首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the spatial distribution of metals and the sources of metal pollution were investigated along the Northern Shelf of Cyprus (Mediterranean Sea). The concentrations of heavy metals and organic matter were measured in sediments collected from the Gemi Konagi, Girne, and Gazi Magusa areas. Measured metal values were compared with Mediterranean background concentrations. Cu and Zn concentrations at the Gemi Konagi area and all of the Cr values were higher than Mediterranean backgrounds. The metal levels were evaluated by the enrichment factor (EF), contamination factor (Cf) and degree of contamination (Cd). EF results indicated that heavy metal sources were probably originated from natural processes and mining activities. The Cf values of Hg indicated low contamination. The Cd (degree of contamination) values for all heavy metals also showed a low degree of contamination at the study area. Metal levels were also compared with the numerical Sediment Quality Guidelines (SQG) for an environmental risk assessment. Results showed that sediments were classified as heavily polluted by Cu and moderately polluted by Zn at Gemi Konagi and heavily polluted by Cr and Ni contamination at all sampling areas per the SQG.  相似文献   

2.
Distribution and sources of 16 parent polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments from Port Dickson, Malaysia. Total PAHs varied from 481.3 to 976.6 with a mean value of 679.3 ng g?1 dry weight, which can be classified as moderate level of pollution. The toxic assessment suggested that the PAHs in sediments will not cause immediately adverse biological effects. Both petrogenic and pyrogenic PAHs were recorded in the study area with dominance of pyrogenic. The authors believe that effective monitoring and implementation of environmental regulations have resulted in a tremendous improvement of sediment quality in the Malaysian aquatic ecosystem.  相似文献   

3.
安徽铜陵新桥河的沉积物样中,重金属浓度为Cu〉Zn〉Pb〉Cr,按国家土壤环境二级质量标准评价,Cu、Zn含量已超标。其新桥河的沉积物样中,Cu、Zn的污染参数很高,含量为高风险或极高风险;Pb污染参数较高,含量为一般风险或高风险。同时新桥河的沉积物样中,Cu具有很高的潜在生态风险。  相似文献   

4.
Trace metal levels in freshwater fish, sediment and water   总被引:1,自引:1,他引:1  
The trace metal concentrations in water, sediment and aquatic organisms, such as fish, could indicate the level and tendency of the pollution. This is important not only for the protection of the environment, but for evaluation of the quality of fish meat either captured from natural waters or cultured in fishponds. The total trace metal concentrations in samples of fish from different regions of Hungary and from different species have been determined by using an X-ray fluorescence technique (EDXRF). Water, sediment and fish samples from fishpond systems with different feeding and stocking has also been analyzed. In the case of zinc contents, differences have been traced between the cultured and wild common carp. In the case of common carp reared under different feeding conditions, differences were also observed in the zinc concentration. The retention of the trace metals in the fish has been studied by measuring the levels in sediment, water and feed. The different retention can be explained by the different availability of zinc in the applied feeds, which can be related to the presence of different metal species in the feeds.  相似文献   

5.
湖北网湖位于长江中游,与长江干流相通,研究其沉积物中重金属分布特征及生态风险评价对长江经济带水质安全和水污染治理具有重要的意义。分析了网湖20个样点0~25 cm深度沉积物中As、Hg、Cu、Zn、Cd、Pb、Cr等7种重金属的质量分数和空间分布特征,利用相关分析和主成分分析探讨了表层沉积物中重金属的来源,并利用地累积指数法、潜在生态风险指数法和一致性沉积物质量基准进行重金属污染评价。结果表明:As、Hg、Cu、Zn、Cd、Pb、Cr等7种重金属的平均质量分数分别为37.5、0.137、108、123、0.283、37.8、108 mg·kg−1。与长江流域其他重要湖泊如巢湖、太湖等相比,网湖沉积物重金属含量处于较高水平。Pearson相关性分析表明,As、Zn、Cd两两之间呈极显著正相关 (p<0.01),这说明其具有同源性,分析主要来自于农业源;Cu和Pb之间也呈极显著正相关 (p<0.01),分析主要来源于交通运输污染源。重金属污染评价结果表明,沉积物整体受到极严重的重金属污染和很强的潜在生态危害,入湖区附近相对较严重,需及时防控和治理。一致性沉积物质量基准评价结果显示,Zn、Cd、Hg和Pb引发生物毒性的概率低于25%,As、Cu和Cr有25%~75%的概率产生有害生物效应。  相似文献   

