首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sorption of phenanthrene by soils contaminated with heavy metals   总被引:4,自引:0,他引:4  
Gao Y  Xiong W  Ling W  Xu J 《Chemosphere》2006,65(8):1355-1361
The fate of polycyclic aromatic hydrocarbons (PAHs) in soils with co-contaminants of heavy metals has yet to be elucidated. This study examined sorption of phenanthrene as a representative of PAHs by three soils contaminated with Pb, Zn or Cu. Phenanthrene sorption was clearly higher after the addition of heavy metals. The distribution coefficient (K(d)) and the organic carbon-normalized distribution coefficient (K(oc)) for phenanthrene sorption by soils spiked with Pb, Zn or Cu (0-1000 mg kg(-1)) were approximately 24% larger than those by unspiked ones, and the higher contents of heavy metals added into soils resulted in the larger K(d) and K(oc) values. The enhanced sorption of phenanthrene in the case of heavy metal-contaminated soils could be ascribed to the decreased dissolved organic matter (DOM) in solution and increased soil organic matter (SOM) as a consequence of DOM sorption onto soil solids. Concentrations of DOM in equilibrium solution for phenanthrene sorption were lower in the case of the heavy metal-spiked than unspiked soils. However, the decreased DOM in solution contributed little to the enhanced sorption of phenanthrene in the presence of metals. On the other hand, the sorbed DOM on soil solids after the addition of heavy metals in soils was found to be much more reactive and have far stronger capacity of phenanthrene uptake than the inherent SOM. The distribution coefficients of phenanthrene between water and the sorbed DOM on soil solids (K(ph/soc)) were about 2-3 magnitude larger than K(d) between water and inherent SOM, which may be the dominant mechanism of the enhanced sorption of phenanthrene by soils with the addition of heavy metals.  相似文献   

2.
This study addresses the issues related to decontamination of marine beach sand accidentally contaminated by petroleum products. Sorption and desorption of BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) onto the sand from Uran Beach, located near the city of Mumbai, India, were studied, and isotherms were determined using the bottle point method to estimate sorption coefficients. Alternatively, QSARs (i.e., quantitative structure activity relationships) were developed and used to estimate the sorption coefficients. Experiments for kinetics of volatilization as well as for kinetics of sorption and desorption in the presence of volatilization were conducted in a fabricated laboratory batch reactor. A mathematical model describing the fate of volatile hydrophobic organic pollutants like BTEX (via sorption and desorption in presence of volatilization) in a batch sediment-washing reactor was proposed. The experimental kinetic data were compared with the values predicted using the proposed models for sorption and desorption, and the optimum values of overall mass transfer coefficients for sorption (K(s)a(s)) and desorption (K(d)a(d)) were estimated. This was achieved by minimization of errors while using the sorption coefficients (Kp) obtained from either laboratory isotherm studies or the QSARs developed in the present study. Independent experimental data were also collected and used for calibration of the model for volatilization, and the values of the overall mass transfer coefficient for volatilization (K(g)a(g)) were estimated for BTEX. In these exercises of minimization of errors, comparable cumulative errors were obtained from the use of Kp values derived from experimental isotherms and QSARs.  相似文献   

3.
Diffusion-retarded partitioning of pesticides with aggregated soils results in a time-dependent partition coefficient (Kd') which is different at equilibrium from the partition coefficient derived from conventional 24-h batch studies (Kd) measured on dispersed soil. An experiment was undertaken to determine the importance of Kd' for the prediction of pesticide concentrations in solutions bathing artificial soil aggregates and to determine whether diffusion theory could accurately predict the concentrations. Two clay soils were mixed with polyacrylamide to create artificial aggregates of 0.8, 1.4 and 1.7 cm diameter when dry. After saturation, the aggregates were immersed in solutions containing isoproturon or a mixture of isoproturon, chlorotoluron and triasulfuron. The decline with time of the pesticide concentrations in the bathing solution was monitored and the results were compared with predictions from a diffusion-based model. The effective diffusion coefficients of the compounds were obtained by either fitting the non-linear diffusion model to the data (D(ef)) or by independent calculations based on the properties of the compounds and of the aggregates (D(ec)). The diffusion model was able to predict the temporal variation in pesticide concentrations in the bathing solution reasonably well whether D(ef) or D(ec) values were used. However, equilibrium concentrations in solution were sometimes overestimated due to increased sorption with time at the particle scale. Overall, the ratio between D(ef) and D(ec) ranged from 0.23 to 0.95 which was a reasonable variation when compared to the range of aggregate sizes used in the experiments and of the Kd values of the compounds.  相似文献   

