首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

Trickle-bed air biofilters (TBABs) are suitable for treatment of hydrophilic volatile organic compounds, but they pose a challenge for hydrophobic compounds. Three laboratory-scale TBABs were used for the treatment of an airstream contaminated with different ratios of n-hexane and benzene mixtures. The ratios studied were 1:1, 2:1, and 1:3 n-hexane:benzene by volume. Each TBAB was operated at a pH of 4 and a temperature of 20 °C. The use of acidic-buffered nutrient solution was targeted for changing the microorganism consortium to fungi as the main biodegradation element. The experimental plan was designed to investigate the long-term performance of the TBABs with an emphasis on different mixture loading rates, removal efficiency with TBAB depth, volatile suspended solids, and carbon mass balance closure. n-Hexane loading rate was kept constant in the TBABs for comparison reasons and ranged from 4 to 22 g/(m3.hr). Corresponding benzene loadings ranged from 4 to 43 g/(m3.hr). Generally, benzene behavior in the TBAB was superior to that of n-hexane because of its higher solubility. n-Hexane showed improved performance in the 2:1 mixing ratio as compared with the other two ratios.

IMPLICATIONS The use of biofilters is a cheap and attractive option; however, their application is limited because of several challenges. One of them is the reluctance of hydrophobic compounds for biodegradation and the coexistence of other compounds in air emissions. This paper evaluated the impact of different mixing ratios of two hydrophobic compounds and the effect of increasing influent concentration. Finally, a comparison is provided on the best performance attained for these hydrophobic compounds as single solutes. The results of this study will aid in the design and operation of full-scale biofilters.  相似文献   

2.
ABSTRACT

The 1990 Amendments to the Clean Air Act have stimulated strong interest in the use of biofiltration for the economical, engineered control of volatile organic compounds (VOCs) in effluent air streams. Trickle bed air biofilters (TBABs) are especially applicable for treating VOCs at high loadings. For long-term, stable operation of highly loaded TBABs, removal of excess accumulated bio-mass is essential. Our previous research demonstrated that suitable biomass control for TBABs was achievable by periodic backwashing of the biofilter medium. Backwashing was performed by fluidizing the pelletized biological attachment medium with warm water to about a 40% bed expansion. This paper presents an evaluation of the impact of backwashing on the performance of four such TBABs highly loaded with toluene. The inlet VOC concentrations studied were 250 and 500 ppmv toluene, and the loadings were 4.1 and 6.2 kg COD/m3 day (55 and 83 g toluene/m3 hr). Loading is defined as kg of chemical oxygen demand per cubic meter of medium per day. Performance deterioration at the higher loading was apparently due to a reduction of the specific surface of the attached biofilm resulting from the accumulation of excess biomass. For a toluene loading of 4.1 kg COD/m3 day, it was demonstrated that the long-term performance of biofilters with either inlet concentration could be maintained at over 99.9% VOC removal by employing a backwashing strategy consisting of a frequency of every other day and a duration of 1 hr.  相似文献   

3.
Trickle-bed air biofilters (TBABs) are suitable for treatment of hydrophilic volatile organic compounds, but they pose a challenge for hydrophobic compounds. Three laboratory-scale TBABs were used for the treatment of an airstream contaminated with different ratios of n-hexane and benzene mixtures. The ratios studied were 1:1, 2:1, and 1:3 n-hexane:benzene by volume. Each TBAB was operated at a pH of 4 and a temperature of 20 degrees C. The use of acidic-buffered nutrient solution was targeted for changing the microorganism consortium to fungi as the main biodegradation element. The experimental plan was designed to investigate the long-term performance of the TBABs with an emphasis on different mixture loading rates, removal efficiency with TBAB depth, volatile suspended solids, and carbon mass balance closure. n-Hexane loading rate was kept constant in the TBABs for comparison reasons and ranged from 4 to 22 g/(m3 x hr). Corresponding benzene loadings ranged from 4 to 43 g/(m3 x hr). Generally, benzene behavior in the TBAB was superior to that of n-hexane because of its higher solubility. n-Hexane showed improved performance in the 2:1 mixing ratio as compared with the other two ratios.  相似文献   

