首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airborne microorganisms, especially the pathogenic microorganisms, emitted from animal feeding operations (AFOs) may harm the environment and public health and threaten the biosecurity of the farm and surrounding environment. Electrolyzed water (EW), which was considered to be an environmentally friendly disinfectant, may be a potential spraying medium of wet scrubber for airborne microorganism emission reduction. A laboratory test was conducted to investigate the airborne bacteria (CB) removal efficiency of the wet scrubber by EW spray with different designs and operating parameters. Both the available choline (AC) initial loss rate and AC traveling loss rate of acidic electrolyzed water (AEW; pH = 1.35) were much higher than those of slightly acidic electrolyzed water (SAEW; pH = 5.50). Using one spraying stage with 4 m sec?1 air speed in the duct, the no detect lines (NDLs) of SAEW (pH = 5.50) for airborne Escherichia coli, Staphylococcus aureus, and Salmonella enteritidis removal were all 50 mg L?1, whereas the NDLs of AEW (pH = 1.35) for airborne E. coli, S. aureus, and S. enteritidis removal increased to 70, 90, and 90 mg L?1, respectively. The NDLs of SAEW (pH = 5.50) for airborne E. coli, S. aureus, and S. enteritidis were lower than those of AEW (pH = 1.35) at single spraying stage. Increase in the number of stages lowered the NDLs of both SAEW (pH = 5.50) and AEW (pH = 1.35) for airborne E. coli, S. aureus, and S. enteritidis. EW with a higher available chlorine concentration (ACC) was needed at air speed of 6 m sec?1 to reach the same airborne CB removal efficiency as that at air speed of 4 m sec?1. The results of this study demonstrated that EW spray wet scrubbers could be a very effective and feasible airborne CB mitigation technology for AFOs.

Implications: It is difficult to effectively reduce airborne bacteria emitted from animal feeding operations (AFOs). Electrolyzed water (EW) with disinfection effect and acidity is a potential absorbent for spray in wet scrubber to remove microorganisms and ammonia. Based on the field test results, a laboratory experiment we conducted this time was to optimize the design and operation parameters to improve the airborne bacteria removal efficiency. A better understanding of the EW application in the wet scrubber can contribute to the mitigation of airborne bacteria from animal houses and improve the atmosphere air quality.  相似文献   


2.
Reducing airborne microorganisms may potentially improve the environment in layer breeding houses. The effectiveness of slightly acidic electrolyzed water (SAEW; pH 5.29–6.30) in reducing airborne microorganisms was investigated in a commercial layer house in northern China. The building had a tunnel-ventilation system, with an evaporative cooling. The experimental area was divided into five zones along the length of the house, with zone 1 nearest to an evaporative cooling pad and zone 5 nearest to the fans. The air temperature, relative humidity, dust concentration, and microbial population were measured at the sampling points in the five zones during the study period. The SAEW was sprayed by workers in the whole house. A six-stage air microbial sampler was used to measure airborne microbial population. Results showed that the population of airborne bacteria and fungi were sharply reduced by 0.71 × 105 and 2.82 × 103 colony-forming units (CFU) m?3 after 30 min exposure to SAEW, respectively. Compared with the benzalkonium chloride (BC) solution and povidone-iodine (PVP-I) solution treatments, the population reductions of airborne fungi treated by SAEW were significantly (P < 0.05) more, even though the three disinfectants can decrease both the airborne bacteria and fungi significantly (P < 0.05) 30 min after spraying.
Implications: There are no effective methods for reducing airborne microbial levels in tunnel-ventilated layer breeding houses; additionally, there is limited information available on airborne microorganism distribution. This research investigated the spatial distribution of microbial population, and the effectiveness of spraying slightly acidic electrolyzed water in reducing microbial levels. The research revealed that slightly acidic electrolyzed water spray was a potential method for reducing microbial presence in layer houses. The knowledge gained in this research about the microbial population variations in the building may assist producers in managing the bird housing environment and engineers in designing poultry houses.  相似文献   

3.
In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L?1. The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L?1 and [Fe2+] = 400 mg L?1, and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L?1 to 1200 mg L?1 did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10?4 mg L?1 min?1 and 7.7 × 10?4 mg L?1 min?1, respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.  相似文献   

