首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extent of pollution of the environment as a result of mining activities in Kabwe, the provincial capital of Central province in Zambia has not yet been evaluated. Mining of lead and zinc were the core activities of Kabwe mine while cadmium and silver were produced as by-products. The smelting processes produced a significant amount of copper. The spatial distribution of four heavy metals in soils in the northern, eastern, southern and western directions of the mine was analyzed using atomic absorption spectrometry (AAS). Samples were collected up to 20 km in each direction from the mine. Results were consistent with the wind flow patterns in the town. Results ranged between 0.08 and 28 mg kg(-1) (Cd); 0.20 and 0.61 mg kg(-1) (Cu); 0.10 and 758 mg kg(-1) (Pb) and 0.40 and 234 mg kg(-1) (Zn) suggesting high precipitation of metals from the core mining activities. These concentrations were for only the fractions of metals extractable by 0.5M nitric acid and that could be available for plant uptake in the environment. The distribution of metals indicated a decrease of metal concentrations with distance from the mine, which confirmed that precipitation due to mining activities was the main cause of soil contamination.  相似文献   

2.
Molecular modelling has been used to investigate the interactions of various heavy metals, in order to understand and possibly to control the nature and behaviour of metals, especially in the aquatic environment. The interactions of copper, cadmium, lead and zinc with organic acids were studied using density functional theory (DFT) calculations. Carboxylic acid was used as a model molecule. The structure of each metal carboxylate was optimized and the vibrational spectrum calculated. The results indicate that there is a shift in the calculated vS(C=O) of metal carboxylates compared with that of carboxylic acid. It was also found that hexaaqua structures of both cadmium and zinc are stable whereas those of copper and lead are not. Furthermore, dipole moment calculations indicate that cadmium carboxylate dihydrate is more representative of cadmium interactions in the aquatic environment. Moreover, hexaaquo cadmium could further interact with surrounding molecules in the aquatic environment.  相似文献   

3.
4.
Chang Chien SW  Wang MC  Huang CC 《Chemosphere》2006,64(8):1353-1361
Thermodynamic stability constants of the formation of complexes from the reactions of humic substances with various metals are usually used as parameters to judge the reactivities of both humic substances and metals. However, in calculating the thermodynamic stability constants, complicated processes for the acquisition of activities of components in reactions are absolutely inevitable. In this study, we investigated the average conditional concentration quotients of the complexes formed from the reaction of metals with humic substances and the relations of these quotients to thermodynamic stability constants. The characterized humic substances including HA (MW>1,000), FA (MW>1,000), and FA (MW<1,000) extracted from a swine compost were prepared to react with Pb, Cu, Cd, and Zn at 25 degrees C and at pH 4.00 and 6.50. Reactions of HA (MW>1,000), FA (MW>1,000), and FA (MW<1,000) with the four metals were carried out at 1:0.1, 1:0.5, 1:1, 1:5, and 1:10 ligand:metal stoichiometry. The concentrations of the free ions of Pb, Cu, Cd, and Zn in the reaction systems of metal-HA suspensions and metal-FA solutions were measured by anodic stripping voltammetry (ASV). The sequence of the average conditional concentration quotients of the formed complexes from the reaction of humic substances with metals was FA(MW<1,000)>FA(MW>1,000)>HA(MW>1,000), showing the relative reactivities of the fractions of swine compost-derived humic substances. The sequence of reacting metals with humic substances was Pb>Cu>Cd>Zn, which is in good agreement with the sequence reported by judging the thermodynamic stability constants. The average conditional concentration quotients of the formed complexes from the reaction of humic substances with metals were thus useful parameters that can be directly related to thermodynamic stability constants and other parameters.  相似文献   

5.
In standard chronic terrestrial toxicity tests with invertebrates, adult organisms are exposed to the contaminants and the number of offspring is quantified. These procedures do not allow the assessment of possible effects on all life stages of the organism, which may lead to an underestimation of the toxicity of the test substance. To evaluate the importance of this issue, the potworm Enchytraeus albidus was exposed to zinc, cadmium, copper and lead for two subsequent generations. Juvenile production was assessed for both generations. Considering the variability of metal toxicity data reported in the literature, it is concluded that the two generation assay did not markedly increase the sensitivity of the standard E. albidus test for the tested metals. Therefore, toxicity data obtained with the proposed test guideline with E. albidus are protective for all life stages.  相似文献   