6.
Background Acid-volatile sulfide (AVS) is operationally defined as sulfides in sediment, which are soluble in cold acid, and is reported as the most active part of the total sulfur in aquatic sediments. It is a key partitioning phase controlling the activities of divalent cationic heavy metals in sediment. Methods In order to examine this in mangrove environments, six sites were selected along the Jiulong River Estuary in Fujian, China, which had previously been reported to be polluted by heavy metals. Sediments were sampled from 0–60 cm depth at each site, and the spatial distribution of AVS and SEM (simultaneously extracted metals: copper, cadmium, zinc, and lead) were determined. Results and Discussion The results indicate that the AVS concentrations had a spatial variation, ranging from 0.24 to 16.10 μmol g−1 sediment dry weight. The AVS concentration in the surface layer is lower than that of the deeper sediment, with peak values in the 15–30 cm horizon. There was no correlation between the AVS value and organic matter content or total dissolved salts, but a significant positive correlation of AVS with surface sediment (0–5 cm) moisture content was found. This indicates that water logged sediments tend to have a high AVS value. The amount of SEM was within the range of 0.33–2.80 μmol g−1 sediment dry weight and decreased with sediment depth. Conclusions There was a marked variation in AVS and SEM among different sites studied. AVS concentrations were generally lower in the surface sediments, while SEM concentrations slightly decreased with the depth. Higher concentrations of SEM found in the upper layers of the sediments confirm the earlier suggestions that this study area may suffer from increasing heavy metal pollution. Recommendations and Perspectives When monitoring environmental impacts by using AVS, the micro and large-scale spatial variation as well as vertical distribution need to be estimated to avoid misleading results. Both AVS and SEM concentrations in different sediment layers should be taken into account in assessing the potential impact of heavy metals on the biotic environment.  相似文献   

7.
《Environmental Forensics》2013,14(4):305-312
The distribution of metal contaminants between different size fractions of marine sediments is well known. However, the use of size normalization techniques may alter the ability or usefulness in identifying potential sources in complex environments. In a reassessment of metal data from the shelf area of Sydney, Australia, the mud and sand fractions were investigated separately by PCA and PLS methodologies. The analyses were able to produce clear distinctions between industrial/urban sources when based on a suite of metals rather than individual (single-element) concentrations. Signature analysis by PLS with copper, lead, zinc, manganese, chromium, cobalt, nickel, and cadmium demonstrated the dispersion of the fine-grained contaminated material to the south in the East Australian Current. However, due to the commonality between many of the metals, a subset of four metals was used to define the signature. This significantly improved separation, showing clear plumes extending ~30 km from the source rivers.  相似文献   

8.
巢湖表层沉积物中重金属的分布特征及其污染评价   总被引:13,自引:1,他引:13  
以巢湖表层沉积物为研究对象,利用BCR连续提取法研究了沉积物中Cr、Co、Ni、Cu、Cd、Zn、V和Pb等8种重金属元素的分布特征,同时运用潜在风险指数法和地累积指数法综合评价了巢湖沉积物中重金属的生态风险。结果表明,巢湖沉积物中的重金属含量在空间上表现出东西高、中间低的分布特征。巢湖表层沉积物中Cr、Co、Ni、V和Cu 5种重金属都主要以残渣态为主,Zn和Cd主要以弱酸提取态为主,Pb以可还原态为主,同时,Co和Cu 2种元素的可交换态及可还原态含量占有较高比例,具有潜在危害性。相关性分析显示,Cr、Cu、Pb、Ni、Zn和Cd 6种重金属元素的来源和分布可能具有相似性,Co和V 2种重金属元素具有相似的地球化学行为且其主要来源可能与其他几种重金属不同。潜在生态风险指数评价结果表明,巢湖表层沉积物中8种重金属元素构成的生态危害顺序为:Cd>Pb>Co>Cu>Ni>Zn>V>Cr,Cd具有高的生态危害等级,其他7种重金属元素均为低生态危害等级。地累积指数法评价结果表明:巢湖沉积物重金属元素的富集程度为Cd>Zn>Pb>Co>Cu>V>Ni>Cr,Cr属于清洁级别,Co、Cu、V和Ni处于轻度污染水平,Zn和Pb处于偏中度污染,Cd达到了重污染水平。  相似文献   