4.
ABSTRACT

The objective of this study was to determine whether ultraviolet-light-emitting diodes (UV-LEDs) could serve as an efficient photon source for heterogeneous photocatalytic oxidation (PCO). An LED module consisting of 12 high-power UV-A (λmax?=?365 nm) LEDs was designed to be interchangeable with a UV-A fluorescent black light blue (BLB) lamp for a bench scale annular reactor packed with silica-titania composite (STC) pellets. Lighting and thermal properties of the module were characterized to assess its uniformity and total irradiance. A forward current (I F) of 100 mA delivered an average irradiance of 4.0 mW cm?2 at a distance of 8 mm, which is equivalent to the maximum output of the BLB, but the irradiance of the LED module was less uniform than that of the BLB. The LED and BLB reactors were tested for the oxidization of ethanol (50 ppmv) in a continuous-flow-through mode with 0.94 sec residence time. At the same average irradiance, the UV-A LED reactor resulted in a lower CO2 production rate (19.8 vs. 28.6 nmol L?1 s?1), lower ethanol removal (80% vs. 91%), and lower mineralization efficiency (28% vs. 44%) than the UV-A BLB reactor. Ethanol mineralization was enhanced with the increase of the irradiance at the catalyst surface. This result suggests that reduced ethanol mineralization in the LED reactor relative to the BLB reactor at the same average irradiance could be attributed to the nonuniform irradiance over the photocatalyst, that is, a portion of the catalyst was exposed to less than the average irradiance. The potential of UV-A LEDs may be fully realized by optimizing the light distribution over the catalyst and utilizing their instantaneous “on” and “off” feature for periodic irradiation. Nevertheless, our results also showed that the current UV-A LED module had the same wall plug efficiency (WPE) of 13% as that of the UV-A BLB, demonstrating that UV-A LEDs are a viable photon source both in terms of WPE and PCO efficiency.

IMPLICATIONS Mercury (Hg)-vapor lamps are common UV sources for photocatalysis but create safety and environmental concerns because they contain Hg; furthermore, they have a relatively short life span. This paper demonstrated that the UV-A LED is a viable alternative to the Hg-vapor lamps without sacrificing PCO efficiency if the design of the LED arrays is improved to increase the lighting uniformity. The use of LEDs could eliminate hazardous Hg wastes and extend the application of photocatalysis in places requiring more compact and robust air purification solutions.  相似文献   

5.
The safety of Tinospora cordifolia and its potential to protect against ultraviolet radiation‐induced cytotoxicity and DNA damage in PC12 cells were investigated. To evaluate the safety of T. cordifolia, cell viability and agarose gel electrophoresis were carried out using PC12 cells treated with 0 to 100 μg mL?1 of methanol extract of T. cordifolia. T. cordifolia extracts did not show cytotoxicity ranging 0 to 100 μg mL?1. In addition, T. cordifolia extracts significantly increased cell viability at 1 ng, 10 ng and 1 μg mL?1 concentrations in serum‐deprived medium compared to control. To confirm the protective role against UV‐induced damage, PC12 cells alone or in the presence of 10 ng, 100 ng, or 1 μg mL?1 of T. cordifolia extract were exposed to 250, 270 and 290 nm of UV radiation, which corresponded to doses of 120, 150 and 300 mJ cm?2, respectively. Treatment with T. cordifolia extracts significantly increased the cell survival rate irradiated at 290 nm. In addition, T. cordifolia extracts significantly reduced cyclobutane pyrimidine dimer formation induced by UV irradiation at all wavelengths. In conclusion, T. cordifolia is not toxic and safe for cells. Our findings can support its application as phototherapy in the medical sector.  相似文献   

6.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC/MS/MS) method for the determination of trace dioctyl sulfosuccinate (DOSS) concentrations in seawater samples has been established. The method is well suited to aquatic environment impact monitoring following application of the dispersant Corexit EC9500A. Linearity of the method was demonstrated down to 0.05 ng/mL?1 (0.05 µgL?1) DOSS in seawater, with a 2.4% relative standard deviation precision for preparation replicates. A US EPA method limit of detection of <0.02 ng/mL?1 (<0.02 µgL?1) was calculated and specificity was confirmed by monitoring of two qualifier ions at 291.1 m/z and 227.1 m/z. These transitions were confirmed by QToF analysis to be associated with the DOSS precursor ion at 421.2 m/z. For application to seawater samples and samples containing oil particulates, a practical and repeatable calibration range of 0.5 ng/mL?1 (0.5 µgL?1) to 25.0 ng/mL?1 (25.0 µgL?1) DOSS is reported. The method was shown to have excellent precision and accuracy, with a consistent ≤1.6% relative standard deviation for system suitability standards at 0.5 ng/mL?1 (0.5 µgL?1) and linear weighted (1/x) regression coefficients of determination ≥0.995. The surfactant nature of the analyte is discussed in relation to detection limit and loss of analyte. Speculation of a relationship between DOSS in association or aggregation with divalent cations, such as Ca2+ present in salt water and hard water, is suggested. The consequent effects on cell ionic balance and membrane function are discussed.  相似文献   

