共查询到20条相似文献,搜索用时 31 毫秒
1.
Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a “fingerprint” of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8–2.0 ppm v). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor ( o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1,3,5-trimethylbenzene, toluene, and benzene) thus constitute a potential fingerprint of emissions associated with compression. Implications: Information regarding air emissions from shale gas development and production is critically important given production is now occurring in highly urbanized areas across the United States. Methane, the primary shale gas constituent, contributes substantially to climate change; other natural gas constituents are known to have adverse health effects. This study goes beyond previous Barnett Shale field studies by encompassing a wider variety of production equipment (wells, tanks, compressors, and separators) and a wider geographical region. The principal components analysis, unique to this study, provides valuable information regarding the ability to anticipate associated shale gas chemical constituents. 相似文献
2.
The Marcellus Shale is one of the largest natural gas reserves in the United States; it has recently been the focus of intense drilling and leasing activity. This paper describes an air emissions inventory for the development, production, and processing of natural gas in the Marcellus Shale region for 2009 and 2020. It includes estimates of the emissions of oxides of nitrogen (NO x), volatile organic compounds (VOCs), and primary fine particulate matter (≤2.5 µm aerodynamic diameter; PM 2.5) from major activities such as drilling, hydraulic fracturing, compressor stations, and completion venting. The inventory is constructed using a process-level approach; a Monte Carlo analysis is used to explicitly account for the uncertainty. Emissions were estimated for 2009 and projected to 2020, accounting for the effects of existing and potential additional regulations. In 2020, Marcellus activities are predicted to contribute 6–18% (95% confidence interval) of the NO x emissions in the Marcellus region, with an average contribution of 12% (129 tons/day). In 2020, the predicted contribution of Marcellus activities to the regional anthropogenic VOC emissions ranged between 7% and 28% (95% confidence interval), with an average contribution of 12% (100 tons/day). These estimates account for the implementation of recently promulgated regulations such as the Tier 4 off-road diesel engine regulation and the U.S. Environmental Protection Agency's (EPA) Oil and Gas Rule. These regulations significantly reduce the Marcellus VOC and NO x emissions, but there are significant opportunities for further reduction in these emissions using existing technologies. Implications: The Marcellus Shale is one of the largest natural gas reserves in United States. The development and production of this gas may emit substantial amounts of oxides of nitrogen and volatile organic compounds. These emissions may have special significance because Marcellus development is occurring close to areas that have been designated nonattainment for the ozone standard. Control technologies exist to substantially reduce these impacts. PM2.5 emissions are predicted to be negligible in a regional context, but elemental carbon emissions from diesel powered equipment may be important. 相似文献
3.
Production of natural gas from shale formations is bringing drilling and production operations to regions of the United States that have seen little or no similar activity in the past, which has generated considerable interest in potential environmental impacts. This study focused on the Barnett Shale Fort Worth Basin in Texas, which saw the number of gas-producing wells grow from 726 in 2001 to 15,870 in 2011. This study aimed to measure fence line concentrations of methane and hydrogen sulfide at natural gas production sites (wells, liquid storage tanks, and associated equipment) in the four core counties of the Barnett Shale (Denton, Johnson, Tarrant, and Wise). A mobile measurement survey was conducted in the vicinity of 4788 wells near 401 lease sites, representing 35% of gas production volume, 31% of wells, and 38% of condensate production volume in the four-county core area. Methane and hydrogen sulfide concentrations were measured using a Picarro G2204 cavity ring-down spectrometer (CRDS). Since the research team did not have access to lease site interiors, measurements were made by driving on roads on the exterior of the lease sites. Over 150 hr of data were collected from March to July 2012. During two sets of drive-by measurements, it was found that 66 sites (16.5%) had methane concentrations >3 parts per million (ppm) just beyond the fence line. Thirty-two lease sites (8.0%) had hydrogen sulfide concentrations >4.7 parts per billion (ppb) (odor recognition threshold) just beyond the fence line. Measured concentrations generally did not correlate well with site characteristics (natural gas production volume, number of wells, or condensate production). t tests showed that for two counties, methane concentrations for dry sites were higher than those for wet sites. Follow-up study is recommended to provide more information at sites identified with high levels of methane and hydrogen sulfide. Implications:Information regarding air emissions from shale gas production is important given the recent increase in number of wells in various regions in the United States. Methane, the primary natural gas constituent, is a greenhouse gas; hydrogen sulfide, which can be present in gas condensate, is an odor-causing compound. This study surveyed wells representing one-third of the natural gas production volume in the Texas Barnett Shale and identified the percent of sites that warrant further study due to their fence line methane and hydrogen sulfide concentrations. 相似文献
5.
