首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
桂烈勇 《污染防治技术》2007,20(1):63-66,80
根据太仓市饮用水地表水源和地下水的监测数据,分别采用单因子评价和综合评价方法,对饮用水源的水质进行评价。结果认为地表水水源已受到轻度污染,属Ⅲ类水;地下水的水质较差,已不适合于直接饮用。饮用水水源的主要污染物为COD、氨氮、挥发酚、硝酸盐氮和高锰酸盐指数。对饮用水水源的污染成因进行了全面分析,并从四个方面提出了水源安全保护对策:法律法规与行政手段、技术支撑、经济支持和宣传教育.  相似文献   

2.
质量控制和质量保证是水环境监测工作的重要组成部分,质量体系是实验室内部实施质量管理的法规,覆盖了监测样品、监测过程、仪器设备、人员素质、设施与环境、量值溯源与校准、检验方法和化学试剂等全部质量控制要求。能够准确地反应水环境质量现状和预测污染的发展趋势。  相似文献   

3.
于2018年六五环境日期间开展便民服务,监测山泉水或井水。监测项目主要有:酸碱度、溶解性总固体、总硬度、氟化物、氯化物、硫酸盐、硝酸盐、亚硝酸盐、重金属等。参照《生活饮用水标准检验法》(GB/T5750-2006)和《生活饮用水卫生标准》(GB5749-2006)对居民送样水监测分析后评价,80%的水样存在某一项或几项指标超标,其中一半水样硝酸盐超标,需予以重视,建议提高安全用水意识,不要作为饮用水使用。  相似文献   

4.
大量未经处理的污水排入水体时 ,会导致地面水体严重污染。受污染水体的水质恢复方法有物理法、化学法和生物法 ,它们能控制水体外源性和内源性污染物的排入量、人工强化水体自身的净化能力 ,以降低水体中污染物的浓度、提高溶解氧浓度 ,恢复水生生物的多样性  相似文献   

5.
The presence of parts per billion (ppb) levels of chlorpyrifos (O,O-Diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate) and malathion (S-1,2-bis(ethoxycarbonyl) ethyl O,O-dimethyl phosphorodithioate), two common pesticides found in the surface waters of developing countries, have been visually detected using gold nanoparticles. Visual detection of the presence of pesticide is possible when the color change occurring by the adsorption of pesticides on gold nanoparticles is enhanced by sodium sulfate. The method presented here is simple and there is no need of sample preparation or preconcentration. The response occurs within seconds and the color change is very clear. The detection is possible if chlorpyrifos and malathion are present up to a concentration of 20 and 100 ppb, respectively. The method shows great potential for on-site pesticide monitoring. The method is also applicable as a qualitative technique for the performance evaluation of various household water filters, which claim pesticide removal.  相似文献   

6.
Abstract

The Parati River contributes to the Babitonga Bay water complex, but the contents of the bay also influence the river during periods of inverted currents. In this study, the water quality along four stretches of the Parati River and Babitonga Bay was evaluated using chemical (physico-chemical and chromatographic analysis), microbiological (fluorescein diacetate hydrolysis) and ecotoxicological (Lumistox) methods to assess the reciprocal influence of the waters of this river-bay system. In addition, the most appropriate type of analysis for the monitoring of the estuarine region of the Parati River was identified. The results of six sampling campaigns showed that the type of contaminants and their levels varied temporally and spatially and thus the water quality also changed. Anthropogenic activity, such as banana cultivation and the release of sewage into the water system, is the primary cause of the contamination that affects the quality of the water in the Parati River estuary, which is a crucial ecological niche for the reproduction of various marine species. The ecotoxicity tests with Aliivibrio fischeri conducted to evaluate the water quality showed an integrative response, and the ecotoxicity data indicated that the Parati River does not have a significant influence on the water quality of Babitonga Bay.  相似文献   