7.
N-Nitrosodimethylamine (NDMA) is a potent carcinogen that yields a cancer risk of 10−6 at concentrations as low as 0.7 ng L−1. Tentative guideline values are set at 3 ng L−1 in California, USA; 9 ng L−1 in Ontario, Canada; 40 ng L−1 nationwide in Canada; and 100 ng L−1 by the World Health Organization. NDMA is a great concern in treating reclaimed water as well as drinking water. UV degradation can be considered effective degradation method. A 1-log reduction of NDMA is achieved by 1000 mJ cm−2 of a 254-nm low pressure (LP) mercury UV lamp. However, a higher degradation efficiency than that provided by LP lamps is desired in practical treatment. In this study, the effects of wavelength and water quality were investigated to achieve higher degradation efficiency. The effects of wavelength were examined by comparing three UV lamps: a 222-nm Kr Cl Excimer UV lamp, a 254-nm LP mercury UV lamp, and a 230- to 270-nm filtered medium pressure (FMP) mercury UV lamp. The 222-nm lamp and FMP lamp achieved 4 times and 2.8 times higher degradation efficiency, respectively, than the conventional 254-nm LP lamp. Effects on water quality were also simulated by using absorption spectrum data of nitrate solutions and process water from a drinking-water treatment plant. In the simulation, the 222-nm lamp was affected by UV-absorbing compounds in the water, whereas the FMP lamp showed more stable degradation efficiency. Appropriate use of these three types of lamps could enhance the efficiency of degradation of NDMA.  相似文献   

8.
Abstract

Sensitivity of 24 isolates of Colletotrichum destructivum O’Gara, collected from alfalfa plants in Serbia, to eight selected fungicides, was investigated in this study. Molecular identification and pathogenicity test of isolates tested were also performed. Fungicide sensitivity was evaluated in vitro, using mycelial growth assay method. All isolates exhibited significant pathogenicity, causing necrosis at the alfalfa seedling root tips two days after inoculation. Using the primer pair GSF1-SR1 and by comparing the amplified fragments of the tested isolates with the marker (M), the presence of the amplicon of the expected size of about 900?bp was determined for all isolates. The isolates tested in this study showed different sensitivity towards fungicides in vitro. Mycelial growth was highly inhibited by QoI (quinone outside inhibitors) fungicide pyraclostrobin (mean EC50=0.39?µg mL?1) and by DMI (demethylation-inhibiting) fungicide tebuconazole (mean EC50=0.61?µg mL?1), followed by azoxystrobin (mean EC50=2.83?µg mL?1) and flutriafol (mean EC50=2.11?µg mL?1). Multi-site fungicide chlorothalonil and MBC (methyl benzimidazole carbamate) fungicide thiophanate-methyl evinced moderate inhibition with mean EC50=35.31 and 62.83?µg mL?1, respectively. Thirteen isolates were sensitive to SDHI (succinate dehydrogenase inhibitors) fungicide boscalid and fluxapyroxad, (mean EC50=0.49 and 0.19?µg mL?1, respectively), while the rest of isolates were highly resistant.  相似文献   

9.
ABSTRACT

The UV and global solar radiation on a horizontal surface at ground level in Riyadh City (latitude 24° 34' N, longitude 46° 43' E) have been measured and analyzed. Measurements of UV radiation (295-385 nm) were recorded every 10 min for five years (January 1983-December 1987). The maximum recorded hourly mean irradiance UV radiation was 28 W/m2 and occurred in July, while the minimum was 14 W/m2 in December.  相似文献   

