to identify and quantitatively apportion the major sources of sedimentary PAHs in the Bohai Sea. Concentrations of total PAHs in the Bohai Sea ranged widely from 97.2 to 300.7 ng/g (mean, 175.7?±?37.3 ng/g). High concentrations of PAHs were found in the vicinity of Luan River Estuary-Qinhuangdao Harbor, Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The three-ring PAHs were most abundant, accounting for about 37?±?5 % of total PAHs. The four-ring and five-ring PAHs were the next dominant ones comprising approximately 29?±?7and 23?±?3 % of total PAHs, respectively. Concentrations of acenaphthylene, acenaphthene, and dibenz[a,h]anthracene are higher than Canadian interim marine sediment quality guideline values at most of the sites in the study area. Contamination levels of PAHs in the Bohai Sea were low in comparison with other coastal sediments in China and developed countries. The distribution pattern of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from petrogenic and pyrogenic sources. Further PCA/MLR analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion, and traffic-related pollution were 39, 38, and 23 %, respectively. Pyrogenic sources (coal combustion and traffic-related pollution) contributed 61 % of anthropogenic PAHs to sediments, which indicates that energy consumption could be a dominant factor in PAH pollution in this area. Acenaphthylene, acenaphthene, and dibenz[a,h]anthracene are the three main species of PAHs with more ecotoxicological concern in the Bohai Sea.  相似文献   

3.
Concentrations, spatial distribution and sources of 17 polycyclic aromatic hydrocarbons (PAHs) and methylnaphthalene were investigated in surface sediments of rivers and an estuary in Shanghai, China. Total PAH concentrations, excluding perylene, ranged from 107 to 1707 ng/g-dw. Sedimentary PAH concentrations of the Huangpu River were higher than those of the Yangtze Estuary. The concentration of the Suzhou River was close to the average concentration of the Huangpu River. PAHs source analysis suggested that, in the Yangtze Estuary, PAHs at locations far away from cities were mainly from petrogenic sources. At other locations, both petrogenic and pyrogenic inputs were significant. In the Huangpu and Suzhou Rivers, pyrogenic input outweighed other sources. The pyrogenic PAHs in the upper reaches of the Huangpu River were mainly from the incomplete combustion of grass, wood and coal, and those in the middle and lower reaches were from vehicle and vessel exhaust.  相似文献   

4.
Liaohe River Basin is an important region in northeast China, which consists of several main rivers including Liao River, Taizi river, Daliao River, and Hun River. As a highly industrialized region, the basin receives dense waste discharges, causing severe environmental problems. In this study, the spatial and temporal distribution of aqueous polycyclic aromatic hydrocarbons (PAHs) in Liaohe River Basin from 50 sampling sites in both dry (May) and level (October) periods in 2012 was investigated. Sixteen USEPA priority PAHs were quantified by gas chromatography/mass selective detector. The total PAH concentration ranged from 111.8 to 2,931.6 ng/L in the dry period and from 94.8 to 2766.0 ng/L in the level period, respectively. As for the spatial distribution, the mean concentration of PAHs followed the order of Taizi River > Daliao River > Hun River > Liao River, showing higher concentrations close to large cities with dense industries. The composition and possible sources of PAHs in the water samples were also determined. The fractions of low molecular weight PAHs ranged from 58.2 to 93.3 %, indicating the influence of low or moderate temperature combustion process. Diagnostic ratios, principal component analysis, and hierarchical cluster analysis were used to study the possible source categories in the study area, and consistent results were obtained from different techniques, that PAHs in water samples mainly originated from complex sources, i.e., both pyrogenic and petrogenic sources. The benzo[a]pyrene equivalents (EBaP) characterizing the ecological risk of PAHs to the aquatic environment suggested that PAHs in Liaohe River Basin had already caused environmental health risks.  相似文献   