7.
Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.  相似文献   

8.
A GIS-based multimedia watershed model: development and application   总被引:1,自引:0,他引:1  
Coulibaly L  Labib ME  Hazen R 《Chemosphere》2004,55(7):1067-1080
A multimedia model was developed using publicly available geographical information system (GIS) data, chemical release information and local monitoring networks to assess the fate of trichloroethene (TCE) within the Passaic River Watershed. Seven environmental media, air, water, sediment, surface soil, terrestrial vegetation, root zone soil and vadose zone soil, were modeled in this study along with their sub-compartments. The Passaic River Watershed is described using the NJDEP geographical information system (GIS) resources, the United States Geological Survey (USGS) and the United States Soil Conservation Services (US SCS) soil data. The introduction of spatial resolution to a multimedia, unsteady state model is performed in this work, and represents an important step in expanding the use of equilibrium models to provide far reaching information on the fate of toxic contaminants within a given environmental unit. The spatial representation of cross-boundary fluxes was successfully demonstrated with the use of sub-watershed as an environmental unit and the direct assessment of TCE for each of the 11 sub-watersheds that make up the Passaic River Basin in northern New Jersey. Important data gaps identified during the development of this model include the lack of comprehensive monitoring data on organic contaminants, and non-uniformity among available physical environmental data from different government agencies.  相似文献   

9.
Many jurisdictions around the globe have well-developed regulatory frameworks for the derivation and implementation of water quality guidelines (WQGs) or their equivalent (e.g. environmental quality standards, criteria, objectives or limits). However, a great many more still do not have such frameworks and are looking to introduce practical methods to manage chemical exposures in aquatic ecosystems. There is a potential opportunity for learning and sharing of data and information between experts from different jurisdictions in order to deliver efficient and effective methods to manage potential aquatic risks, including the considerable reduction in the need for aquatic toxicity testing and the rapid identification of common challenges. This paper reports the outputs of an international workshop with representatives from 14 countries held in Hong Kong in December 2011. The aim of the workshop and this paper was to identify ‘good practice’ in the development of WQGs to deliver to a range of environmental management goals. However, it is important to broaden this consideration to cover often overlooked facets of implementable WQGs, such as demonstrable field validation (i.e. does the WQG protect what it is supposed to?), fit for purpose of monitoring frameworks (often an on-going cost) and finally how are these monitoring data used to support management decisions in a manner that is transparent and understandable to stakeholders. It is clear that regulators and the regulated community have numerous pressures and constraints on their resources. Therefore, the final section of this paper addresses potential areas of collaboration and harmonisation. Such approaches could deliver a consistent foundation from which to assess potential chemical aquatic risks, including, for example, the adoption of bioavailability-based approaches for metals, whilst reducing administrative and technical burdens in jurisdictions.  相似文献   

10.
Hundreds of chemical contaminants have been identified in the Great Lakes System of North America. Depending on the agency or organization, various subset lists of these contaminants have been identified as chemicals of potential concern. However, there is no agreement on the method that should be used to make management decisions. Except for consensus on approximately 40 chemicals that most North American agencies agree can cause deleterious effects if released into the environment, no agreement has been reached regarding the priority that contaminants should receive for further action. That leaves hundreds of chemicals that have been, are being, or potentially could be released into the environment that have not been evaluated yet. A profile for potential chemicals of concern is generally thought to include persistence in the environment, potential to bioaccumulate, and ability to cause toxic effects at environmentally relevant concentrations. Except for the International Joint Commission’s definition of persistence (> 8 weeks residence time in air, water, soil or sediment), there is little concurrence about what defines these characteristics. For instance, the State of Michigan currently has no established definitions or profiles of persistent, bioaccumulative, toxic substances. Furthermore, there is no standard process to rank chemicals relative to these characteristics. The Chemical Scoring and Ranking Assessment Model (SCRAM) has been developed to provide a process to rank-order chemicals based on these characteristics. The SCRAM system was developed primarily for use in the Great Lakes region of North America and particularly in Michigan, but it is not site-specific. Use of this system may assist in pollution prevention activities and other future chemical control efforts, allowing attention to be focused first on those chemicals likely to present the greatest hazard.  相似文献   