6.
Earthworms (Lumbricus rebellus and Dendrodrilus rubidus) were sampled from one uncontaminated and fifteen metal-contaminated sites. Significant positive correlations were found between the earthworm and 'total' (conc. nitric acid-extractable) soil Cd, Cu, Pb and Zn concentrations (data log1) transformed). The relationships were linear, and the accumulation patterns for both species were similar when a single metal was considered, even though there were species difference in mean metal concentrations. Generally, the earthworm Cd concentration exceeded that of the soil; by contrast, the worm Pb concentration was lower than the soil Pb concentration in all but one (acidic, low soil Ca) site. Our observations suggest that Cu and Zn accumulation may be physiologically regulated by both species. Total-soil Cd explained 82-86% of the variability (V2) in earthworm Cd concentration; 52-58% of worm Pb and worm Zn concentrations were explained by the total-soil concentrations of the respective metals. Total-soil Cu explained only 11-32% of the worm Cu concentration. The effect of soil pH, total Ca concentration, cation-exchange capacity (CEC) and organic carbon on metal accumulation by L. rubellus and D. rubidus was investigated by multiple regression analysis. Soil pH (coupled with CEC) and soil Ca had a major influence on Pb accumulation (V2 of worm Pb increased to 77-83%), and there was some evidence that Cd accumulation may be suppressed in extremely organic soils. The edaphic factors investigated had no effect on Cu or Zn accumulation by earthworms. In the context of biomonitoring, it is proposed that earthworms have a potential in a dual role: (1) as 'quantitative' monitors of total-soil metal concentrations (as shown for Cd); and (2) as estimators of 'ecologically significant' soil metal, integrating the effects of edaphic factors (as shown for Pb).  相似文献   

7.
The Siam weed, Chromolaena odorata (L.) King & Robinson, Family Asteraceae, was found to be a new Pb hyperaccumulator by means of field surveys on Pb soil and hydroponic studies. Plants from field collection accumulated 1377 and 4236mgkg(-1) Pb in their shoots and roots, respectively, and could tolerate soil Pb concentrations up to 100000 mgkg(-1) with a translocation factor of 7.62. Very low concentrations of Cd and Zn were found in plants collected from the field. Under nutrient solution culture condition, C. odorata from the contaminated site (CS) and from non-contaminated site (NCS) grew normally with all three metals (Pb, Cd, Zn) supplied. However, the relative growth rates of all treated plants decreased with increased metal concentrations. The percentage uptakes of Pb, Cd, and Zn by C. odorata increased with increasing metal concentrations. Pb concentration in shoots and roots reached its highest values (1772.3 and 60655.7mgkg(-1), respectively) at a Pb supply level of 10mgl(-1). While the maximum concentrations of Cd (0.5mgl(-1)) in shoots and roots of C. odorata were 102.3 and 1440.9mgkg(-1), and the highest concentrations of Zn (20mgl(-1)) were 1876.0 and 7011.8mgkg(-1), respectively. The bioaccumulation coefficients of Pb and Cd were greater than 1000. These results confirm that C. odorata is a hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and has a potential for the phytoremediation of metal contaminated soils.  相似文献   

8.
Davis AP  Shokouhian M  Ni S 《Chemosphere》2001,44(5):997-1009
Urban stormwater runoff is being recognized as a substantial source of pollutants to receiving waters. A number of investigators have found significant levels of metals in runoff from urban areas, especially in highway runoff. As an initiatory study, this work estimates lead, copper, cadmium, and zinc loadings from various sources in a developed area utilizing information available in the literature, in conjunction with controlled experimental and sampling investigations. Specific sources examined include building siding and roofs; automobile brakes, tires, and oil leakage; and wet and dry atmospheric deposition. Important sources identified are building siding for all four metals, vehicle brake emissions for copper and tire wear for zinc. Atmospheric deposition is an important source for cadmium, copper, and lead. Loadings and source distributions depend on building and automobile density assumptions and the type of materials present in the area examined. Identified important sources are targeted for future comprehensive mechanistic studies. Improved information on the metal release and distributions from the specific sources, along with detailed characterization of watershed areas will allow refinements in the predictions.  相似文献   