4.
ABSTRACT

This research investigated and compared the use of both bench- and pilot-scale biofilters to determine the effectiveness of controlling styrene, methyl ethyl ketone (MEK), and acetone emissions from an industrial gas waste stream. Critical operating parameters, including contaminant loading rate, temperature, and empty bed contact time, were manipulated in both the laboratory and field. At steady-state conditions, the bench and pilot-scale biofilters showed a 99% removal efficiency for styrene when the contaminant loading rate was less than 50 g m-3hr-1 and 40 g m-3hr-1, respectively. Although few data points were collected in the pilot-scale reactor where the styrene load was greater than 40 g m-3hr-1, the total organic contaminant load including both MEK and acetone typically ranged between 50 g m-3hr-1 and 80 g m-3hr-1. Greater than 99% removal efficiencies were observed for acetone and MEK in the pilot-scale biofilter at all evaluated loading rates. Also studied were biofilter acclimation and re-acclimation periods. In inoculated bench and pilot biofilter systems, microbial acclimation to styrene was achieved in less than five days. In comparison, no MEK degrading microbial inoculum was added, so during the first months of pilot-scale biofilter operation, MEK removal efficiencies lagged behind those noted with styrene.  相似文献   

5.
This study aimed to develop a biofilter packed only with fern chips for the removal of odorous compounds from recycled nylon melting operations. The fern chip biofilters could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. A pilot-scale biofilter consisting of an acrylic column (14 cm2?×?120 cm height) packed with fern chips to a volume of around 19.6 L was used for the test. Experimental results indicate that oxygen- and nitrogen-containing hydrocarbons as well as paraffins were major volatile organic compounds (VOCs) emitted from thermal smelting of recycled nylon at 250 °C. With operation conditions of medium pH of 5.5–7.0, empty bed retention time (EBRT) of 6–12 sec, influent total hydrocarbon (THC) concentrations of 0.65–2.61 mg m?3, and volumetric organic loading of 0.05–0.85 g m?3 hr?1, the fern-chip-packed biofilter with nutrients of milk, potassium dihydrogen phosphate, and glucose could achieve an overall THC removal efficiency of around 80%. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration have a great potential for the degradation of gas-borne odorous compounds. THC removal efficiency of around 80% can be achieved. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

6.
Abstract

Two biofilters were operated to treat a waste gas stream intended to simulate off-gases generated during the manufacture of reformulated paint. The model waste gas stream consisted of a five-component solvent mixture containing acetone (450 ppmv), methyl ethyl ketone (12 ppmv), toluene (29 ppmv), ethylbenzene (10 ppmv), and p-xylene (10 ppmv). The two biofilters, identical in construction and packed with a polyurethane foam support medium, were inoculated with an enrichment culture derived from compost and then subjected to different loading conditions during the startup phase of operation. One biofilter was subjected to intermittent loading conditions with contaminants supplied only 8 hr/day to simulate loading conditions expected at facilities where manufacturing operations are discontinuous. The other biofilter was subjected to continuous contaminant loading during the initial start period, and then was switched to intermittent loading conditions. Experimental results demonstrate that both startup strategies can ultimately achieve high contaminant removal efficiency (>99%) at a target contaminant mass loading rate of 80.3 g m?3 hr?1 and an empty bed residence time of 59 sec. The biofilter subjected to intermittent loading conditions at startup, however, took considerably longer to reach high performance. In both biofilters, ketone components (acetone and methyl ethyl ketone) were more rapidly degraded than aromatic hydrocarbons (toluene, ethylbenzene, and p-xylene). Scanning electron microscopy and plate count data revealed that fungi, as well as bacteria, populated the biofilters.  相似文献   

7.
Abstract

A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-μm particles ranged from 1.5 hr?1 during operation of an in-duct, 5-in. pleated media filter to 7.2 hr?1 for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr?1 when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr?1 under baseline conditions, 0.5 hr?1 during operation of three portable ionic air cleaners, 1 hr?1 for an in-duct 1-in. media filter, 2.4 hr?1 for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr?1 for an in-duct 5-in. media filter, 4.7 hr?1 during operation of five portable HEPA filters, 6.1 hr?1 for a conventional in-duct electronic air cleaner, and 7.5 hr?1 for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.  相似文献   