5.
Concentrations and fluxes of unresolved complex mixture of hydrocarbons (UCM) and polycyclic aromatic hydrocarbons (PAHs) were analyzed for two 210Pb dated sediment cores from the Pearl River Estuary (PRE) and the adjacent northern South China Sea (NSCS). Compound-specific stable carbon isotopic compositions of individual n-alkanes were also measured for identification of the hydrocarbon sources. The historical records of PAHs in the NSCS reflected the economic development in the Pearl River Delta during the 20th century. PAHs in the NSCS predominantly derive from combustion of coal and biomass, whereas PAHs in the PRE are a mixture of petrogenic and pyrogenic in origins. The isotopic profiles reveal that the petrogenic hydrocarbons in the PRE originate predominantly from local spillage/leakage of lube oil and crude oils. The accumulation rates of pyrogenic PAHs have significantly increased, whereas UCM accumulation has slightly declined in the NSCS in the recent three decades.  相似文献   

6.
The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m3, respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: ‘diesel’ (56.3 % of total PAHs on average), ‘gasoline’ (15.5 %), ‘wood combustion, and incineration’ (13 %), ‘industry’ (9.2 %), and ‘road soil particle’ (6.0 %). The four n-alkane source factors identified were: ‘petrogenic’ (65 % of total n-alkanes on average), ‘mixture of petrogenic and biomass burning’ (15 %), ‘mixture of biogenic and fossil fuel’ (11.5 %), and ‘biogenic’ (8.5 %). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4 % of total PAHs and 5.0 % of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area of Tehran has been effective in reducing the PAHs concentration.  相似文献   

7.
Surface and core sediments collected from six fish farms in Hong Kong and from reference sites were investigated for the enrichment and sources of polycyclic aromatic hydrocarbons (PAHs). Moderately high ∑PAH16 levels (123-947 ng g−1, mean: 450 ng g−1) were found in the surface aquaculture sediments. In comparison with the sediments from the reference sites, the average enrichment percentage of total organic carbon (TOC) and PAHs in surface sediments were 21.4 and 43.8%, respectively, and in the core sediments, 24.6 and 73.7%, respectively. Mathematical source apportionment analyses (i.e. isomer ratios, hierarchical cluster analysis, principal components analysis with multiple linear regression analysis) suggested a higher percentage of petrogenic sources in aquaculture sediments. The fish feeds might be the main source of the enriched PAHs in the aquaculture sediments. To our knowledge, this is the first study showing that PAHs in aquaculture sediments could be attributed to human aquaculture activities.  相似文献   

8.
The main objectives of this work were to identify and determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace metals in carpet dust samples from various mosques of the city of Riyadh and to assess the health risks associated with the exposure to these pollutants. Therefore, 31 samples of mosque’s carpet dust from Riyadh were collected. The results showed that 14 PAHs were present in the dust samples with concentrations ranged from 90 to 22,146 ng g?1 (mean = 4096 ± 4277 ng g?1) where low molecular weight compounds were dominant. The presence of PAHs were in the order of naphthalene > chrysene and benzo(b)fluoranthene > benzo(a)pyrene > acenaphthene and benzo(k)fluoranthene > pyrene and the absence of indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene. The diagnostic ratio coupled with principle component analysis (PCA) revealed mix sources of petrogenic from traffic, stack emission, and pyrogenic inputs from essence and perfumed wood burning. Trace metals were significant in the dust samples, and their concentrations decrease in the order of Zn, Mn, Cu, Cr, Pb, Ni, and V where Zn being the highest (94.4 ± 91.5 μg g?1) and indium was the lowest (1.9 ± 9.3 μg g?1). The trace metals were major in southern and central parts of Riyadh and followed the order of central Riyadh > southern Riyadh > western Riyadh > eastern Riyadh > northern Riyadh. Estimated risk based on the total PAHs was found to be 4.30 × 10?11 for adult and 1.56 × 10?11 for children. Elemental non-cancer risk for adults ranged from 7.9 × 10?4 for Co to 7.58 × 10?1 for Li and for children ranged from 3.70 × 10?3 for Co to 3.54 for Li. Policy implication and mitigations of PAHs in Riyadh and Saudi Arabia were highlighted.  相似文献   