4.
Sorption is a natural process that takes place in sediments or soils and changes the mobility and availability of hydrophobic organic compounds, such as toxaphene pesticide in the environment. The sorption of the 2-exo,3-endo,5-exo,8,9,10,10-heptachlorobornane (B7-1450), used as a model compound of the toxaphene heptachlorobornane congeners found in sediments, was investigated for the first time through a series of batch sorption experiments. The losses of B7-1450 due to adsorption onto glass walls and to evaporation occurring during analytical treatment steps were corrected. The study showed that these specific losses ranged from 2% to 3.5% for the glass walls adsorption and can be as high as 15% for the evaporation treatment. The sorption coefficients, K(d) and K(oc), of B7-1450 could be overestimated by >30%, particularly for low-concentration samples, if the losses were not corrected. Loss correction equations were established, validated and applied to determine sorption coefficients for the B7-1450 congener. The K(oc) values for B7-1450 determined over a gradient of concentrations ranged from 3.5x10(4) to 6.5x10(4)mlg(-1), revealing a strong affinity of B7-1450 for marine sediments.  相似文献   

5.
We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K(d)) were determined in 0.02 eq l(-1) CaCl(2) and in a solution that simulated the soil solution cationic composition. The K(d) values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K(d) values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K(d) versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl(2) medium in soils with a markedly different soil solution composition.  相似文献   

6.
Diffusion experiments through hardened cement pastes (HCP) using tritiated water (HTO) and 22Na(+), considered to be conservative tracers, have been carried out in triplicates in a glove box under a controlled nitrogen atmosphere. Each experiment consisted of a through-diffusion test followed by an out-diffusion test. The experimental data were inversely modelled applying an automated Marquardt-Levenberg procedure. The analysis of the through-diffusion data allowed the extraction of values for the effective diffusion coefficients, D(e), and the rock capacity factor, alpha. Good agreement between measured and calculated tracer breakthrough curves was achieved using both a simple diffusion model without sorption and a diffusion/linear sorption model. The best-fit K(d)-values were found to be consistent with R(d)-values measured in previous batch-sorption experiments. The best-fit values from the through-diffusion tests were then used to predict the results of subsequent out-diffusion experiments. Good agreement between experimental data and predictions was achieved only for the case of linear sorption. Isotopic exchange can only partially account for both the amount of tracer taken up in the batch-sorption tests and the measured retardation in the diffusion experiments and, hence, additional mechanisms have to be invoked to explain the data.  相似文献   

7.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K(d) and K(f) coefficients from experimental data. The K(d) values were utilized to calculate the partition coefficient normalized to soil organic carbon (K(oc)). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K(oc) (mL g(- 1)) values ranged in both soils from 98 - 3235, 1024 - 2644, 145 - 2631 and 104 - 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r(2) = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

8.
Evaluation of impacts of soil fractions on phenanthrene sorption   总被引:3,自引:0,他引:3  
Luo L  Zhang S  Ma Y 《Chemosphere》2008,72(6):891-896
Phenanthrene sorption to soils and soil fractions was investigated using two contrasting soils with different clay mineral and organic carbon (OC) contents in an attempt to evaluate the contribution of each soil fraction to phenanthrene sorption and the applicability of the carbon-normalized distribution constant (K(OC)) in soils. Sorbents were characterized using surface analysis, solid-state (13)C NMR analysis, and glass transition temperature (T(g)) analysis to gain a insight into the chemical nature of OC in soils. Dissolved organic carbon (DOC) in the soil solution impeded the phenanthrene sorption, while humins accounted for the predominant phenanthrene sorption in soils. The contribution of OC to phenanthrene sorption in soil would be overestimated if only a K(OC)-approach was adopted, since clay minerals could account for much of the sorption, especially when OC was low in soils. Nitrogen gas was shown to be inappropriate for probing non-polar sorption capacity. The results obtained highlight the importance of clay minerals in governing the sorption of phenanthrene in soil, and emphasize the inapplicability of the carbon-normalized distribution coefficient K(OC) in soils.  相似文献   