8.
This study compares the performances of fern and plastic chips as packing media for the biofiltration of a styrene-laden waste gas stream emitted in a plant for the manufacture of plastic door plates. Fern chips (with a specific surface area of 1090 m2 m?3) and plastic chips (with a specific surface area of 610 m2 m?3) were packed into a pilot-scale biotrickling filter with a total medium volume of 50 L for the performance test. Field waste gas with styrene concentrations in the range of 161–2390 mg Am?3 at 28–30 °C) was introduced to the bed and a fixed empty-bed retention time (EBRT) of 21 sec, a volumetric gas flow rate of 8.57 m3 hr?1, and superficial gas velocity of 53.6 m hr?1 were maintained throughout the experimental period. Nutrients containing metal salts, nitrogen, phosphorus, and milk were supplemented to the filters for maintaining the microbial activities. Results reveal that the biotrickling filter developed in this study had the highest styrene monomer (SM) elimination capacities (170 g m?3 hr?1 for fern-chip packing and 300 g m?3 hr?1 for plastic-chip packing) among those cited in the literature. The plastic medium is a favorable substitute for endangered fern chips. The thermal-setting nature of plastic chips limits their recycle and reuse as raw materials, and the study provides an opportunity for the utilization of the materials.

Implications: Biotreatment of contaminants in air streams offers an inexpensive and efficient alternative to conventional technologies. Biofiltration has a great potential for the degradation of gas-borne styrene and total hydrocarbon (THC) removal efficiency of around 80%. The objective of this research was to compare the performances of fern chips and a kind of plastic chips as packing media for biofiltration of the styrene-laden waste gas stream emitted from cutting operations of stripes of premixed unsaturated polyester (UP) and styrene paste before hot-pressing operations for making plastic door plates. From a practical point of view, the plastic medium can be a good substitute medium for fern chips, which has been declared as a protected plant. This study provides an experimentally verified model for the design and operation of such biotreatment systems.  相似文献   

9.
Abstract

A pilot-scale rotating drum biofilter (RDB), which is a novel biofilter design that offers flexible flow-through configurations, was used to treat complex and variable volatile organic compound (VOC) emissions, including shock loadings, emanating from paint drying operations at an Army ammunition plant. The RDB was seeded with municipal wastewater activated sludge. Removal efficiencies up to 86% and an elimination capacity of 5.3 g chemical oxygen demand (COD) m?3 · hr?1 were achieved at a filter-medium contact time of 60 sec. Efficiency increased at higher temperatures that promote higher biological activity, and decreased at lower pH, which dropped down to pH 5.5 possibly as a result of carbon dioxide and volatile fatty acid production and ammonia consumption during VOC degradation. In comparison, other studies have shown that a bench-scale RDB could achieve a removal efficiency of 95% and elimination capacity of 331 g COD m?3 · hr?1. Sustainable performance of the pilot-scale RDB was challenged by the intermittent nature of painting operations, which typically resulted in 3-day long shutdown periods when bacteria were not fed. This challenge was overcome by adding sucrose (2 g/L weekly) as an auxiliary substrate to sustain metabolic activity during shutdown periods.  相似文献   