11.
Two water quality monitoring strategies designed to sample hydrophobic organic contaminants have been applied and evaluated across an expected concentration gradient in PAHs in the Moreton region. Semipermeable membrane devices (SPMDs) that sequester contaminants via passive diffusion across a membrane were used to evaluate the concentration of PAHs at four and five sites in spring and summer 2001/2002, respectively. In addition, induction of hepatic cytochrome P4501, EROD activity, in yellowfin bream, Acanthopagrus australis, captured in the vicinity of SPMD sampling sites following deployment in summer was used as a biomarker of exposure to PAHs and related chemicals. SPMDs identified a clear and reproducible gradient in PAH contamination with levels increasing from east to west in Moreton Bay and upstream in the Brisbane River. The highest PAH concentrations expressed as B(a)P-toxicity equivalents (TEQs) were found in urban areas, which were also furthest upstream and experienced the least flushing. Cytochrome P4501 induction in A. australis was similar at all sites. The absence of clear trends in EROD activity may be attributable to factors not measured in this study or variable residency time of A. australis in contaminated areas. It is also possible that fish in the Moreton region are displaying enzymatic adaptation, which has been reported previously for fish subjected to chronic exposure to organic contaminants. These potential interferences complicate interpretation of EROD activity from feral biota. It is, therefore, suggested that future monitoring combine the two methods by applying passive sampler extracts to in vitro EROD assays.  相似文献   

12.
The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. Highlights ? The effectiveness of existing river water quality monitoring network is assessed ? Significance of seasonal redesign of the monitoring network is demonstrated ? Rationalization of water quality parameters is performed in a statistical framework  相似文献   

13.
In 1994, New Zealand's only mainland Antarctic base, Vanda Station, was removed from the shores of Lake Vanda, in the McMurdo Dry Valleys region of southern Victoria Land, Antarctica. Residual chemical contamination of the station site has been identified, in the form of discrete fuel spills, locally elevated Pb, Zn, Ag and Cd concentrations in soil and elevated Cu, Ni, Co and phosphate concentrations in suprapermafrost fluids in a gully formerly used for domestic washing water disposal. Pathways for contaminant transfer to Lake Vanda, potential environmental impacts and specific remediation/monitoring options are considered. While some contaminants (particularly Zn) could be selectively leached from flooded soil, during a period of rising lake level, the small area of contaminated soils exposed and low level of contamination suggests that this would not adversely affect either shallow lake water quality or the growth of cyanobacteria. Phosphate-enhanced growth of the latte may, however, be a visible consequence of the minor contamination occurring at this site.  相似文献   

14.
Although the use of tissue concentrations (residues) of chemical contaminants as the dose metric to characterize chemical toxicity to aquatic organisms has been gaining acceptance over the past 20 years, tissue concentrations are less commonly used in water quality management and have yet to be formally adopted as benchmarks or environmental quality standards (EQS). This synthesis paper addresses advantages and disadvantages for the development and application of tissue-based EQS as an alternative and supplement to exposure-based EQS determined with water and sediment concentration data. Tissue-based EQS can be readily developed in parallel with conventional toxicity tests, and achieved by quantification of chemical concentrations in tissue alongside traditional concentration-response toxicity testing. Tissue-residue toxicity metrics can be used as benchmarks for screening and monitoring water and sediment quality, to derive equivalent water or sediment EQS, and for ecological risk assessments and weight of evidence approaches for assessing ecosystem impairment. Tissue-based toxicity metrics and associated EQS provide several advantages; however, there are some limitations to consider and key knowledge gaps to fill.  相似文献   