9.
Leaching of three pesticides (isoproturon, chlorotoluron and triasulfuron) and a tracer (bromide) were determined in four contrasting soils ranging in texture from sandy loam to clay. The compounds were applied to undisturbed columns of soil and four columns for each soil were randomly selected and leached with 24-mm equivalent of water at prescribed time intervals (3, 9, 24, 37 and 57 d after application). A rapid decline in leached loads of isoproturon and chlorotoluron as time from application to irrigation increased was observed in all soils. In contrast, triasulfuron and bromide loads only decreased rapidly in the clay soil. Bromide losses decreased with decreasing clay contents of the soil and therefore with a decrease in structural development. Magnitudes of pesticide losses varied from soil to soil, depending on structural development and the organic carbon content. Pesticide degradation experiments on disturbed and undisturbed soil samples showed that the rapid decline of leached loads with time was faster than could be explained by degradation alone. Five physico-chemical processes are put forward to explain the different patterns of pesticide leached loads observed in the soils: (1) relative extent of preferential flow, (2) sorption capacity of the compounds to the different soils, (3) extent of degradation of the compounds in the soil, (4) variation in sorption kinetics between compounds associated with pesticide diffusion into soil aggregates, and (5) protection of the compounds by a combination of intra-aggregate diffusion and the presence of preferential flow pathways.  相似文献   

10.
This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15-92%, whereas with the Kota fly ash an increase in sorption by 13-38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to K(f)/K(d) values, K(FA) values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.  相似文献   

11.
The objectives of this study were to assess sorption and desorption of tylosin, a macrolide antimicrobial chemical used in swine, cattle, and poultry production, in three silty clay loam soils of South Dakota and compare soil sorption to sand and manure sorption. The silty clay loam soils, from a toposequence in eastern South Dakota, standardized sand samples, and swine manure were used in 24-h batch sorption studies with tylosin concentrations ranging from 25 to 232 micro mole/L. Desorption from soil was conducted over a four-day period. Partition coefficients, based on the Freundlich isotherm (K(f)) or K(d) values, were calculated. K(f) values for the silty clay loams were similar, not influenced by landscape position, and averaged 1,350 with isotherm slopes ranging from 0.85 to 0.93. K(f) values for sand were dependent on solution/sand ratios and pH, ranging from 1.4 to 25.1. K(d) values of manure were dependent on the solution type and ranged from 840 L/kg with urine to about 175 L/kg when sorbed from water. Desorption of tylosin from each soil over the four-day period was < 0.2% of the amount added. The soils' high K(f) values and low desorption amounts suggest that once tylosin is in these soils, leaching to lower depths may not occur. However, this does not preclude runoff with soil eroded particles. If tylosin reaches a sand aquifer, through bypass flow or other mechanism(s), movement in the aquifer most likely would occur.  相似文献   

12.
Ohlen K  Chang YK  Hegemann W  Yin CR  Lee ST 《Chemosphere》2005,58(3):373-377
Groundwater, used in this study, contaminated predominantly with aromatic compounds, was biologically treated in a fluidized-bed reactor (FBR) with immobilized cells. The aromatics were completely decomposed, while cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE) were decomposed only approximately 20% and 5%, respectively. In these studies a significant improvement of the decomposition efficiency for chlorinated ethylenes was achieved by utilizing cometabolism. Methanol (MeOH) and toluene were used as the substrate in the case of one-stage reactor (Single Reactor). MeOH (187 mg l(-1)) increased the decomposition efficiency up to 40% and 60% for cis-DCE and TCE, respectively, while toluene (20 mg l(-1)) increased the decomposition efficiency of cis-DCE to 92% and the decomposition efficiency of TCE to 76%. In the case of two-stage reactor system (Reactor 1 and Reactor 2), MeOH and methane (CH4) were used as the substrate. In this system, cells grown on MeOH or CH4 in the Reactor 1 were continuously fed into Reactor 2 and groundwater was fed into Reactor 2 only. When MeOH (384 mg l(-1) d(-1)) was used as substrate the decomposition efficiency of cis-DCE and TCE were 60% and 70%, respectively. Similar decomposition efficiency was observed for a small amount of CH4 (19.3 mg l(-1) d(-1)).  相似文献   