9.
This study investigated particle size and density distributions of polycyclic aromatic hydrocarbons (PAHs) in two surface sediments (JZ and KF), collected from the Yellow River of Henan section, China. The concentrations of Σ15PAHs ranged from 35.6 to 45862?ng g?1 dry wt, which were greatly elevated in coarse particles and low-density fractions. The Σ15PAHs concentrations in low-density fractions were 533 (JZ) and 996 (KF) times higher than those in the corresponding high-density fractions. However, due to relatively less quantities of low-density fractions (0.27–2.33%), most of the PAHs were contributed by the high-density components. For both sediments, the influence factors of PAHs source in the environment were very complex, more so than the level of TOC and BC content. JZ sediment was dominated by 4-ring to 6-ring PAHs (61.5–75.1%), while, 2-ring to 3-ring PAHs were abundant in KF samples (39.8–72.6%). Ratios of specific PAHs reflected PAHs among the size- and density-fraction of each sediment may be contaminated by mixed of pyrolytic and petrogenic origin. Additionally, ecological risk assessment of PAHs suggested that total toxic equivalent values of PAHs in the low-density fractions were much higher than those of the corresponding high-density fractions in the studied area.  相似文献   

10.
A novel multivariate method based on principal component analysis of pre-processed sections of chromatograms is used to characterize the complex PAH pollution patterns in sediments from Guanabara Bay, Brazil. Five distinct sources of 3- to 6-ring PAHs could be revealed. The harbour is the most contaminated site in the bay, its plume stretches in a South West to North East direction and the chemical profile indicates mainly pyrogenic sources mixed with a fraction of high-molecular-weight petrogenic PAHs. Rio São João de Meriti is the second largest source of PAHs, and introduces mainly a fraction of low-molecular-weight petrogenic PAHs from the western region of Rio de Janeiro. The sites close to the ruptured pipeline at the Duque de Caxias Refinery show a distinctive pollution pattern indicating a heavy petroleum fraction. The method also led to the identification of new potential indicator ratios also involving coeluting peaks (e.g., triphenylene and chrysene).  相似文献   

11.
In this work, principal component analysis/multiple linear regression (PCA/MLR), positive matrix factorization (PMF), and UNMIX model were employed to apportion potential sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from middle and lower reaches of the Yellow River, based on the measured PAHs concentrations in sediments collected from 22 sites in November 2005. The results suggested that pyrogenic sources were major sources of PAHs. Further analysis indicated that source contributions of PAHs compared well among PCA/MLR, PMF, and UNMIX. Vehicles contributed 25.1–36.7 %, coal 34.0–41.6 %, and biomass burning and coke oven 29.2–33.2 % of the total PAHs, respectively. Coal combustion and traffic-related pollution contributed approximately 70 % of anthropogenic PAHs to sediments, which demonstrated that energy consumption was a predominant factor of PAH pollution in middle and lower reaches of the Yellow River. In addition, the distributions of contribution for each identified source category were studied, which showed similar distributed patterns for each source category among the sampling sites.  相似文献   

12.
This study investigated the levels, sources and ecological risks of 16 polycyclic aromatic hydrocarbons (PAHs) in two sediment cores that were collected along the Huaxi Reservoir. The spatial distributions and residue levels of the 16 priority PAHs in the sediments from the Huaxi Reservoir were analyzed for their potential ecological risk, source apportionment and contribution to the total PAH residue. The concentration level of the total PAHs (TPAHs) was in the range 1805 ng·g?1 to 20023 ng·g?1 based on dry weight, and the content of PAHs in the Huaxi Reservoir exhibited a gradual upward trend. The PAH congener ratios fluoranthene/(fluoranthene + pyrene) and indeno[1, 2, 3-cd]pyrene/(indeno[1, 2, 3-cd]pyrene + benzo[g, h, i]perylene) were used to identify the source. The main source of the low molecular weight PAHs was wood and coal combustion, whereas the high molecular weight PAHs were primarily from petroleum combustion sources. The results of an ecological risk assessment demonstrated that ACE poses a potential ecological risk, while FLU, NAP, ANT, BaP, DBA, PHEN and PYR can have serious ecological risks.  相似文献   