10.
ABSTRACT

Thermophilic biodégradation of toluene with active compost biofilters was studied. Thermophilic conditions were maintained either by daily substrate addition (semicontinuous composting) or with a heating system (batch thermophilic composting). The semicontinuous system was designed for the treatment of cool (less than approximately 35 °C) gases under thermophilic conditions, while the extended batch approach was developed for the treatment of warmer gases. When the semicontinuous system was operated at 50 °C (after a one-day start-up period) at an average inlet concentration of 5.5 g m-3, toluene was degraded at a rate ranging from 73 to 110 g C m-3 hr-1. Batch thermophilic treatment was somewhat less effective at the same inlet concentration. Semicontinuous toluene biofiltration at 60 °C was also investigated, but biodegradation rates were significantly lower than at 50 °C. In all systems, toluene biodegradation was proportional to the inlet concentration. Rates of up to 289 g C m-3 hr-1 (at an inlet concentration of 14.7 g m-3) were achieved for semicontinuous and batch operation and 251 g C m-3 hr-1 (at an inlet concentration of 18.4 g m-3) for batch thermophilic at 50 °C. Semicontinuous thermophilic operation at 60 °C showed a maximum rate of 119 g C m-3 hr-1. Active compost ther-mophilic biofiltration was found to be very effective when concentrations are high. At lower concentrations, rates were similar to those obtained with mesophilic biofiltration. Mixing, humidity, and the presence of cosubstrate were important parameters in maintaining high degradation rates. Biofiltration in the batch thermophilic mode could be useful when conventional biofiltration is ineffective due to elevated gas temperatures. Biofiltration in the semicontinuous thermophilic could reduce the biofilter size necessary for treatment of cooler gases containing high concentrations of volatile organic compounds.  相似文献   

11.
ABSTRACT

Xylene is the main component of many volatile industrial pollution sources, and the use of biotechnology to remove volatile organic compounds (VOCs) has become a growing trend. In this study, a biotrickling filter for gaseous xylene treatment was developed using activated sludge as raw material to study the biodegradation process of xylene. Reaction conditions were optimized, and long-term operation was performed. The optimal pH was 7.0, gas-liquid ratio was 15:1 (v/v), and temperature was 25 °C. High-throughput sequencing technique was carried out to analyze microbial communities in the top, middle, and bottom layers of the reactor. Characteristics of microbial diversity were elucidated, and microbial functions were predicted. The result showed that the removal efficiency (RE) was stable at 86%–91%, the maximum elimination capacity (EC) was 303.61 g·m?3·hr?1, residence time was 33.75 sec, and the initial inlet xylene concentration was 3000 mg·m?3, which was the highest known degradation concentration reported. Kinetic analysis of the xylene degradation indicated that it was a very high-efficiency-activity bioprocess. The rmax was 1059.8 g·m?3·hr?1, and Ks value was 4.78 g·m?3 in stationary phase. In addition, microbial community structures in the bottom and top layers were significantly different: Pseudomonas was the dominant genus in the bottom layer, whereas Sphingobium was dominant in the top layer. The results showed that intermediate metabolites of xylene could affect the distribution of community structure. Pseudomonas sp. can adapt to high concentration xylene–contaminated environments.

Implications: We combined domesticated active sludge and reinforced microbial agent on biotrickling filter. This system performed continuously under a reduced residence time at 33.75 sec and high elimination capacity at 303.61 g·m?3·hr?1 in the biotrickling reactor for about 260 days. In this case, predomestication combined with reinforcing of microorganisms was very important to obtaining high-efficiency results. Analysis of microbial diversity and functional prediction indicated a gradient distribution along with the concentration of xylene. This implied a rational design of microbial reagent and optimizing the inoculation of different sites of reactor could reduce the preparation period of the technology.  相似文献   

12.
ABSTRACT

Pig production systems in China are shifting from small to industrial scale. Significant variation in housing ammonia (NH3) emissions can exist due to differences in diet, housing design, and management practices. However, there is a knowledge gap regarding the impacts of farm-scale in China, which may be critical in identifying hotspots and mitigation targets. Here, continuous in-situ NH3 concentration measurements were made at pig farms of different scales for sows and fattening pigs over periods of 3–6 days during two different seasons (summer vs. winter). For the sow farms, NH3 emission rates were greater at the small farm (summer: 0.52 g pig?1 hr?1; winter: 0.21 g pig?1 hr?1) than at the large farm (summer: 0.34 g pig?1 hr?1; winter: 0.12 g pig?1 hr?1). For the fattening pig farms, NH3 emission rates were greater at the large farm (summer: 0.22 g pig?1 hr?1; winter: 0.16 g pig?1 hr?1) than at the small farm (summer: 0.19 g pig?1 hr?1; winter: 0.07 g pig?1 hr?1). Regardless of farm scale, the NH3 emission rates measured in summer were greater than those in winter; the NH3 emission rates were greater in the daytime than at the nighttime; a positive relationship (R2 = 0.06–0.68) was established between temperature and NH3 emission rate, whereas a negative relationship (R2 = 0.10–0.47) was found between relative humidity and NH3 emission rate. The effect of farm-scale on indoor NH3 concentration could mostly be explained by the differences in ventilation rates between farms. The diurnal variation in NH3 concentration could be partly explained by ventilation rate (R2 = 0.48–0.78) in the small traditional farms and by emission rate (R2 = 0.26–0.85) in the large industrial farms, except for the large fattening pig farm in summer. Overall, mitigation of NH3 emissions from sow farms should be a top priority in the North China Plain.