15.
Yan J  Tang H  Lin Z  Anjum MN  Zhu L 《Chemosphere》2012,86(2):111-117
The capacity of a full-scale reclamation pond-constructed wetland (CW) system to eliminate 27 emerging contaminants (i.e. pharmaceuticals, sunscreen compounds, fragrances, antiseptics, fire retardants, pesticides, and plasticizers) and the seasonal occurrence of these contaminants is studied. The compounds with the highest concentrations in the secondary effluent are diclofenac, caffeine, ketoprofen, and carbamazepine. The results show that the constructed wetland (61%) removes emerging contaminants significantly more efficiently than the pond (51%), presumably due to the presence of plants (Phragmites and Thypa) as well as the higher hydraulic residence time (HRT) in the CW. A greater seasonal trend to the efficient removal of these compounds is observed in the pond than in the CW. The overall mass removal efficiency of each individual compound ranged from 27% to 93% (71% on average), which is comparable to reported data in advanced treatments (photo-fenton and membrane filtration). The seasonal average content of emerging contaminants in the river water (2488 ng L−1) next to the water reclamation plant is found to be higher than the content in the final reclaimed water (1490 ng L−1), suggesting that the chemical quality of the reclaimed water is better than available surface waters.  相似文献   

16.
Jiang Y  Chen Y  Younos T  Huang H  He J 《Ambio》2010,39(7):467-475
Since China has the largest population in the world, the available water resources per capita in China are very limited. With the rapid economic development that is currently occurring, the shortage of water resources at the national level has become extremely critical. How to solve the problems due to water scarcity and water pollution has received increasing attention from the Chinese government and various communities. In order to provide a sustainable development environment for 1.6 billion people in the future, the whole country has started to reform urban water resources management systems in terms of related policies, regulations, methodologies, and technologies focusing on improving the efficiency and effectiveness in water use. Urban water quota management has now become a core strategy in developing a water resources governance model for water demand management aiming at establishing a water-saving society. This paper introduces the main stages and the processes of implementing water quota management in China, analyzes the basic principles, and expounds the elements, information foundation, core module and operational model of the urban water quota management system. It has been demonstrated that urban water quota management has made some remarkable contribution not only in transforming the pattern of water mode and strengthening water management enforcement but also in integrating various management methods in saving water and preventing pollution.  相似文献   

17.
Background, aim, and scope  In papermaking, there is a continuous interest both to minimize fresh water consumption and to reduce discharges into the environment. These general trends mean an increase in the amounts of detrimental substances, such as resin and fatty acids, in papermaking process waters. Resin acids, in particular, are responsible for much of the toxicity typically present in paper mill effluents and, for this reason, the routine and rapid monitoring of these compounds in various process streams is necessary. This also means that there is a continuous need to develop straightforward offline and online techniques to clarify problems occurring, for example, as a result of the introduction of more intensively closed systems of water circulation. In the present study, we describe the use of a novel, online, sample enrichment technique followed by atmospheric pressure chemical ionization–mass spectrometry (APCI-MS) suitable for monitoring the concentration levels of common resin and fatty acids in papermaking process waters. Materials and methods  The representative process water samples were taken from the grinding zone of a thermomechanical pulping mill. The samples were first preconcentrated in a precolumn C18, and the analytes were transferred online to MS. The high intensive [M–H] ion was used for the identification of each analyte since, according to the present ionization method, no other fragmentation was observed. Laboratory-scale, online measurements with an online sample feed were carried out by connecting a centrifugal pump and a ceramic filter to the APCI-MS. Results  Quality parameters, such as repeatability, linearity, and limit of detection (LOD), were determined by using dehydroabietic acid (DHAA) in order to evaluate the suitability of the method for the rapid screening of concentration levels. This method provided satisfactory linearity and a good correlation between analyte concentration and peak area. The suitability of the system for the continuous analysis of the same acids was evaluated in laboratory-scale, online experiments. In all cases, the response to changes in the analyte concentration was linear, and the repeatability of the system was also satisfactory. Discussion  Only a few studies have been published on the analysis of resin and fatty acids with MS techniques. The present method was applied to the monitoring of dehydroabietic, oleic, and stearic acids. The quality parameters were highly comparable with those reported earlier, and the LOD values of the DHAA were below the levels usually encountered in process waters. The quality parameters were only slightly higher than those obtained by the traditional methods of analysis, probably due to the absence of an effective sample clean-up before analysis. Conclusions  The results of the laboratory-scale, online experiments indicated that the online enrichment APCI-MS system is a suitable alternative for monitoring the concentration levels of selected resin and fatty acids in papermaking process waters. The method can be used, for example, to provide useful information about the concentration levels of these acids in different stages of the process, thus signaling possibly impending problems. In general, faster and simpler measurements are needed to meet the requirements for a reduction in fresh water usage in papermaking. Recommendations and perspectives  Compared to the conventional methods used for this purpose, the main benefits of the method are rapidity of measurement, simplicity of use, and absence of the need for multistage sample treatments (short analysis time). For this reason, this online method is more suitable for the control of papermaking by analyzing the concentration levels of interfering substances (i.e., selected resin and fatty acids) than an offline analysis detailing all the individual extractives-based compounds in process streams. It is also obvious that the technique can easily be modified for other environmental pollutants as well.  相似文献   