10.
Reducing airborne dust is an essential process for improving hen housing environment. Dust reduction effects of neutral electrolyzed water (pH 8.2) spray were investigated in a commercial tunnel-ventilated layer breeding house during production in northern China. A multipoint sampler was used to measure airborne dust concentration to study the dust reduction effects and distribution in the house. Compared with the control treatment (without spray), airborne dust level was reduced 34% in the 3 hr after spraying 216 mL m?2 neutral electrolyzed water in the breeding house. The dust concentration was significantly higher during the periods of feed distribution (1.13 ± 0.13 mg m?3) and artificial insemination (0.72 ± 0.13 mg m?3) compared with after spray (0.47 ± 0.09 mg m?3) and during lights-off period (0.29 ± 0.08 mg m?3) in the three consecutive testing days (P < 0.05). The experimental cage area was divided into four zones along the length of the house, with zone 1 nearest to the evaporative cooling pad and zone 4 nearest to the fans. The air temperature, relative humidity, airflow rate, and dust concentration were measured at the sampling points of the four zones in 3 consecutive days and mortality of the birds for the duration of a month were investigated. The results showed that the air temperature, airflow rate, dust concentration, and number of dead birds increase from zone 1 to zone 4 in the tunnel-ventilated layer breeding house.

Implications: It is difficult to effectively reduce hen house airborne dust levels and limited information is available on airborne dust distribution in tunnel-ventilated hen houses. This work investigates (i) the application of neutral electrolyzed water spray for reducing dust in a layer breeding houses; (ii) dust concentration variations in 24-hr house operation; as well as (iii) the effects of location on dust concentrations. It was demonstrated that neutral electrolyzed water spray can be efficiently used for dust reduction in poultry houses. Further, a better understanding of the dust concentration variations in 24-hr house operation and in different spatial zones can contribute to bird housing environment management and poultry house design so as to improve bird health.  相似文献   

11.
Abstract

The research objective was to adapt the ultraviolet (UV)photolysis method to determine dissolved organic nitrogen (DON) in aqueous extracts of aerosol samples. DON was assumed to be the difference in total concentration of inorganic nitrogen forms before and after sample irradiation. Using a 22 factorial design the authors found that the optimal conversion of urea, amino acids (alanine, aspartic acid, glycine, and serine), and methylamine for a reactor temperature of 44 °C occurred at pH 2.0 with a 24-hr irradiance period at concentrations < µM of organic nitrogen. Different decomposition mechanisms were evident: the photolysis of amino acids and methylamine released mainly ammonium (NH4 +), but urea released a near equimolar ratio of NH4 + and nitrate (NO3 ?). The method was applied to measure DON in the extracts of aerosol samples from Tampa, FL, over a 32-day sampling period. Average dissolved inorganic (DIN) and DON concentrations in the particulate matter fraction PM10 were 78.1 ± 29.2 nmol-Nm?3and 8.3 ± 4.9 nmol-Nm?3, respectively. The ratio between DON and total dissolved nitrogen ([TDN] = DIN + DON) was 10.1 ± 5.7%, and the majority of the DON (79.1 ± 18.2%) was found in the fine particulate matter (PM2.5) fraction. The average concentrations of DIN and DON in the PM2.5 fraction were 54.4 ± 25.6 nmol-Nm?3 and 6.5 ± 4.4 nmol-Nm?3, respectively.  相似文献   

12.
Spraying slightly acidic electrolyzed water (SAEW) has been considered as a potential approach to reduce airborne bacteria in laying-hen houses. In this study, the effects of spraying SAEW on airborne bacterial reduction were investigated in a laying-hen house as compared with using diluted didecyl dimethyl ammonium bromide (DDAB). Averaged air temperature reduced by approximate 1 °C and average relative humidity increased by 3% at a stable ventilation rate (about 2.5 m3 hr?1 per bird) in the laying-hen house 30 min after spraying (120 mL m?2). Compared with the control without spraying, the airborne bacterial concentration was reduced by about 0.70 and 0.37 log10 colony-forming units (CFU) m?3 in the 4 hr after spraying 120 mL m?2 SAEW (available chlorine concentration [ACC] of 156 mg L?1) and diluted DDAB (active compound concentration of 167 mg L?1), respectively. Compared with spraying diluted DDAB, spraying SAEW was determined to be more effective for reducing airborne bacterial in laying-hen houses. The effects of spraying SAEW and diluted DDAB on airborne bacterial reduction in the laying-hen house increased with the increasing available chlorine concentrations for SAEW (156, 206, 262 mg L?1) and increasing active compound concentrations for diluted DDAB (167, 333, 500 mg L?1), respectively. Spraying SAEW and diluted DDAB with two levels of spraying volumes (120 and 90 mL m?2) both showed significant differences on airborne bacterial reduction in the laying-hen house (P < 0.05).