Implications: The present study firstly examined the farm-scale effect of ammonia emissions in the North China Plain. Of all farms, the sow farm was identified as the greatest source of ammonia emission. Regardless of farm scale, ammonia emission rates were observed to be higher in summer. Ammonia concentrations were mostly higher in the large industrial farms partly due to lower ventilation rates than in the small traditional farms.  相似文献   

13.
A total of 34 volatile organic compounds (VOCs) were measured in the indoor of laboratories, offices and classrooms of the Chemical Engineering Department of Hacettepe University in Ankara in 2 week-day passive sampling campaigns. The average concentrations ranged from 0.77 to 265 μg m?3 at the different indoor sites, with the most abundant VOC found to be toluene (119.6 μg m?3), followed by styrene (21.24 μg m?3), 2-ethyltoluene (17.11 μg m?3), n-hexane (10.21 μg m?3) and benzene (9.42 μg m?3). According to the factor analysis, the evaporation of solvents used in the laboratories was found to be the dominant source.  相似文献   

14.
Abstract

This study aimed to develop a biofilter packed only with fern chips for the removal of airborne propylene glycol monomethyl ether acetate (PGMEA). Fern chips could avoid the shortcomings of traditional media, such as compaction, drying, and breakdown, which lead to the performance failure of the biofilters. In addition, the fern chip medium has the following merits: (1) simplicity in composition; (2) low pressure drop for gas ?ow (<20 mmH2O?m-1); (3) simple in humidification, nutrient addition, pH control, and metabolite removal; (4) economical (US$174–385?m-3), and (5) low weight (wet basis around 290 kg?m-3). A two-stage down?ow biofilter (2.18 m in height and 0.4×0.4 m in cross-sectional area) was constructed for the performance test. Both stages were packed with fern chips of 0.30 m in height and 0.40×0.40 m in cross-section. Results indicate that with operation conditions of media moisture content controlled in the range of 50–74%, media pH of 6.5–8.3, empty bed retention time (EBRT) of 0.27–0.4 min, in?uent PGMEA concentrations of 100–750 mg?m-3, volu-metric organic loading of <170 ?m-3 ?hr-1, and nutrition rates of Urea-nitrogen 66 g?m-3 ?day-3, potassium dihydrogen phosphate (KH2PO4)-phosphorus 13.3 g ?m-3 ?day-3, and milk powder 1.00 g?m-3?day-1, the fern-chip-packed biofilter could achieve an overall PGMEA removal efficacy of around 94%. Instant milk powder or liquid milk was essential to the good and stable performance of the biofilter for PGMEA removal.  相似文献   