An analysis was carried out on precipitation chemical data from 31 events in August and September 1978 and from June to October 1979, collected largely within a 50 km radius of the INCO Nickel Smelter at Sudbury. Ontario. During these periods INCO's daily SO 2 emissions ranged from 658 to 2320td −1. and averaged approx. 1700td −1. With these emissions, it was found that the relative contribution of INCO emissions to the total wet-deposition of acids, sulfur and a number of trace metals in the Sudbury area (i.e. within about 50km of the smelter) is small (with the exception of copper and nickel), in the order of 10–20%, and depends on the weather system passing through the area. Warm fronts generally bring with them polluted air masses from Southern Ontario and the Eastern United States, and for acids, sulfur, and a number of trace metals, the INCO contribution to wet deposition in the Sudbury area appears to be about 10% of the total. For cold fronts, the percentage contribution from INCO is roughly twice as great. For copper and nickel, the smelter contribution appears to be roughly 40% of the total wet-deposition, regardless of the type of weather system. Nevertheless a definite influence of the smelter plume on the local downwind quality of precipitation can be detected, especially for sulfates and trace metals. The smelter impact on precipitation acidity is less pronounced. It was also found that during rainstorms, most particulate constituents (acids, sulfates, trace metals) are removed quite efficiently from the smelter emissions. Typically, almost 100% of these constituents may be removed within 50km during the rainy period. The percentage of the emitted sulfur that is removed by precipitation is much lower, mainly because this sulfur is largely in the form of sulfur dioxide which is subject to a low precipitation scavenging efficiency. 相似文献
6.
The Turkish Straits, i.e. Istanbul (Bosphorus) and Canakkale (Dardanellen), which connect Black Sea and Aegean Sea, have a continuously increasing maritime traffic. Especially, the maritime traffic on Bosphorus (Istanbul Strait) that connects the continents of Europe and Asia is too complex due to geographical conditions. The maritime traffic in the Turkish Straits includes the ships, which are in use in domestic transport, the transit passing ships with various aims and fishing, sport or strolling ships. In this paper, fuel consumption and exhaust gas emissions NO x, CO, CO 2, VOC, PM exhausted from ships such as transit vessels, which are passing both Bosphorus and Dardanellen, and passenger ships used in domestic transport on the Bosphorus are calculated. In order to do this the general characteristics, the main engine systems, the fuel types, cruising times and speeds of all vessels are taken into consideration. The calculated NO x emissions on the Bosphorus are 2720 t from domestic passenger ships and 4357 t from transit ships. In this case it is clear that the transit ships cause more than half of the total amount of emissions from ships on the Bosphorus. The amount of nitrogen oxide emissions from domestic passenger ships used for public transport in Istanbul Strait is equal to approx. 4% of nitrogen oxide emissions from motor vehicles in Istanbul. Finally, the future emissions from ships in Turkish Straits are discussed. 相似文献
7.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM 2.5 (particles with an aerodynamic diameter ≤2.5 μm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore's contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM 2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide. Implications Singapore is widely recognized for its environmental achievements and often cited as a model of a high-density, livable, and sustainable city. This article reviews available information with the aim to provide a reference for future scientific research of strategic relevance for Singapore's air quality and greenhouse gas mitigation management under a multipollutant framework. However, the limited publicly accessible data and little scientific information prevent a comprehensive assessment of the local air quality and greenhouse gas emissions. Singapore's dynamic economy and strong profile in advanced science and technological innovation have the potential to enhance the research agenda in this area, which is not yet well developed in tropical cities. 相似文献
8.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide. 相似文献
9.