13.
A wet–dry deposition sampler was located at The Scientific and Technological Research Council of Turkey-National Metrology Institute (TUBITAK-UME) station, and a bulk deposition sampler was placed at the Kad?ll? village to determine the atmospheric deposition flux of polycyclic aromatic hydrocarbons (PAHs) and pesticides (organochlorine and organophosphorus) in soluble fraction of samples in Kocaeli, Turkey. The 28 samples for each wet, dry, and total deposition were collected weekly from March 2006 to March 2007. Gas chromatography-tandem mass spectrometry was used to analyze the samples which were prepared by using solid-phase extraction (SPE) method. The sum of volume weighted mean of deposition fluxes was obtained as 7.43 μg m?2 day?1 for wet deposition, 0.28 μg m?2 day?1 for dry deposition and 0.54 μg m?2 day?1 for bulk deposition samples for PAHs and 9.88 μg m?2 day?1 for wet deposition, 4.49 μg m?2 day?1 for dry deposition, and 3.29 μg m?2 day?1 for bulk deposition samples for pesticides. While benzo(a)anthracene had the highest fluxes among PAH compounds for all types of depositions, guthion and phosphamidon had the highest deposition flux compared with the other pesticides. Benzo(ghi)perylene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, benzo(a)pyrene, and acenaphthene were not detected in any of the samples. Beta-HCH, gamma-HCH, and endrin aldehyde were the only compounds among 18 organochlorine pesticides to be detected in all deposition samples. The main sources of pesticides were the high number of greenhouses around the sampling stations. However, all of the organophosphorus pesticides were detected in all deposition samples. The pollution sources were identified as coal and natural gas combustion, petrogenic sources, and traffic for TUBITAK-UME station whereas coal and natural gas combustion and traffic were the main sources for Kad?ll? station by considering the results of factor analysis, ratios, and wind sector analysis.  相似文献   

14.
A total of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediment samples from Taihu Lake were analyzed by instruments, and sediment extracts were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-o-deethylase (EROD) induction using a rat hepatoma cell line (H4IIE). The cause–effect relationship between the observed EROD activity and chemical concentrations of PAHs was examined. Our results showed that sediment extracts could induce significant AhR effects, and the bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents of raw extracts (TEQbios) ranged from 2.7 to 39.8 pg g?1 dw. Chemical analysis showed that 16 PAHs were all detected in all samples, and their total concentrations (Σ16PAHs) ranged from 179.8 to 1,669.4 ng g?1 dw. The abundance of sedimentary PAHs in the three regions (Meiliang Bay, Gonghu Bay, and Xukou Bay) showed a decreasing trend from the inflow region to the outflow region. Chemical analysis-derived TEQs (TEQcals) contributed by PAHs ranged from 1.6 to 20.7 pg g?1 dw. The mean contribution rates (CRs) of PAHs to TEQbios were 48.9 %. In Meiliang Bay, EROD effects of 60 % samples were caused by PAHs whose CRs were more than 60 %, while in most sampling sites of Gonghu Bay and Xukou Bay, the CRs of PAHs to TEQbios were basically below 40 %. In addition, preliminary ecological risk assessment found that PAHs in sediments have very low ecological impact based on the chemical data of PAHs, while the sediments might pose an unacceptable risk to aquatic organisms and their predators based on the data of TEQbio. These findings showed that EROD effects of sediment extracts from Taihu Lake were also caused by other compounds, such as dioxins, polychlorinated biphenyls, etc., together.  相似文献   