Implications: It is difficult to effectively reduce airborne bacteria in laying-hen houses. This work describes the application of spraying slightly acidic electrolyzed water as a new approach for reducing airborne bacteria in a laying-hen house. The effects of active compound concentrations and spray volumes on the airborne bacterial reductions by spraying SAEW were also investigated. This study provided a new effective and environmentally friendly approach to reduce the airborne bacteria in poultry houses, contributing to bird housing environment management and improving bird health.  相似文献   

13.
The ecotoxic effects of carbaryl (carbamate insecticide) were investigated with a battery of four aquatic bioassays. The nominal effective concentrations immobilizing 50% of Daphnia magna (EC50) after 24 and 48 h were 12.76 and 7.47 µg L?1, respectively. After 21 days of exposure of D. magna, LOECs (lowest observed effect concentrations) for cumulative molts and the number of neonates per surviving adult were observed at carbaryl concentration of 0.4 µg L?1. An increase of embryo deformities (curved or unextended shell spines) was observed at 1.8 and 3.7 µg L?1, revealing that carbaryl could act as an endocrine disruptor in D. magna. Other bioassays of the tested battery were less sensitive: the IC50-72h and IC10-72h of the algae Pseudokirchneriella subcapitata were 5.96 and 2.87 mg L?1, respectively. The LC50-6d of the ostracod Heterocypris incongruens was 4.84 mg L?1. A growth inhibition of H. incongruens was registered after carbaryl exposure and the IC20-6d was 1.29 mg L?1. Our results suggest that the daphnid test sensitivity was better than other used tests. Moreover, carbaryl has harmful and toxic effects on tested species because it acts at low concentrations on diverse life history traits of species and induce embryo deformities in crustaceans.  相似文献   

14.
ABSTRACT

Dried sclerotia of Wolfiporia extensa have been used as medicine in Asia from Eastern Han Dynasty, and also used as traditional snack called “fulingjiabing” in Beijing, China. In this paper, 18 macro and trace elements (Ag, As, Ba, Cd, Co, Cr, Cs, Cu, Fe, Li, Mn, Ni, Pb, Rb, Se, Sr, V, and Zn) in both flesh and peel of Wolfiporia extensa from seven sites of Yunnan province in China were determined by inductively coupled plasma mass spectrometer. The average recovery rates of certified reference materials for GBW10015 (spinach leaves) ranged from 90.5 to 113%, for GBW10028 (citrus leaves) from 92.8 to 106%, and for GBW07603 (bush branch and leaves) from 83.3 to 114.6%. Generally speaking, the concentration of all elements determined was at common level. The results of this survey indicate that mineral compositions in peel were higher than in flesh. In peel, the contents of investigated trace metals in mushroom samples were found to be in the range of 1,660–13,400 µg·g?1 dry matter (dm) for Fe and 29.6–710 µg·g?1 dm for Mn. The mean contents of Cr, Cu, Rb, V, and Zn in peel were between 10 and 20 µg·g?1 dm, followed by As, Co, Li, Ni, Pb, Se, and Sr with mean contents between 1 and 10 µg·g?1 dm, while Ag, Cd, and Cs had mean contents of <1 µg·g?1 dm. In flesh, the concentration of Fe was in the range of 54–900 µg·g?1 dm, and it was 1.5–49 µg·g?1 dm for Mn, followed by Ba, Cu, Rb, and Zn in the range of 1 to 10 µg·g?1 dm, while for Ag, As, Cd, Co, Cr, Cs, Li, Ni, Pb, Se, Sr, and V it was <1 µg·g?1 dm. The concentration of toxic elements, such as As, Cd, and Pb, in both flesh and peel was below the permissible limits of World Health Organization. However, As and Pb contents in peel were higher than the limits permitted in the Chinese Pharmacopoeia. The results of principal component analysis showed that the flesh of Wolfiporia extensa from all the seven sites of the Yunnan province tend to cluster together, most probably because the origin of mineral elements in both flesh and peel is wood substrate (old and dead pine trees).  相似文献   