Flux chamber measurements made in a rainforest provide evidence that methyl chloride is emitted from rotting wood. However, its net flux was found to be into the soil, probably due to competing production and consumption processes within the soil. Evidence was found for a regional source, possibly vegetation, since its concentration above the canopy was substantially greater than reported average equatorial values. 相似文献
10.
Religious festivals ( festas) in the densely populated Maltese archipelago (Central Mediterranean) are ubiquitous during summer when 86 of them are celebrated between June and October, each involving the burning of fireworks both in ground and aerial displays over a period of 3 days or longer per festival. We assessed the effect of fireworks on the air quality by comparing PM 10 and its content of Al, Ba, Cu, Sr and Sb which materials are used in pyrotechnic compositions. PM 10 was collected mainly from two sites, one in Malta (an urban background site) and the other in Gozo (a rural site) during July–August 2005 when 59 feasts were celebrated and September–October 2005 when only 11 feasts occurred. For both Malta and Gozo, PM 10 and metal concentration levels measured as weekly means were significantly higher during July–August compared to September–October and there exist strong correlations between PM 10 and total metal content. Additionally, for Malta dust, Al, Ba, Cu and Sr correlated strongly with each other and also with total concentration of all five metals. The same parameters measured in April 2006 in Malta were at levels similar to those found in the previous October. Ba and Sb in dust from the urban background site in Malta during July–August were at comparable or higher concentration than recently reported values in PM 10 from a heavily-trafficked London road and this suggests that these metals are locally not dominated by sources from roadside materials such as break liner wear but more likely by particulate waste from fireworks. Our findings point to the fact that festa firework displays contribute significantly and for a prolonged period every year to airborne dust in Malta where PM 10 is an intractable air quality concern. The presence in this dust of elevated levels of Ba and especially Sb, a possible carcinogen, is of concern to health. 相似文献
11.
The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid. 相似文献
12.
Non-methane hydrocarbons (NMHCs) are known to have an important role on air quality due to their high reactivity. NMHC analysis has been performed on 148 ambient air samples collected at five different sites in the Kanto area (Tokyo metropolitan area and surrounding six prefectures) of Japan in summer and winter of 2008, and fifty NMHCs have been determined and quantified. A field measurement campaign has been conducted at one of the busiest intersections in Tokyo metropolitan area in winter of 2008. NMHC emissions are evaluated through comparison of distributions of individual NMHCs emitted from motor vehicles, which are estimated from the measurements, with those determined from the current emissions inventory. The comparison revealed that the measured distributions of acetylene, ethylene and toluene showed a good agreement with those estimated from the emissions inventory (the values estimated from the measurements are a factor of 1.5, 0.56 and 2.3 larger than the emissions inventory in median, respectively), however, propane and isobutane are found to be significantly underestimated in the emissions inventory (the measured values were a factor of 18 and 5.1 larger than the emissions inventory, respectively). The significant underestimate of propane can be explained by that the current emissions inventory does not consider emissions from liquefied propane gas (LPG) fueled vehicles. However, for isobutane, reasons for the underestimate are still unclear. Another field measurement has been conducted in summer of 2008, where the air samples have been collected at three different sites on the ground and by a helicopter as well. Remarkable high concentrations of 1-butene and cis- and trans-2-butenes have been sporadically observed in the samples collected at Urayasu in the coastal area of Tokyo bay. Calculated propylene equivalent (PE) concentrations of butenes revealed that those have a significantly important role in ozone formation when the air plume is affected by emissions from their emission sources. The PE concentrations of butenes varied from 0.1 to 39 ppbC, and accounted for 1.5–75% of total PE concentrations at Urayasu. Most of the continuous air quality monitoring stations does not record concentrations of individual hydrocarbons, therefore, the importance of reactive and low concentration hydrocarbon such as butenes might be overlooked in the current emissions inventory and/or air quality model. In this paper, the reliability of NMHC emissions is evaluated based on the field measurements. Their possible impacts on air quality in the Kanto area are discussed as well, based on the calculated propylene equivalent concentrations. 相似文献
13.