13.
To determine the effects of concentration history on slow sorption processes, desorption kinetic profiles for trichloroethene (TCE) were measured for a soil at 100% relative humidity subject to different exposure concentrations and exposure times. Exposure concentrations ranged from 1% to 80% of the saturation vapor pressure (Ps) for TCE, and exposure times (i.e., time allowed for sorption before desorption begins) ranged from 1 to 96 days. A spherical diffusion model based on a gamma distribution of sorption rates and a gamma distribution of desorption rates was developed and applied to the data. At 80% P/Ps, the entire gamma distributions of sorption and desorption rates were available for TCE. In accordance with a micropore filling mechanism, the fraction of these distributions available for TCE sorption decreased with decreasing P/Ps. Experimental results are consistent with a micropore-filling mechanism, where the amount of slow desorbing mass decreased with decreasing exposure time, and the fraction of slow desorbing sites filled decreased with decreasing exposure concentration. Simulation results suggest that diffusion limits the rates that micropores fill, and that rates of sorption and desorption for soil contaminated at smaller values of P/Ps are, on average, less than those at larger values of P/Ps (i.e., slow desorption rates are a function of exposure concentration). Simulation results also suggest that the model adequately describes the effects of exposure concentration and exposure time on the rates of sorption and desorption, but not on the capacity of the slow sites for TCE. This work is important because contaminant concentrations in the subsurface vary in space and time, and the proposed model represents a new and mechanistically based approach to capture the effects of this heterogeneity on slow desorption.  相似文献   

14.
Sorption of dimethyl phthalate (DMP), diethyl phthalate (DEP) and dipropyl phthalate (DPP) to two soil materials that vary in organic matter content was investigated using miscible displacement experiments under saturated flow conditions. Generated breakthrough curves (BTCs) were inversely simulated using linear, equilibrium sorption (LE), nonlinear, equilibrium sorption (NL), linear, first-order nonequilibrium sorption (LFO), linear, radial diffusion (LRD), and nonlinear, first-order nonequilibrium sorption (NFO) models. The Akaike information criterion was utilized to determine the preferred model. The LE model could not adequately describe phthalate ester (PE) BTCs in higher organic matter soil or for more hydrophobic PEs. The LFO and LRD models adequately described the BTCs but a slight improvement in curve-fitting was gained in some cases when the NFO model was used. However, none of the models could properly describe the desorptive tail of DPP for the high organic matter soil. Transport of DPP through this soil was adequately predicted when degradation or sorption hysteresis was considered. Using the optimized parameter values along with values reported by others it was shown that the organic carbon distribution coefficient (K(oc)) of PEs correlates well with the octanol/water partition coefficient (K(ow)). Also, a strong relationship was found between the first-order sorption rate coefficient normalized to injection pulse size and compound residence time. A similar trend of timescale dependence was found for the rate parameter in the radial diffusion model. Results also revealed that the fraction of instantaneous sorption sites is dependent on K(ow) and appears to decrease with the increase in the sorption rate parameter.  相似文献   

15.
Earlier studies had shown significant differences in sorption of nine pesticides in soils collected from two landuses (native vegetation and market gardens), which could not be explained on the basis of organic carbon content alone. Consequently it was hypothesised that the differences in sorption behaviour between the two landuses may be due to variation in the chemistry of the organic carbon. In this study the relationship between sorption behaviour of the nine chemicals and soil organic carbon chemistry, as determined by solid-state (13)C NMR spectroscopy, was investigated. No significant differences were found between the two landuses in the distribution of the four main spectral regions of the (13)C NMR spectra of soil OC, except for the carbonyl fraction (165-220ppm), which may reflect the low OC content of the soils from both landuses. For all chemicals, except prometryne, the most significant (P<0.01 or P<0.001) relationship between K(d) values and types of OC was found with the aromatic (110-165ppm) or the alkyl (0-45ppm) fraction. A comparison was made of the variability of K(d) values normalized over OC (i.e. K(oc)), alkyl, aromatic and alkyl+aromatic fractions. Expressing K(d) values for all chemicals, except azinphos methyl, in soils under native vegetation as K(alkyl) or K(aromatic) greatly decreased the variability compared with the K(oc) value. However in the cultivated soils only the sorption coefficients for DEA, DIA and fenamiphos showed a decrease in variability when expressed as K(alkyl) or K(aromatic). This reflected the stronger relationship between sorption coefficients and the alkyl and aromatic fraction of soil OC in soils from native vegetation compared with those determined from the market garden soils. The different relationships between sorption coefficients and types of OC of the two landuses also suggests that the type of aromatic and alkyl carbon under the two landuses is different and NMR characterisation of the OC was not sufficient to distinguish these differences.  相似文献   