9.
Black carbon (BC) in surface sediments from Henan section of Yellow River and Huaihe River, China, was determined. Average content of BC in Huaihe River was 0.33%, higher than that in Yellow River (n?=?23) with mean value of 0.15%. Distribution patterns of BC in Yellow River and Huaihe River were similar, namely that tributaries had higher BC content than main stream. In addition, BC content in the mainstream of Yellow River and Huaihe River decreased with altitude. The BC content presented a significant positive correlation with clay (r?=?0.672; p?<?0.01) content in Yellow River, while neither did in Huaihe River. The ratio of BC/TOC ranged from 1.8–57.4% (median 29.6%), evidencing pyrogenic fossil fuel source of BC in Yellow River. Relatively low values of BC/TOC in Huaihe River (5.3%–28.8%, median 7.5%,) reflected that the origin of BC is from burning of biomass. In addition, Pearson rank correlation analysis showed that BC was in strong correlation with lighter PAH in Yellow River, while BC was in significant correlation with heavier PAH in Huaihe River. The ratio of BC/TOC indicated that BC in Yellow River mainly came from fossil fuel combustion, while BC in Huaihe River was primarily from biomass burning.  相似文献   

10.
江苏省某镇土壤重金属污染评价   总被引:3,自引:0,他引:3  
为了解江苏省某镇表层土壤重金属污染特征,采集并测定了190个土壤样品的As、Cd、Hg和Pb 4种重金属含量,分析土壤重金属的分布特征,综合运用内梅罗综合污染指数法和污染负荷指数法两种评价方法对土壤重金属污染状况进行评价。结果表明:该镇表层土壤中As、Cd和Pb含量平均值高于土壤背景值,Hg与之相反。4种重金属都是主要受到点源污染的影响,其中As的高含量区主要分布在镇的正西边,Cd和Pb的高含量区主要分布在镇的中心区域,Hg的高含量区主要分布在东部以及东北区域。经内梅罗综合污染指数法评价,安全、警戒线、轻污染、中污染和重污染样点的比例分别为5.79%、32.11%、52.11%、4.74%和5.26%。经污染负荷指数法评价,无污染、轻度污染、中度污染和重度污染样点的比例分别为73.69%、25.26%、1.05%和0%。在内梅罗综合污染指数法和污染负荷指数法评价的结果中,有55.26%的样点评价结果相同,而44.74%的样点不同,但都显示出污染程度从镇中心向四周逐渐降低的变化态势。  相似文献   

11.
选用3种含铁材料FeCl3、Fe(OH)3和FePO4,开展重金属和砷(As)复合污染底泥的稳定化处理实验,并用毒性浸出测试(TCLP)的结果和底泥交换态重金属(Pb、Cd、Cu、Zn)及As的含量来评价其稳定化效果。结果表明,(1)FeCl3和FePO4降低了底泥pH值,Fe(OH)3轻微地提高了底泥pH值。(2)FeCl3活化了底泥中Pb、Cd、Cu、Zn,使其浸出量和交换态含量增加,对As浸出量的影响不大,但使底泥中As交换态含量明显降低,且在最大添加量(8.00 g/kg)时As交换态含量未检测出;Fe(OH)3降低了Cd交换态和浸出量,稍增加了As交换态和浸出量,但对Pb、Cu、Zn交换态和浸出量影响不明显;FePO4明显降低了Pb的浸出量和交换态含量,略微降低了交换态Cd、Zn含量,对交换态Cu影响不大,但明显增加了As的浸出量和交换态含量。综上,FeCl3对As具有较好的稳定化效果,但明显活化了底泥中的4种重金属;Fe(OH)3亦对底泥中Cd有一定稳定化效果;FePO4对Pb的稳定化效果较好,但明显活化了底泥中的As。显然,3种含铁材料都不能实现底泥中重金属和As的同时稳定化。  相似文献   