15.
The concentrations of total polycyclic aromatic hydrocarbons (sigmaPAHs) and 15 individual PAH compounds in 20 surface sediments collected from four mangrove swamps in Hong Kong were analysed. sigmaPAH concentrations ranged from 356 to 11,098 ng g(-1) dry weight with mean and median values of 1992 and 1,142 ng g(-1), respectively. These values were significantly higher than those of marine bottom sediments of Hong Kong harbours, suggesting that more PAHs were accumulated in mangrove surface sediments. The concentrations of sigmaPAHs as well as individual PAH compound varied significantly among mangrove swamps. The swamps heavily polluted by livestock and industrial sewage, such as Ho Chung and Mai Po, had much higher concentrations of total PAHs and individual PAH than the other swamps. The PAH profiles were similar among four mangrove swamps, and were dominated by naphthalene (two-ring PAH), fluorene and phenanthrene (three-ring PAH). The mangrove sediments had higher percentages of low-molecular-weight PAHs. These indicated that PAHs in mangrove sediments might originate from oil or sewage contamination (petrogenic input). Ratio values of specific PAH compounds such as phenanthrene/anthracene and fluoranthene/ pyrene, were calculated to evaluate the possible source of PAH contamination in mangrove sediments. These ratios varied among samples, suggesting that mangrove sediments might have a mixed pattern of pyrolytic and petrogenic inputs of PAHs. Sediments collected from Ho Chung mangrove swamp appeared to be more dominated by pyrolytic input while those from Tolo showed strong petrogenic contamination.  相似文献   

16.
To better assess and understand potential health risk of urban residents exposed to urban street dust, the total concentration, sources, and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in 87 urban street dust samples from Tianjin as a Chinese megacity that has undergone rapid urbanization were investigated. In the meantime, potential sources of PAHs were identified using the principal component analysis (PCA), and the risk of residents’ exposure to PAHs via urban street dust was calculated using the Incremental Lifetime Cancer Risk (ILCR) model. The results showed that the total PAHs (∑PAHs) in urban street dust from Tianjin ranged from 538 μg kg?1 to 34.3 mg kg?1, averaging 7.99 mg kg?1. According to PCA, the two to three- and four to six-ring PAHs contributed 10.3 and 89.7 % of ∑PAHs, respectively. The ratio of the sum of major combustion specific compounds (ΣCOMB)?/?∑PAHs varied from 0.57 to 0.79, averaging 0.64. The ratio of Ant/(Ant?+?Phe) varied from 0.05 to 0.41, averaging 0.10; Fla/(Fla?+?Pyr) from 0.40 to 0.68, averaging 0.60; BaA/(BaA?+?Chry) from 0.29 to 0.51, averaging 0.38; and IcdP/(IcdP?+?BghiP) from 0.07 to 0.37, averaging 0.22. The biomass combustion, coal combustion, and traffic emission were the main sources of PAHs in urban street dust with the similar proportion. According to the ILCR model, the total cancer risk for children and adults was up to 2.55?×?10?5 and 9.33?×?10?5, respectively.  相似文献   

17.
A new and fully validated QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction and gas chromatography–tandem mass spectrometry methodology was developed and subsequently implemented for the quantification of 16 polycyclic aromatic hydrocarbons (PAHs) in wild (from Matosinhos Beach, Portugal) and commercial (from Ria de Arousa, Spain) mussels. The method proved to be robust, precise, and accurate, with recoveries ranging from 89.2 to 111.8 %. Total sums of 16 PAHs were 52.91 and 37.58 ng/g of wet weight for wild and commercial specimens, respectively. The three- to four-ring PAHs were the most abundant, and a mixture of petrogenic and pyrolytic sources were suspected to occur in both origin areas. Although the contamination levels were below the European regulated limits, specifically for commercial mussels (this despite wild specimens are also consumed), care should be taken in terms of human health, since we are still not aware of the low-dose versus long-term effects, even more in high-risk population groups.  相似文献   