A biennial integrated survey, based on the use of vascular plants for the bioindication of the effects of tropospheric ozone together with the use of automatic analysers of ozone, as well as the mapping of lichen biodiversity was performed in the area of Castelfiorentino (Tuscany, central Italy). Photochemically produced ozone proved to be a fundamental presence during the warm season, with maximum hourly means reaching 114 ppb, exceeding the information threshold as fixed by EU: the use of supersensitive tobacco Bel-W3 confirmed the opportunity of carrying out detailed cost-effective monitoring surveys. The potential for didactical and educational implications of this methodology are appealing. Critical levels set up for the protection of vegetation have exceeded considerably. The comparison of biomass productivity in sensitive and resistant individuals (NC-S and NC-R white clover clones, in the framework of an European network) provided evidence that ambient ozone levels are associated with relevant reduction (up to 30%) in the performance of sensitive material; effects on flowering were also pronounced. The economic assessment of such an impact deserves attention. Mapping of epiphytic lichen biodiversity – which has been used to monitor air quality worldwide – was not related to ozone geographical distribution as depicted by tobacco response. 相似文献
14.
Ammonia gas emission is a major concern in concentrated animal production operations. It not only reduces the manure value as fertilizer due to nitrogen loss, but also has considerable environmental consequences for both animals and ecosystem. In this work, a microalgae culture system was developed as an ammonia gas bioscrubber to reduce ammonia gas emission. The green algae Scenedesmus dimorphus was grown in a flat-panel photobioreactor aerated with ammonia-laden air. A continuous culture was performed at different operational conditions including dilution rate (D = 0.05, 0.1, 0.2, and 0.3 day ?1), ammonia gas loading rate (9.4, 19.3, 28.9, 39.9, 55.6 mg/L-day), and medium pH (5, 6, 7, and 8). The alga culture at 0.1 day ?1 dilution rate, 39.9 mg/L-day ammonia gas loading rate, and pH 7 resulted in the highest cell density and biomass productivity. In order to provide a wide spectrum evaluation of the algae-based ammonia mitigation system, four parameters were determined, including ammonia removal rate, overall ammonia gas removal efficiency, cellular ammonia consumption rate, and cell yield based on ammonia input. Depending on the operational conditions used, the maximum values of those four evaluative parameters were 50.92 ± 2.91 mg/L-day of ammonia removal rate, 94.90 ± 1.87% of ammonia removal efficiency, 0.0597 ± 0.0024 g NH 3/g cell-day of cellular ammonia consumption rate, and 19.40 ± 2.52 g cell/g NH 3 of cell yield based on ammonia. It was also found that the majority of nitrogen in the ammonia gas was assimilated by the algal cells. At D = 0.1 day ?1, 39.9 mg/L-day of ammonia gas loading rate and pH 7, algal biomass assimilated 98.6% of nitrogen contained in the ammonia gas input, with less than 5% of inlet ammonia gas was exhausted after the algal treatment. Implications: This study demonstrated the effectiveness of using microalgae for mitigating ammonia gas emission from animal production operations. The results enabled us to better understand the mechanisms of ammonia assimilation by microalgae, the engineering design parameters for the process scale up, and the economic viability of the system. Eventually, it will lead to a novel, alternative method for mitigating ammonia gas emission from concentrated animal operations while producing biomass as high-quality feed ingredient. 相似文献
15.