12.
Background There has been an increasing concern about the treatment and disposal of contaminated sediment from dredged river, harbor or estuary due to the accumulated toxic organics such as dioxins and inorganics particularly heavy metals like Cr, Pb, Zn, Cu, Hg and Cd. However, considering the huge amount of materials and financial costs involved, any candidate technology must ultimately result to reusable residual by-products. This can only be made possible if the toxic pollutants are removed or stabilized in the raw sediment and then fed back into the materials cycle. Currently, we are developing a pyrolysis process for the commercial-scale cleanup of dioxins and heavy metal-contaminated river sediment to yield reusable char for various economical applications. In this connection, this paper describes our preliminary investigation into the extent of dioxins and heavy metal volatilization from actual contaminated sediment. The stabilization of certain metallic species particularly Cr ions was studied. Methods Laboratory scale pyrolysis experiments were conducted using a special horizontal lab-scale pyrolyzer. Sediment samples from Shanghai Suzhou Creek and Tagonoura Harbor were pyrolyzed in the reactor under nitrogen gas at 800°C and different retention times of 30, 60 and 90 min. A constant heating rate of 10°C min-1 was employed. The pyrolysis gas was first allowed to pass through a cold trap to condense the tar. Uncondensed gases were then channeled through a column containing an adsorbent (XAD-2 Resin) for dioxins. Heavy metal concentrations in the initial and final sediment residues were analyzed by ICP (Nippon Jarrel-Ash) following their acid and alkali (for Cr6+) digestion. Dioxins content of the pyrolysis char, tar, and exhaust gases in the dioxin adsorbent were also determined. For comparative purpose, thermal treatment under air flow was conducted. Results The data for the removal of heavy metals from Suzhou Creek sediment showed very significant reductions in Pb, Zn and Cr6+ content of the sediment at this condition. Percentage removals were 42.4%, 60.8% and 42.2%, respectively. The disappearance of Cr6+ was due to reduction reactions rather than volatilization since the total Cr content remained almost unchanged. Other heavy metals such as Cu, Fe and Ni showed very minimal reductions. Nonetheless, Toxicity Characteristics Leaching Procedure (TCLP) tests confirmed that these residual heavy metals were rather stable in the pyrolysis char. Reduction of toxic Cr6+ at 42.2% has also been achieved by pyrolysis (with N2) as opposed to the more than 580 % increase in Cr6+ observed during thermal oxidation (with air). Discussion Pyrolysis also remove toxic organics particularly dioxins from the sediment. For the total dioxins, removal percentage of 99.9999% was achieved even at the lowest retention time of 30 min. Almost all polychlorinated dibenzo-p-dioxine (PCDDs) and polychlorinated dibenzo-furans (PCDFs) were removed at any retention time. The TEQs detected from the solid residues were mainly contributed by dioxin-like PCBs, yet these were present in relatively trace quantities. At the shortest retention time of 30 min, only 0.000085 pg-TEQ g-1 of polychlorinated biphenyls (PCBs) was detected in the pyrolysis char. Furthermore, the residual PCBs have very low toxicity ratings and none of the highly toxic PCBs, which were initially present in the sediment such as 3,3',4,4',5-PeCB and 3,3',4,4'5,5'-HxCB, were detected in the char. Results further confirmed that most of the dioxins that were removed were transferred to the gas phase so that volatilization may be considered as the main mechanism for their removal. Conclusion Some heavy metals particularly Pb and Zn can be volatilized under N2 pyrolysis at 800oC. Pyrolysis also prevented the formation of more toxic Cr6+ ions and at the same time resulted to its reduction by around 42.2% contrast to the 580% increase during thermal oxidation. PCDDs and PCDFs have been removed and were not formed in the solid products over the retention time range of 30-90 min at 800°C. Dioxin-like PCBs mostly remained and a retention time of 30 min was found sufficient for its maximum removal. Recommendations and Perspective . With the above results, a temperature of 800oC at a retention time of 30 min is sufficient for the removal of total dioxins and some heavy metals by volatilization. It is however necessary to destroy the dioxins as well as recover heavy metals in the gas phase. Stability of remaining heavy metals in the char also needs to be confirmed by leaching tests. These are the major concerns, which we are currently evaluating to establish the feasibility of our proposed large scale pyrolysis system for sediment treatment.  相似文献   

13.
乌梁素海表层沉积物重金属分布特征及生态风险评价   总被引:3,自引:1,他引:3  
采样分析了内蒙古乌梁素海表层沉积物中Cu、Zn、Pb、Cr、Cd、Hg和As的含量、分布特征和富集状况,分别以现代工业化前正常颗粒沉积物中重金属含量的最高背景值和河套地区土壤中重金属含量背景值为参照,采用瑞典科学家Lars Hakanson的潜在生态危害指数法对7种重金属的富集系数和生态危害系数以及各采样点的生态危害指数进行了评价。结果表明,乌梁素海表层沉积物中As和Pb的空间变异性较大;以2种背景值为参比得出的重金属污染水平顺序相近,Hg和As为对乌梁素海生态环境具有潜在影响的主要重金属元素;同时表明,以河套地区土壤重金属背景值为参照更能直观地反映出乌梁素海表层沉积物中重金属的污染程度。  相似文献   