15.
Two plant species, arugula (Eruca sativa) and mustard (Brassica juncea) were field-grown under four soil management practices: soil mixed with municipal sewage sludge (SS), soil mixed with horse manure (HM), soil mixed with chicken manure (CM), and no-mulch bare soil (NM) to investigate the impact of soil amendments on the concentration of glucosinolates (GSLs) in their shoots. GSLs, hydrophilic plant secondary metabolites in arugula and mustard were extracted using boiling methanol and separated by adsorption on sephadex ion exchange disposable pipette tips filled with DEAE, a weak base, with a net positive charge that exchange anions such as GSLs. Quantification of GSLs was based on inactivation of arugula and mustard myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase (thioglucosidase) and spectrophotometric quantification of the liberated glucose moiety. Overall, GSLs concentrations were significantly greater (1287 µg g?1 fresh shoots) in plants grown in SS compared to 929, 890, and 981 µg g?1 fresh shoots in plants grown in CM, HM, and NM soil, respectively. Results also revealed that mustard shoots contained greater concentrations of GSLs (974 µg g?1 fresh shoots) compared to arugula (651 µg g?1 fresh shoots).  相似文献   

16.
We have measured the concentration of hydroxyl radicals (OH) produced in the gas phase by a commercially available purifier for air and surfaces, using the time rate of decay of n-heptane added to an environmental chamber. The hydroxyl generator, an Odorox® BOSS? model, produces the OH through 185-nm photolysis of ambient water vapor. The steady-state concentration of OH produced in the 120 m3 chamber is, with 2σ error bars, (3.25 ± 0.80) × 106 cm?3. The properties of the hydroxyl generator, in particular the output of the ultraviolet lamps and the air throughput, together with an estimation of the water concentration, were used to predict the amount of OH produced by the device, with no fitted parameters. To relate this calculation to a steady-state concentration, we must estimate the OH loss rate within the chamber owing to reaction with the n-heptane and the 7 ppb of background hydrocarbons that are present. The result is a predicted steady-state concentration in excellent agreement with the measured value. This shows we understand well the processes occurring in the gas phase during operation of this hydroxyl radical purifier.

Implications: Hydroxyl radical air purifiers are used for cleaning both gaseous contaminants, such as volatile organic compounds (VOCs) or hazardous gases, and biological pathogens, both airborne and on surfaces. This is the first chemical kinetic study of such a purifier that creates gas-phase OH by ultraviolet light photolysis of H2O. It shows that the amount of hydroxyls produced agrees well with nonparameterized calculations using the purifier lamp output and device airflow. These results can be used for designing appropriate remediation strategies.  相似文献   

17.
ABSTRACT

Xylene is the main component of many volatile industrial pollution sources, and the use of biotechnology to remove volatile organic compounds (VOCs) has become a growing trend. In this study, a biotrickling filter for gaseous xylene treatment was developed using activated sludge as raw material to study the biodegradation process of xylene. Reaction conditions were optimized, and long-term operation was performed. The optimal pH was 7.0, gas-liquid ratio was 15:1 (v/v), and temperature was 25 °C. High-throughput sequencing technique was carried out to analyze microbial communities in the top, middle, and bottom layers of the reactor. Characteristics of microbial diversity were elucidated, and microbial functions were predicted. The result showed that the removal efficiency (RE) was stable at 86%–91%, the maximum elimination capacity (EC) was 303.61 g·m?3·hr?1, residence time was 33.75 sec, and the initial inlet xylene concentration was 3000 mg·m?3, which was the highest known degradation concentration reported. Kinetic analysis of the xylene degradation indicated that it was a very high-efficiency-activity bioprocess. The rmax was 1059.8 g·m?3·hr?1, and Ks value was 4.78 g·m?3 in stationary phase. In addition, microbial community structures in the bottom and top layers were significantly different: Pseudomonas was the dominant genus in the bottom layer, whereas Sphingobium was dominant in the top layer. The results showed that intermediate metabolites of xylene could affect the distribution of community structure. Pseudomonas sp. can adapt to high concentration xylene–contaminated environments.