16.
Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.  相似文献   

17.
Shareef K  Shaw G 《Chemosphere》2008,72(1):8-15
Agriculture in northern Iraq (Kurdistan) relies on the widespread use of pesticides to promote crop performance. Over-application of many pesticides is commonplace, however, and may compromise soil and water quality, and ultimately human health, within the region. The aim of this study was to investigate the sorption-desorption kinetics and equilibrium partitioning of two selected pesticides in agricultural soils from northern Iraq. This was achieved by fitting a dual-rate sorption-desorption model to time-dependent data obtained from batch experiments. 2,4-D and carbaryl were selected for scrutiny since both are in common use in the region. Six agricultural soils, sampled around the city of Erbil, were investigated. These were low in organic carbon (OC) compared with many agricultural soils from more temperate regions. However, there was still a clear trend of increasing sorption of both 2,4-D and carbaryl with increasing % OC. In the case of both compounds, fast and slow adsorption rate coefficients and 48 h experimental K(d) values were positively correlated with % OC. It was assumed that K(OC) would provide a simple and reliable predictor of K(d). However, while this assumption holds true for short-term (48 h) experimental data, longer-term sorption in some soils (as indicated by theoretical K(d) values estimated from kinetic parameters in our study) appears to be under-predicted by K(OC) alone. The data presented here provide a useful starting point for further site-specific investigations of pesticide impacts in the Kurdistan region of Iraq.  相似文献   

18.
Organic matter has long been recognized as the main sorbent phase in soils for hydrophobic organic compounds (HOCs). In recent times, there has been an increasing realization that not only the amount, but also the chemical composition, of organic matter can influence the sorption properties of a soil. Here, we show that the organic carbon-normalized sorption coefficient (K(OC)) for diuron is 27-81% higher in 10 A11 horizons than in 10 matching A12 horizons for soils collected from a small (2ha) field. K(OC) was generally greater for the deeper (B) horizons, although these values may be inflated by sorption of diuron to clays. Organic matter chemistry of the A11 and A12 horizons was determined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. K(OC) was positively correlated with aryl C (r2=0.59, significance level 0.001) and negatively correlated with O-alkyl C (r2=0.84, significance level <0.001). This is only the second report of correlations between whole soil K(OC) and NMR-derived measures of organic matter chemistry. We suggest that this success may be a consequence of limiting this study to a very small area (a single field). There is growing evidence that interactions between organic matter and clay minerals strongly affect K(OC). However, because the soil mineralogy varies little across the field, the influence of these interactions is greatly diminished, allowing the effect of organic matter chemistry on K(OC) to be seen clearly. This study in some way reconciles studies that show strong correlations between K(OC) and the chemistry of purified organic materials and the general lack of such correlations for whole soils.  相似文献   

19.
The contributions of organic matter and the mineral surface to the overall sorption of six nonpolar neutral organic compounds (1,2,4-trichlorobenzene, 1,4-dichlorobenzene, chlorobenzene, m-xylene, toluene, benzene) by five humic acid (HA)-coated sands with different fractions of organic carbon (f(oc)) ranging from 0.024% to 0.154% were evaluated on the basis of measured data and four different sorption models. Sorption of all six sorbates to both uncoated and heated sands was nearly linear due to the coverage of hydrophilic mineral surface with the ordered vicinal water region. Sorption of all six sorbates to the HA-coated sands was also essentially linear, and resulted from a combination of sorption to both organic matter and the mineral surface, with the dominance of either contribution depending on the properties of the sorbents (e.g., f(oc)) and the sorbates (e.g., K(ow)). A proposed two-component model for sorption including blocking effect was appropriate for quantifying the contributions of organic matter and the mineral surface to the overall sorption. However, conventional sorption models considering the contributions of both organic matter and the mineral surface provided essentially as good agreement between predicted and measured distribution coefficients as the more complicated, two-component model for sorption that takes into account mineral surface blocking by HA.  相似文献   

20.
Soils bind heavy metals according to fundamental physico-chemical parameters. Bioassays, using bacterial biosensors, were performed in pore waters extracted from 19 contrasting soils individually amended with Cd, Cu and Zn concentrations related to the EU Sewage Sludge Directive. The biosensors were responsive to pore waters extracted from Zn amended soils but less so to those of Cu and showed no toxicity to pore water Cd at these environmentally relevant amended concentrations. Across the range of soils, the solid-solution heavy metal partitioning coefficient (K(d)) decreased (p<0.01) with increasing amendments of Cu and Zn; Cu exhibited the highest K(d) values. Gompertz functions of Cu and Zn, K(d) values against luminescence explained the relationship between heavy metals and biosensors. Consequently, biosensors provide a link between biologically defined hazard assessments of metals and standard soil-metal physico-chemical parameters for determining critical metal loadings in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号