14.
This article is the most recent report of polycyclic aromatic hydrocarbons (PAHs) in the Muar River and Pulau Merambong, Peninsular Malaysia. A total of 16 priority pollutant PAHs in addition to methylphenanthrene among alkylated PAHs were analyzed in surface sediments during May 2013. Total PAHs ranged from 212 to 440 and 151 to 412 ng g?1 dw in sediments from the Muar River and the Pulau Merambong, respectively. The Muar River showed an increasing trend of PAH concentrations, while no previous data exist for the Pulau Merambong. Generally, mixed petrogenic and pyrogenic sources of PAHs with predominance of the latter were detected in the study area. Effective management of oil pollution has caused a drastic decrease in petrogenic sources of PAHs.  相似文献   

15.
This paper reports the reconstruction of the contamination history of a large South American industrial coastal area (Santos Estuary, Brazil) using linear alkylbenzenes (LABs). Three sediment cores were dated by 137Cs. Concentrations in surficial layers were comparable to the midrange concentrations reported for coastal sediments worldwide. LAB concentrations increased towards the surface, indicating increased waste discharges into the estuary in recent decades. The highest concentration values occurred in the early 1970s, a time of intense industrial activity and marked population growth. The decreased LAB concentration, in the late 1970s was assumed to be the result of the world oil crisis. Treatment of industrial effluents, which began in 1984, was represented by decreased LAB levels. Microbial degradation of LABs may be more intense in the industrial area sediments. The results show that industrial and domestic waste discharges are a historical problem in the area.  相似文献   

16.
煤矿复垦区土壤重金属分布特征与质量评价   总被引:2,自引:0,他引:2  
为保证煤矿复垦区种植农作物的充填复垦土壤的生态安全,以淮南矿区煤矸石充填复垦地为研究对象,通过对研究区内Cd、Cr、Ni、Pb、Cu、Zn和Hg 7种重金属不同深度含量分析,总结其纵向分布特征,并将研究区土壤重金属含量与淮南市土壤背景值、《土壤环境质量标准》(GB 15618-1995)作比较,分析这7种重金属的污染程度.结果表明,这7种重金属都有不同程度的污染,其中土壤受Cd污染最严重,土壤中重金属垂直方向上无确定分布规律.总体而言,土壤重金属潜在生态风险属于强生态危害.从垂直方向来看,重金属潜在生态风险指数(RD随着深度的增加出现先下降后升高的趋势,其中40~60 cm深度的RI最大.重金属生态危害程度依次为Cd> Hg> Ni> Cu> Cr> Pb> Zn,其中Cd为矿区土壤中最主要的重金属污染生态风险因子.  相似文献   

17.
Abstract

Composts improve organic carbon content and nutrients of calcareous soils but the accumulation and distribution of phosphorus and heavy metals among various fractions in soil may vary under the south Florida conditions. The accumulation of P, Cd, Ni, and Pb with depth and the distribution of water soluble, exchangeable, carbonate, Fe–Mn oxides, organic and residual forms of each element were investigated in soils amended with municipal solid waste (MSW) compost, co-compost and biosolids compost and inorganic fertilizer (as control). Total concentrations of P, Cd, Ni, and Pb were higher in the 0–22 cm soil layers and decreased considerably in the rock layers. These elements were in the decreasing order of P ? Pb > Ni > Cd. Amounts of water soluble and exchangeable forms of P, Cd, Ni and Pb were negligible at 0–22 cm soil depths except for Cd in the 10–22 cm depth. Amending calcareous soil with either organic or inorganic amendments rendered phosphorus, nickle and lead in the residual form followed by Fe–Mn oxides form in the 0–10 and 10–22 cm soil layers. Cadmium was predominantly in the Fe–Mn oxides fraction followed by the residual and carbonate forms in both soil layers. A significant positive correlation was found between various organic carbon fractions and organic forms of P, Cd and Pb in the surface soil layer. Soil amended with MSW compost had higher concentration of Cd in the organic fraction whereas, co-compost and MSW compost amended soil had higher concentrations of organic Ni fraction in the 0–10 cm soil layer.  相似文献   