Implications: We combined domesticated active sludge and reinforced microbial agent on biotrickling filter. This system performed continuously under a reduced residence time at 33.75 sec and high elimination capacity at 303.61 g·m?3·hr?1 in the biotrickling reactor for about 260 days. In this case, predomestication combined with reinforcing of microorganisms was very important to obtaining high-efficiency results. Analysis of microbial diversity and functional prediction indicated a gradient distribution along with the concentration of xylene. This implied a rational design of microbial reagent and optimizing the inoculation of different sites of reactor could reduce the preparation period of the technology.  相似文献   

18.
This study elucidated the acute toxicity of chlorpyrifos on the early life stages of banded gourami (Trichogaster fasciata). To determine the acute effects of chlorpyrifos on their survival and development, we exposedthe embryos and two-day-old larvae to six concentrations (0, 0.01, 0.10, 1.0, 10 and 100 µg L?1) of chlorpyrifos in plastic bowls. Log-logistic regression was used to calculate LC10 and LC50 values. Results showed that embryo mortality significantly increased with increasing chlorpyrifos concentrations. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for embryos were 0.89 (0.50–1.58) and 11.8 (9.12–15.4) µg L?1, respectively. Hatching success decreased and mortality of larvae significantly increased with increasing concentrations of chlorpyrifos. The 24-h LC10 and LC50 values (with 95% confidence limits) of chlorpyrifos for larvae were 0.53 (0.27–1.06) and 21.7 (15.9–29.4) µg L?1, respectively; the 48-h LC10 and LC50 for larvae were 0.04 (0.02–0.09) and 5.47 (3.77–7.94) µg L?1, respectively. The results of this study suggest that 1 µg L?1 of chlorpyrifos in the aquatic environment may adversely affect the development and the reproduction of banded gourami. Our study also suggests that banded gourami fish can serve as an ideal model species for evaluating developmental toxicity of environmental contaminants.  相似文献   

19.
The kinetics of the heterogeneous reaction between gaseous HCHO and TiO2/SiO2 mineral coatings were investigated using a coated-wall flow tube to mimic HCHO loss on mineral aerosol and TiO2 coated depolluting urban surfaces. The measured uptake kinetics were strongly enhanced when the flow tube was irradiated with 340–420 nm UV light with an irradiance of 1.45 mW cm?2. The associated BET uptake coefficients ranged from (3.00 ± 0.45) × 10?9 to (2.26 ± 0.34) × 10?6 and were strongly dependent on HCHO initial concentration, relative humidity, temperature, and TiO2 content in the mineral coating, which ranged from 3.5 to 32.5 ppbv, 6–70%, 278–303 K, and 1–100 %wt, respectively. The measured kinetics were well described using a Langmuir–Hinshelwood type formalism. The estimated uptake coefficients were used to discuss the importance of heterogeneous HCHO surface loss, in terms of deposition lifetimes, as compared to major homogeneous gas-phase losses such as OH reaction and photolysis. It is found that deposition may compete with gas-phase removal of HCHO in a dense urban environment if more than 10% of the urban surface is covered with TiO2 treated material.  相似文献   

20.

In this study, post-treatment of bio-treated acrylonitrile wastewater was performed using the UV/Fenton process. Five target compounds (furmaronitrile, 3-pyridinecarbonitrile, 1,3-dicyanobenzene, 5-methyl-1H-benzotriazole, and 7-azaindole) were selected as target compounds and their degradation kinetics were examined. Under optimal reaction conditions (H2O2 dosage 3.0 mM, Fe2+ dosage 0.3 mM, and initial pH 3.0), more than 85% of total organic carbon (TOC) was eliminated in 30 min when a 10-W UV lamp was employed, and the electrical energy per order of magnitude for TOC removal was as low as 2.96 kWh m?3. Furthermore, the target compounds and the toxicity were largely removed from the bio-treated effluent. Size exclusion chromatography with organic carbon detector analysis revealed that organic components with a wide range of molecular weights were greatly reduced after the UV/Fenton process. A simplified pseudo steady-state (SPSS) model was applied to predict the degradation of target compounds during the UV/Fenton process. The concentrations of generated hydroxyl radicals were estimated to be 3.06 × 10?12 M, 6.37 × 10?12 M, and 10.9 × 10?12 M under 5-, 10-, and 15-W UV lamps, respectively. These results demonstrate that the proposed SPSS model fitted well with experimental data on the post-treatment of real wastewater, and consequently indicate that this model can be a useful tool in the prediction of degradation of target compounds during the UV/Fenton process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号