15.
The main objective of this study is to apply neutral electrolyzed water (NEW) spraying to inactivate bioaerosols. We evaluated the inactivation efficiency of NEW applied to inactivate two airborne bacterial Escherichia coli and Bacillus subtilis aerosols inside an environmental-controlled chamber in the study. Generated with electrolyzing 6.15 M sodium chloride brine, the NEW with free available chlorine (FAC) concentration 50, 100, and 200 ppm was pumped with an air pressure of 70 kg/cm2 through nozzle into the chamber to inactive E. coli and B. subtilis aerosols precontaminated air (initial counts of 3?×?104 colony-forming units [CFU]/m3). Bacterial aerosols were collected and cultured from chamber before and after NEW spray. The air exchange rate (ACH, hr?1) of the chamber was set to simulate fresh air ventilating dilution of indoor environment. First-order concentration decaying coefficients (Ka, min?1) of both bacterial aerosols were measured as an index of NEW inactivation efficiency. The result shows that higher FAC concentration of NEW spray caused better inactivation efficiency. The Ka values under ACH 1.0 hr?1 were 0.537 and 0.598 for E. coli of FAC 50 and 100 ppm spraying, respectively. The Ka values of FAC 100 ppm and 200 ppm spraying for B. subtilis were 0.063 and 0.085 under ACH 1.0 hr?1, respectively. The results indicated that NEW spray is likely to be effective in inactivation of bacterial airborne contamination. Moreover, it is observed in the study that the increase of ventilation rate and the use of a larger orifice-size nozzle may facilitate the inactivation efficiency.

Implications: Bacterial aerosols have been implicated in deterioration of air quality and occupational health. Effective, safe, and economic control technology is highly demanded, especially for agricultural and food industries. In the study, NEW mist spraying performed effectively in controlling E. coli and B. subtilis modeling bioaerosols contamination. The NEW revealed its potential as an alternative airborne disinfectant worth being discovered for improving the environmental quality in the future.  相似文献   

16.
Methane (CH4) removal in the presence of ethanol vapors was performed by a stone-based bed and a hybrid packing biofilter in parallel. In the absence of ethanol, a methane removal efficiency of 55 ± 1% was obtained for both biofilters under similar CH4 inlet load (IL) of 13 ± 0.5 gCH4 m?3 h?1 and an empty bed residence time (EBRT) of 6 min. The results proved the key role of the bottom section in both biofilters for simultaneous removal of CH4 and ethanol. Ethanol vapor was completely eliminated in the bottom sections for an ethanol IL variation between 1 and 11 gethanol m?3 h?1. Ethanol absorption and accumulation in the biofilm phase as well as ethanol conversion to CO2 contributed to ethanol removal efficiency of 100%. In the presence of ethanol vapor, CO2 productions in the bottom section increased almost fourfold in both biofilters. The ethanol concentration in the leachate of the biofilter exceeding 2200 gethanol m?3 leachate in both biofilters demonstrated the excess accumulation of ethanol in the biofilm phase. The biofilters responded quickly to an ethanol shock load followed by a starvation with 20% decrease of their performance. The return to normal operations in both biofilters after the transient conditions took less than 5 days. Unlike the hybrid packing biofilter, excess pressure drop (up to 1.9 cmH2O m?1) was an important concern for the stone bed biofilter. The biomass accumulation in the bottom section of the stone bed biofilter contributed to 80% of the total pressure drop. However, the 14-day starvation reduced the pressure drop to 0.25 cmH2O m?1.  相似文献   

17.
Abstract

Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photo-catalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr?1, and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and form-aldehyde found in this study ranged from 0.381 to 1.01 hr?1 under different total air change rates, from 0.34 to 0.433 hr?1 under different RH, and from 0.381 to 0.433 hr?1 for different photocatalytic filters.  相似文献   

18.
PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) samples were collected in the indoor environments of 15 urban homes and their adjacent outdoor environments in Alexandria, Egypt, during the spring time. Indoor and outdoor carbon dioxide (CO2) levels were also measured concurrently. The results showed that indoor and outdoor PM2.5 concentrations in the 15 sites, with daily averages of 45.5 ± 11.1 and 47.3 ± 12.9 µg/m3, respectively, were significantly higher than the ambient 24-hr PM2.5 standard of 35 µg/m3 recommended by the U.S. Environmental Protection Agency (EPA). The indoor PM2.5 and CO2 levels were correlated with the corresponding outdoor levels, demonstrating that outdoor convection and infiltration could lead to direct transportation indoors. Ventilation rates were also measured in the selected residences and ranged from 1.6 to 4.5 hr?1 with median value of 3.3 hr?1. The indoor/outdoor (I/O) ratios of the monitored homes varied from 0.73 to 1.65 with average value of 0.99 ± 0.26 for PM2.5, whereas those for CO2 ranged from 1.13 to 1.66 with average value of 1.41 ± 0.15. Indoor sources and personal activities, including smoking and cooking, were found to significantly influence indoor levels.