18.
Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation-reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect.  相似文献   

19.
- DOI: http://dx.doi.org/10.1065/espr2006.01.007 Goal, Scope and Background Amu Darya river, one of the main water resources of Uzbekistan, shows a relevant longitudinal enrichment of soluble contents which strongly limits the human uses of its waters. Because of the low natural run-off processes, salts and pollutants are mainly driven to the river by the return waters used for washing and irrigating the surrounding lands. The influence of return waters on stream quality is dramatically relevant in the lower reaches of the river where almost all the flowing waters have been previously used for the agriculture practises. To provide analytical evidence on the potential effects of return waters on the quality of the Amu Darya river, the paper reports and comments data on salinity and metals contents of the waters flowing in the artificial channel network of Bukhara and in the Amu Darya river, from Bukhara up to the dam forming the Tuyamuyn Hydro Complex (THC). Methods A total of 15 sampling sites were selected for the analytical survey: Two sites were located on the Amu Darya river downstream from the inflow of the return waters from Bukhara, two in the river entering in the THC, and three downstream from the dam forming the reservoir complex. The waters entering and leaving the Bukhara agricultural area were sampled in two main collectors, while the waters flowing in the channel system were sampled in six distinct collectors. The following parameters were considered in the survey: pH, Oxygen, Hardness, Salinity, Conductivity, P-PO4 3–, P tot, N tot, N-NO3 2–, N-NO2 –, COD, Ca2+, Mg2+, Fe, Mn, Zn, Cr, Cu, Ni, Cd, Pb. Results and Discussion Salt concentrations below 1000 mg/l were measured in the Amu Darya waters upstream to Bukhara. In the drainage system, salinity exceeds the palatability limit and reaches the maximum peak of 3200 mg/l in the outflow collector. Due to dilution effects, salinity returns to lower values (400–700 mg/l) along the Amu Darya river downstream from Bukhara; calcium and magnesium resulted the major constituents of the overall salinity. No serious metal contaminations were detected in the waters entering and leaving the examined channel system. Differently, the Amu Darya waters upstream to the THC showed a relevant metal contamination, with Cr, Ni, Fe concentrations exceeding the limits for human consumption. In the downstream sites, located in the Tuyamuyn Hydro Complex and in the Amu Darya river flowing out from this reservoir, excluding Fe, all the examined metals showed lover concentrations and values below the normative limits. Conclusion The direct human consumption of the lower Amu Darya waters is strongly limited by salinity and by metal contamination. Although the salinity of the return waters from the Bukhara drainage system results in above normal limits, no corresponding increases were measured in the Amu Darya river downstream from the return water inflow at the time of the survey. As for the metal contamination of the Amu Darya river, the survey revealed the presence of relevant sources of metal contamination downstream from Bukhara external to the agricultural drainage system. This contamination resulted in reduced sedimentation processes taking place in the limnetic zones of the Amu Darya river upstream to the dam forming the Tuyamuyn Hydro Complex. Recommendation and Outlook To fully understand the longitudinal increase of Amu Darya salinity, an evaluation of the cumulative effects of the loads from the main agricultural areas is required, also by using mass-balance models. As for the metals, an investigation should be addressed to identify the anthropogenic sources of contaminations present in the lower Amu Darya region and the metal loads should be diverted.  相似文献   

20.