Data on the spatial and time (2002–2005) variation of levels of trace elements and the source attribution of these elements in the ceramic cluster of Castelló (Eastern Spain) are presented and discussed. Earlier studies concluded that metal levels in PM 10 were one of the most critical parameters for attaining the EU legal requirements of the air quality standards. Levels of Li, Sc, Co, Zn, As, Se, Rb, Zr, Cd, Cs, Ce, Tl and Pb were higher than the usual range of concentration in urban areas of Spain, and some of them exceeded the concentration ranges obtained for other industrial sites in Spain. Of these elements, Zr, Zn, Pb and As (and probably Tl) may be considered as tracers of the ceramic emissions from the study area. A downward trend was observed for most of them, simultaneously, with the progressive implementation of the emission abatement techniques, especially those applied to the PM abatement of the manufacture of glaze components and the avoidance of the use of specific raw materials with high contents of impurities. At the end of the study period, the elements for which the EU sets limit or target values met the established requirements for 2013 (2005 for Pb), whereas, at the beginning of the study some elements exceeded the 2013 target values. Furthermore, a detailed discussion on the interpretation of peak concentration events and source attribution for a number of trace elements is presented. Five different sources were identified: mineral emissions (from clay use and handling), industry (mainly glaze production and use), road traffic, sea spray and the regional background influenced by a fuel oil-power plant and a petrochemical plant. 相似文献
16.
On-road vehicle emissions of carbon monoxide (CO), nitrogen oxides (NO x), and volatile organic compounds (VOCs) during 1995–2009 in the Atlanta Metropolitan Statistical Area were estimated using the Motor Vehicle Emission Simulator (MOVES) model and data from the National Emissions Inventories and the State of Georgia. Statistically significant downward trends (computed using the nonparametric Theil-Sen method) in annual on-road CO, NO x, and VOC emissions of 6.1%, 3.3%, and 6.0% per year, respectively, are noted during the 1995–2009 period despite an increase in total vehicle distance traveled. The CO and NO x emission trends are correlated with statistically significant downward trends in ambient air concentrations of CO and NO x in Atlanta ranging from 8.0% to 11.8% per year and from 5.8% to 8.7% per year, respectively, during similar time periods. Weather-adjusted summertime ozone concentrations in Atlanta exhibited a statistically significant declining trend of 2.3% per year during 2001–2009. Although this trend coexists with the declining trends in on-road NO x, VOC, and CO emissions, identifying the cause of the downward trend in ozone is complicated by reductions in multiple precursors from different source sectors. Implications:Large reductions in on-road vehicle emissions of CO and NO x in Atlanta from the late 1990s to 2009, despite an increase in total vehicle distance traveled, contributed to a significant improvement in air quality through decreases in ambient air concentrations of CO and NO x during this time period. Emissions reductions in motor vehicles and other source sectors resulted in these improvements and the observed declining trend in ozone concentrations over the past decade. Although these historical trends cannot be extrapolated to the future because pollutant concentration contributions due to on-road vehicle emissions will likely become an increasingly smaller fraction of the atmospheric total, they provide an indication of the benefits of past control measures. 相似文献
17.
Two experimental monitoring campaigns were carried out in 2012 to investigate the air quality in the port of Naples, the most important in southern Italy for traffic of passengers and one of the most important for goods. Therefore, it represents an important air pollution source located close to the city of Naples. The concentrations of sulfur dioxide (SO 2), nitrogen dioxide (NO 2), and BTEX (benzene, toluene, ethylbenzene, and xylenes) in the air were measured at 15 points inside the Naples port area through the use of passive samplers. In addition, a mobile laboratory was positioned in a fixed point inside the port area to measure continuous concentration of pollutants together with particulate matter, ambient parameters, and wind direction and intensity. The pollution levels monitored were compared with those observed in the urban area of Naples and in other Mediterranean ports. Even though the observation time was limited, measured concentrations were also compared with limit values established by European legislation. All the measured pollutants were below the limits with the exception of nitrogen dioxide: its average concentration during the exposition time exceeded the yearly limit value. A spatial analysis of data, according to the measured wind direction and intensity, provided information about the effects that ship emissions have on ambient air quality in the port area. The main evidence indicates that ship emissions influence sulfur dioxide concentration more than any other pollutants analyzed.Implications: Two monitoring campaigns were carried out to measure BTEX, SO2, NO2, and PM10 (particulate matter with an aerodynamic diameter <10 μm) air concentrations in the port of Naples. NO2 hourly average and PM10 daily average comply with European legislative standards. Spatial variation of pollutants long the axis corresponding to the prevailing wind direction seems to indicate a certain influence of ship emissions for SO2. For NO2 and PM10, a correlation between concentrations in the harbor and those measured by the air quality monitoring stations sited in the urban area of Naples was observed, indicating a possible contribution of the near road traffic to the air pollution in the port of Naples. 相似文献
18.