9.
Dong D  Li Y  Zhang J  Hua X 《Chemosphere》2003,51(5):369-373
Measurements were made regarding the adsorption of lead, cadmium, copper, zinc and barium to freshwater surface coatings (biofilms and associated minerals), which were collected in Nanhu Lake in Jilin Province, PR China, in order to investigate the variability of adsorption capacities of these heavy metals mentioned in the above surface coatings. The adsorption of lead and other heavy metals to the biofilms was observed to decrease in the following order: copper, lead, zinc, cadmium, and barium. Generally, the values of Gamma(max) (the maximum adsorption, micromol/m(2)) increased with the standard electrode potential of metal elements used and were recorded as 166.7, 40.0, 29.4, 10.8, and 1.8 for copper, lead, zinc, cadmium and barium, respectively. The values of 1/Gamma(max) increased linearly with the decrease in values of the standard electrode potential of metal elements with a significant correlation (n=5, p=0.01) and increased linearly with the increase in values of covalent radius of metal elements with a significant correlation (n=5, p=0.05). This indicates that standard electrode potential and covalent radius were two of the principal characteristics of metals employed, causing the variation of lead and other heavy metal adsorption to the surface coatings.  相似文献   

10.
In autumn 1986, plants and soil were collected from the lower and the higher salt marsh zones of salt marshes along the Dutch coast. The main purpose was to get an overview of Zn, Cu and Cd concentrations in six dominant species of salt marsh plants. The roots and shoots of the plants were analysed for Zn, Cu and Cd. The highest heavy metal concentrations were found in plants collected from salt marshes near harbour areas and/or that are known to receive contaminated fluvial sediment. Dicotyledonous plant species tended to have similar heavy metal concentrations in roots and shoots, whereas in monocotyledonous species the concentrations in the roots were two to three times higher than in the shoots. Differences in accumulation in the roots between elements and between plant species were found. Cd was accumulated more than Zn or Cu. Triglochin maritima shows a low Cd uptake by roots, whereas Spartina anglica and Scirpus maritimus tend to accumulate it. The fraction of soil particles smaller than 63 microm, loss on ignition and Zn, Cu and Cd concentrations were determined in soil samples. The highest Zn, Cu and Cd concentrations in the soil were found at salt marshes in the Western Scheldt area and were nine, five and 20 times higher than background levels, respectively.  相似文献   

11.
There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 microg g(-1). Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production.  相似文献   

12.
Zhang MK  Xu JM 《Chemosphere》2003,50(6):733-738
Solute transport of elements in soils depends on the soil structural and hydraulic properties, and it is controlled by sorption and diffusion, which both limit the mobility and distribution of elements in soils. This study was conducted to compare lead (Pb), copper (Cu) and zinc (Zn) concentrations between ped exteriors and interiors of some contaminated soils. The results show that the differences of the heavy metals between exteriors and interiors decreased in the order clayey soil, clayey loam soil, loam soil. For same soils, the differences decreased from Pb to Cu to Zn. The differences in readily extractable concentrations of the three metals between ped exteriors and interiors were much larger than the differences in their total metals, this may indicate that extractable metals were more recently deposited. The higher Pb and Cu concentrations in the ped exteriors than interiors may additionally be explained by anthropogenic input, movement and downward through preferential flow.  相似文献   

13.
The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.  相似文献   

14.
Exposure to specific metallic compounds can cause severe deleterious modifications in organisms. Fishes are particularly prone to toxic effects from exposure to metallic compounds via their environment. Species that inhabit estuaries or freshwater environments can be chronically affected by persistent exposure to a large number of metallic compounds, particularly those released by industrial activities. In this study, we exposed yellow eels (European eel, Anguilla anguilla) for 28 days to environmentally relevant concentrations of four specific metals; lead (300, 600, and 1,200 μg/l), copper (40, 120, and 360 μg/l), zinc (30, 60, and 120 μg/l) and cadmium (50, 150, and 450 μg/l). The selected endpoints to assess the toxicological effects were neurotransmission (cholinesterasic activity in nervous tissue), antioxidant defense, and phase II metabolism (glutathione-S-transferase [GST] activity, in both gills and liver tissues), and peroxidative damage. The results showed an overall lack of effects on acetylcholinesterase for all tested metals. Lead, copper, and cadmium exposure caused a significant, dose-dependent, increase in GST activity in gill tissue. However, liver GST only significantly increased following zinc exposure. No statistically significant effects were observed for the thiobarbituric acid reactive substances assay, indicating the absence of peroxidative damage. These findings suggest that, despite the occurrence of an oxidative-based response after exposure to lead, copper, and cadmium, this had no consequence in terms of peroxidative membrane damage; furthermore, cholinergic neurotoxicity caused by lead, copper, and cadmium did not occur. The implications of these results are further discussed.  相似文献   