Background, aim and scope

Water is a renewable resource and acceptable quality is important for human health, ecological and economic reasons, but human activity can cause great damage to the natural aquatic environment. Managing the water cycle in a sustainable way is the key to protect natural resources and human health. On a global level, the microbiological contamination of water sources is a major problem in connection with poverty and the United Nations Millennium Development Declaration is an important initiative to handle this problem. In terms of environmental health, persistent organic pollutants (POPs) circulate globally; as they travel long distances, they are found in remote areas far from their original source of application and can cause damage wherever they move to. On a global scale, United Nations Environmental Programme (UNEP) issued the Stockholm Convention to reduce POPs; in the European Union (EU), one intention of the Water Framework Directive (WFD) is to reach the good chemical status of waters; beside these regulations, there are other directives in support of these goals. The aim of this paper is to discuss whether the Stockholm Convention and the WFD allows meeting the targets of protection of human and environmental health, which are established in the different directives and how could we approach the targets.

Materials and methods

The aims and scopes of different directives are compiled and compared with the actual quality of water, different approaches of standard settings are compared and potential treatment options are discussed.

Results

Under the Stockholm Convention on POPs, which came into force in May 2004, governments are required to develop a National Implementation Plan (NIP) setting out how they will address their obligations under the convention and how they will take measures to eliminate or reduce the release of POPs into the environment by the use of best available techniques (BAT) and application of best environmental practices (BEP). On a European level, the WFD has been in place as the main European legislation to protect our water resources and the water environment of Europe since 2000. It requires managing river basins so that the quality and quantity of water does not affect the ecological services of any specific water body. Nevertheless, the goals of other directives as for drinking water, bathing water and urban wastewater treatment are not yet harmonised mainly concerning microbiological, priority substances and priority hazardous substances (PS/PHS) contamination. Following the detection of substances, a risk assessment with sound effect data needs to be performed also for regulatory decisions and priorisation of measures to remove emerging contaminants. Beside personal care products and industrial contaminants, faecal pollution of recreational waters is one of the major hazards facing users, although microbial contamination from other sources as well as chemical and physical aspects also affects the suitability of water for recreation. As in arid and semiarid areas, wastewater is considered for irrigation with regulatory needs of hygienic and chemical parameters—health-based targets—to avoid the contamination of crops and food. In surface waters, currently, the relationships between physical and chemical properties and the biological state of surface waters were quite well-understood to enable the management of catchments and rivers to achieve ecological quality.

Discussion

Nevertheless, more work is needed to find out the actual impact of the regulations for single chemicals and complex mixtures, in terms of environmental quality standards to achieve a ‘good chemical status’, on the good biological status. In a next step after the adoption of the list of PS/PHS substances, which also includes the POPs, the Urban Wastewater Treatment Directive (UWWTD) needs to be adjusted and existing or new treatment options (BATs) should comply with the new requirements of the different directives.

Conclusions

Relevant substances threaten human health and the environment by new effects such as CMR, endocrine-disrupting effects or neurotoxicity which are not yet considered in an adequate way by assessment methods and regulatory standards and the application of abatement technologies. The Registration, Evaluation, Authorisation and Restriction of Chemicals helps to control the sources, but WFD, the Stockholm Convention and UWWTD need to be harmonised and a rolling revision process should react on new developments. Finally, to answer the question if the Stockholm Convention and the WFD (2000/60/EC) could reach the target—I would state that they provide a very valuable frame to approach the targets, but there is still way to go to reach them on an EU level and on a global scale, also under the aspects of the Stockholm Convention and the Millennium Development Goals.

Perspectives

The compilation of the goals of different regulations and combined actions will save a lot of administrative efforts and money.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号