Personal 1 h mean CO exposures of preschool children in two day care centers (Töölö and Vallila) in Helsinki were measured with continuously recording personal exposure monitors. In Vallila, the median CO exposure of children from homes with gas stoves was 2.0 mg m −3, and with electric stoves, 0.9 mg m −3. In Töölö, the corresponding values were 1.9 and 1.0 mg m −3, respectively. The national ambient air quality guidelines for CO in Finland were exceeded in a few percent of the exposure measurements. The results were compared to fixed-site ambient air monitoring data and related to the presence of town-gas fired stoves in the children's homes. The results show that fixed-site ambient air monitors are of little value in predicting personal exposures of children or even their relative differences between areas. They also show that town-gas fired stoves may have a profound effect on the CO exposures of the children. 相似文献
19.
This paper examines the use of Moderate Resolution Imaging Spectroradiometer (MODIS) observed active fire data (pixel counts) to refine the National Emissions Inventory (NEI) fire emission estimates for major wildfire events. This study was motivated by the extremely limited information available for many years of the United States Environmental Protection Agency (US EPA) NEI about the specific location and timing of major fire events. The MODIS fire data provide twice-daily snapshots of the locations and breadth of fires, which can be helpful for identifying major wildfires that typically persist for a minimum of several days. A major wildfire in Mallory Swamp, FL, is used here as a case study to test a reallocation approach for temporally and spatially distributing the state-level fire emissions based on the MODIS fire data. Community Multiscale Air Quality (CMAQ) model simulations using these reallocated emissions are then compared with another simulation based on the original NEI fire emissions. We compare total carbon (TC) predictions from these CMAQ simulations against observations from the Inter-agency Monitoring of Protected Visual Environments (IMPROVE) surface network. Comparisons at three IMPROVE sites demonstrate substantial improvements in the temporal variability and overall correlation for TC predictions when the MODIS fire data is used to refine the fire emission estimates. These results suggest that if limited information is available about the spatial and temporal extent of a major wildfire fire, remotely sensed fire data can be a useful surrogate for developing the fire emissions estimates for air quality modeling purposes. 相似文献
20.
This paper discusses the implosion of a large inner-city hospital in Calgary, Alberta, Canada, on October 4, 1998. Stationary and mobile air monitoring conducted after the implosion indicated there were several short-term air quality issues, including significant temporal increases in total suspended particles, particulate matter (PM) with aerodynamic diameter less than or equal to 10 microm (PM10), PM with aerodynamic diameter less than or equal to 2.5 microm (PM2.5), asbestos, and airborne and settled lead. In addition, the implosion created a dust cloud that traveled much further than expected, out to 20 km. The ability of an implosion to effectively aerosolize building materials requires the removal of all friable and nonfriable forms of asbestos and all Pb-containing painted surfaces during pre-implosion preparatory work. Public advisories to mitigate personal exposure and indoor migration of the implosion dust cloud constituents should extend to 10 or 20 km around an implosion site. These findings point to a number of complex and problematic issues regarding implosions and safeguarding human health and suggest that implosions in metropolitan areas should be prohibited. Further work to characterize the public health risks of conventional versus implosion demolition is recommended. 相似文献
|