15.
16.
Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the P?íbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants’ aboveground and belowground biomass and in woody plants’ leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg?1 in twigs and 16.74 and 1188 mg kg?1 in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg?1, respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.  相似文献   

17.
Air concentrations of Pb, Cd, Zn, Cu and Fe have been measured at eight locations in Greater Bombay. Airborne Pb concentration in the city area showed a significant correlation with the vehicular traffic density at the time of sampling. The particle size distribution of Pb aerosol has been studied at two selected locations, in the city of Bombay and a nearby hill station Matheran.  相似文献   

18.
Measurement of operationally defined chemical fractions in ombrotrophic peat samples provides information not obtained by total metal extractions. Examination of such sequential data permits interpretation of process dynamics. Results for copper, lead and zinc chemical fractionation of peat profiles from Ringinglow Bog, near Sheffield, Great Britain, are reported and discussed. Lead and zinc share similar patterns of partitioning. A considerable proportion of these records is in a form predisposed to transformation and mobilisation. In contrast, much of the copper is comparatively immobile, it being associated with the more chemically intractable fractions. The results suggest that peat copper deposition records may be used for reconstruction of pollution history. The use of lead and zinc records for these purposes is problematic.  相似文献   

19.
Wu FB  Chen F  Wei K  Zhang GP 《Chemosphere》2004,57(6):447-454
Hydroponic experiment was carried out to study the effect of three Cd levels on glutathione (GSH), free amino acids (FAA), and ascorbic acid (ASA) concentration in the different tissues of 2 barley cultivars with different Cd tolerance. Cadmium concentration in both roots and shoots increased with external Cd level, while biomass and ASA concentration declined, and Wumaoliuling, a Cd-sensitive genotype was more affected than ZAU 3, a Cd-tolerant genotype. The effect of Cd on GSH concentration was dose- and time-dependent. In the 5 d exposure, root GSH concentration increased in 0.5 microM Cd treatment compared with control, but decreased significantly in 5 microM Cd treatment, irrespective of genotypes. However, in the 10 d exposure, GSH concentration in all plant tissues decreased with increasing Cd levels in the culture medium, and Wumaoliuling was much more affected than ZAU 3. Cadmium treatment greatly altered FAA concentration and composition in plants. The effect of Cd on glutathione (Glu) concentration in roots varied with genotypes. ZAU 3 showed a steady increase in root Glu concentration in both 0.5 and 5 microM Cd treatments, while Wumaoliuling was decreased by 38.0% in 5 microM Cd treatment, compared with the control. The results indicate that GSH and ASA are attributed to Cd tolerance in barley plants, and the relative less reduction in GSH concentration in ZAU 3 under Cd stress relative to the control may account for its higher Cd tolerance.  相似文献   

20.
Genotypic and environmental variation in Cr, Cd and Pb concentrations of rice grains and the interaction between these metals were investigated by using 138 rice genotypes grown in three contaminated soils. There were significant genotypic differences in the three heavy metal concentrations of rice grains, with the absolute difference among 138 genotypes in grain Cr, Cd and Pb concentrations being 24.5-, 9.1- and 23.8-folds, respectively, under the slightly contaminated soil (containing 4.61mgkg(-1) Cr, 1.09mgkg(-1) Cd and Pb 28.28mgkg(-1), respectively). A highly significant interaction occurred between genotype and environment (soil type) in the heavy metal concentrations of rice grains. Cr concentration in rice grains was not correlated with Cd and Pb concentration. However, there was a significant correlation between Cd and Pb in slightly and highly contaminated soils. The results suggest the possibility to develop the rice cultivars with low Cd and Pb concentrations in grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号