Implications: Few studies on indoor air quality were carried out in Egypt, and the scarce data resulted from such studies do not allow accurate assessment of the current situation to take necessary preventive actions. The current research investigates indoor levels of PM2.5 and CO2 in a number of homes located in the city of Alexandria as well as the potential contribution from both indoor and outdoor sources. The study draws attention of policymakers to the importance of the establishment of national indoor air quality standards to protect human health and control air pollution in different indoor environments.  相似文献   

19.
The obvious disadvantages of biotrickling filters (BTFs) are the long start-up time and low removal efficiency (RE) when treating refractory hydrophobic volatile organic compounds (VOCs), which limits its industrial application. It is worthwhile to investigate how to reduce the start-up period of the BTF for treating hydrophobic VOCs. Here, we present the first study to evaluate the strategy of toluene induction combined with toluene-styrene synchronous acclimatization during start-up in a laboratory-scale BTF inoculated with activated sludge for styrene removal, as well as the effects of styrene inlet concentration (0.279 to 2.659 g·m?3), empty bed residence time (EBRT) (i.e., 136, 90, 68, 45, 34 sec), humidity (7.7% to 88.9%), and pH (i.e., 4, 3, 2.5, 2) on the performance of the BTF system. The experiments were carried out under acidic conditions (pH 4.5) to make fungi dominant in the BTF. The start-up period for styrene in the BTF was shortened to about 28 days. A maximum elimination capacity (ECmax) of 126 g·m?3·hr?1 with an RE of 80% was attained when styrene inlet loading rate (ILR) was below 180 g·m?3·hr?1. The highest styrene RE(s) [of BTF] that could be achieved were 95% and 93.4%, respectively, for humidity of 7.7% and at pH 2. A single dominant fungal strain was isolated and identified as Candida palmioleophila strain MA-M11 based on the 26S ribosomal RNA gene. Overall, the styrene induction with the toluene-styrene synchronous acclimatization could markedly reduce the start-up period and enhance the RE of styrene. The BTF dominated by fungi exhibited good performance under low pH and humidity and great potential in treating styrene with higher inlet concentrations.

Implications: The application of the toluene induction combined with toluene-styrene synchronous acclimatization demonstrated to be a promising approach for the highly efficient removal of styrene. The toluene induction can accelerate biofilm formation, and the adaptability of microorganisms to styrene can be improved rapidly by the toluene-styrene synchronous acclimatization. The integrated application of two technologies can shorten the start-up period of biotrickling filters markedly and promote its industrial application.  相似文献   


20.
Abstract

A polysulfone microporous membrane module was investigated for control of 1-butanol-contaminated gas streams. A diurnal loading condition, using two different butanol concentrations, was used to simulate startup and stop conditions associated with shift work. The membrane module was also used to remove 1-butanol from air under continuous loading conditions in a bioreactor. The reactors were seeded with a mixed bacterial consortium capable of butanol biodegradation. Biokinetic parameters for butanol utilization were determined for the culture to be a maximum specific utilization rate (k) equal to 4.3 d?1 and a half saturation constant (Ks) equal to 8.9 mg L?1. A biofilter running only with diurnal loading conditions giving a “40-hr workweek” had an average 1-butanol removal rate of 29% (111 ppm, 74 gm?3 hr?1) from a 350-ppm influent at the end of an 8-hr operational day. End-of-day removal varied between 4 and 67% during the operational period. With continuous steady-state operation followed by placement on a diurnal loading schedule and influent butanol concentrations increased to 700 ppm, butanol removal averaged 38% (269 ppm, 145 gm?3 hr?1). Under continuous loading, steady-state conditions, 1-butanol removal from the airstream was greater than 99% (200 ppm, 73 gm?3 hr?1). These results suggest that the bioreactor can be operated on a diurnal schedule or 40-hr week operational schedule without any decline in performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号