18.
化学固定是重金属污染土壤修复及改良技术之一。通过盆栽实验,研究了水稻秸秆炭及其与石灰、磷酸盐组合改良剂对石漠化土壤-玉米体系中As、Zn和Pb 3种重金属迁移的影响,分析了玉米及土壤重金属含量、形态变化。结果表明,几种改良剂均显著促进了玉米生长,地上部分生物量:水稻秸秆炭 > 石灰+水稻秸秆炭 > 石灰 > 秸秆 > 磷酸盐+水稻秸秆炭 > 磷酸盐 > 对照。水稻秸秆炭、石灰及其组合均能够提高土壤pH值,抑制重金属向玉米地上部分迁移。添加改良剂后土壤中As的弱酸提取态和可还原态含量显著降低,均小于3 mg·kg-1。水稻秸秆炭、秸秆与石灰及其组合均能够降低土壤中重金属提取态和还原态量,能够降低玉米籽粒中重金属的含量,但玉米籽实中Pb依然超标。  相似文献   

19.
Introduction In this work, sediments of the River Tisa (Tisza) are studied to assess their environmental pollution levels for some major heavy metals, as well as to predict the investigated elements’ mobility on the basis of their association type with the substrate. The Tisa River catchments area is a subbasin of the River Danube. Part of this river, 166 km long, belongs to the Serbian province of Vojvodina, before it flows into the Danube. It has been chosen for our investigation, because it has been exposed to intense pollution in the last decades. Materials and Methods The river sediment samples were collected at 32 locations. The proportions of sand, silt and clay fractions were determined. The sequential extraction procedure following a modified Tessier method was applied for speciation of the metal forms in the collected samples. The metal concentrations of Zn, Cd, Pb, Ni, Cu, Cr, Fe and Mn in extracts were determined by atomic absorption spectroscopy. Results and Discussion Granulometric analysis showed that some 50% of the Tisa River sediments were silt and clay, while the rest was sand with quartz, as the main constituent. The average metal content of the surface river sediment samples for every fraction of sequential extraction was presented and discussed in relation to pH, Eh and metal fractionation. The average metal content from the Tisa River sediments, obtained as an average of the metal’s concentration released in all five sequential extraction fractions was compared with: average metal contents of the Tisa River sediments in Hungary, metal content in soils formed on the Tisa River alluvium of Vojvodina, average metal content in soils of Vojvodina, and average metal content in soils of Hungary. An assessment of metal pollution levels in Tisa River sediments was made by comparing mean values for obtained results for the Tisa River sediments with the freshwater sediment’s Quality Guidelines as published by US EPA, Environment Canada and soil standards for Serbia. Conclusion According to US EPA and Canadian Quality Guidelines for freshwater sediments, the concentration of heavy metals in Tisa sediments were: (a) much higher than defined concentrations below which harmful effects on river biota are unlikely to be observed, (b) below defined concentrations above which harmful effects on river biota are likely to be observed. The concentration levels of Pb, Ni, Cu and Cr in Tisa River sediments are safe when compared with Serbian MAQ (Maximum Allowed Quantity) standards for soils, but they are unsafe in the case of Zn and Cd. Recommendations and Outlook The quality of sediments in the Tisa River was on the border line between potentially polluted and polluted. This line could very easily be exceeded since the quality of sediments in the Tisa River in Hungary was already worse than in Serbia. These results indicated the need for further monitoring of heavy metals in that locality.  相似文献   

20.
The contributions of heavy metals in selected vegetables through atmospheric deposition were quantified in an urban area of India. Deposition rate of Zn was recorded maximum followed by Cu, Cd and Pb. The concentrations of Zn and Cu were highest in Brassica oleracea, Cd in Abelmoschus esculentus and B. oleracea, while Pb was highest in Beta vulgaris. Heavy metal pollution index showed that B. oleracea was maximally contaminated with heavy metals followed by A. esculentus and then B. vulgaris. The results of washing showed that atmospheric deposition has contributed to the increased levels of heavy metals in vegetables. Both Cu and Cd posed health risk to local population via test vegetables consumption, whereas Pb posed the same only through B. oleracea. The study concludes that atmospheric depositions can elevate the levels of heavy metals in vegetables during marketing having potential health hazards to consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号