18.
Yim UH  Hong SH  Shim WJ 《Chemosphere》2007,68(1):85-92
To assess the contamination of polycyclic aromatic hydrocarbons (PAHs) in the marine environment of Korea, 117 sediment samples along the coast were collected and analyzed. This study provides perspectives on concentration ranges and on geographic distributions of PAHs. Sum of 16 PAHs concentrations are in the range of 8.80-18500 ng/g dry weight. Industrialized and urbanized region showed high level of PAHs contamination. When compared with nationwide monitoring results of USA and UK, concentration of total PAHs are in the order of UK>US>this study. Major PAHs sources inferred from diagnostic indices and statistical approach were both pyrogenic and petrogenic. In coastal and offshore sediments of Korea, 7.76% sites had a mean PAH ERL quotient >1.0, indicating the potential to cause adverse effects in sensitive species. Youngil Bay was recognized as highly contaminated with PAHs, and recommended to be managed with special plan.  相似文献   

19.
We investigated the PAH contamination of Naples urban area, densely populated and with high traffic flow, by analyses of environmental matrices: soil and Quercus ilex leaves. Being some PAHs demonstrated to have hazardous effects on human health, the accumulation of carcinogenic and toxic PAHs (expressed as B(a)Peq) was evaluated in the leaves and soil. The main sources of the PAHs were discriminated by the diagnostic ratios in the two matrices. The urban area appeared heavily contaminated by PAHs, showing in soil and leaves total PAH concentrations also fivefold higher than those from the remote area. The soil mainly accumulated heavy PAHs, whereas leaves the lightest ones. Median values of carcinogenic PAH concentrations were higher in soil (440 ng g?1 d.w.) and leaves (340 ng g?1 d.w.) from the urban than the remote area (60 and 70 ng g?1 d.w., respectively, for soil and leaves). Also, median B(a)Peq concentrations were higher both in soil and leaves from the urban (137 and 63 ng g?1 d.w., respectively) than those from the remote area (19 and 49 ng g?1 d.w., respectively). Different from the soils, the diagnostic ratios found for the leaves discerned PAH sources in the remote and urban areas, highlighting a great contribution of vehicular traffic emission as main PAH source in the urban area.  相似文献   

20.
Xu J  Yu Y  Wang P  Guo W  Dai S  Sun H 《Chemosphere》2007,67(7):1408-1414
Fourteen surface sediment samples were collected from Lanzhou Reach of Yellow River, China in July 2005. The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector (GC-MS). Total concentrations of the PAHs ranged from 464 to 2621 ng/g dry weight. Sediment samples with the highest PAH concentrations appeared at the downstream of Lanzhou City, where there was the biggest wastewater discharge pipeline from Lanzhou Oil Refinery Factory and Lanzhou Chemical Industry Company. Municipal sewage also contributed to the PAH contamination in the sediments. A correlation existed between the sediment organic carbon content (f(oc)) and the total PAH concentrations (r(2)=0.57), suggesting that sediment organic carbon content played an important role in controlling the PAHs levels in the sediments. According to the observed molecular indices, PAHs contamination in Lanzhou Reach of Yellow River originated both from the high-temperature pyrolytic processes and from the petrogenic source, showing a mixed PAH input pattern, which was also confirmed by the results of a principal component analysis (PCA). According to the numerical effect-based sediment quality guidelines (SQGs) of the United States, the levels of PAHs at most studied sites in Lanzhou Reach of Yellow River should not exert adverse biological effects. Although at some sites (such as S10, S12, etc.) one PAH may exceed the effects range low (ERL), individual PAH did not exceed the effects range median (ERM). The results indicated that sediments in all sites should have potential biological impact, but should have no impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号