首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 676 毫秒
1.
张彤  胡洪营  谢兴  宗祖胜 《环境科学》2008,29(8):2287-2290
通过考察在不同的絮凝剂种类、投加量、pH和温度等操作条件下隐孢子虫和贾第鞭毛虫(以下简称"两虫")的去除特性,探讨了污水深度处理絮凝工艺去除病原性原虫的作用机制.研究发现,污水经絮凝处理后,水样中胶体的平均ζ电位与2种荧光微球(两虫替代物)去除率和剩余浊度的线性相关度不高(R:0.49、0.48、0.65);而2种荧光微球之间的去除率线性相关性较高(R=0.99),并且与水样剩余浊度的变化趋势呈一定的指数相关关系(R=0.92、0.95).因此,在本研究的各种絮凝工况下.卷扫网捕是去除病原性原虫和浊度的重要作用机制.在相同操作条件下,贾第鞭毛虫的去除率大于隐孢子虫.  相似文献   

2.
测定了舟山高浊度海水悬浮物的粒度分布,分析了高浊度海水自由沉降特性,选用氯化铁(FeCl)3、聚合氯化铁(PFC)、聚合硫酸铁(PFS)3种混凝剂,利用正交试验方法对高浊度海水进行混凝沉淀对比试验,采用极差分析方法研究了影响混凝效果的因素。试验结果表明:舟山海域悬浮物组成以粉砂为主,用自然沉降的方法是很难去除;各因素对浊度去除率影响的主次顺序均为:慢搅时间>慢搅速度>快搅时间>快搅速度;对于高浊度海水混凝除浊最佳水力条件为:快搅时间为2 min,快搅速度为300 r/min,慢搅时间为15 min,慢搅速度为60 r/min;聚合硫酸铁是较理想的絮凝剂,最佳投药量范围在15~25 mg/L,对浊度去除率高达99%以上。  相似文献   

3.
针对城市景观水的水质状况加剧恶化,本文对比在不同情况下用氯化铁及聚合氯化铝处理景观水,探讨了投加量、搅拌速度、搅拌时间、静沉时间以及pH对景观水有机物和浊度去除率的影响.结果表明:当水样pH值在6~8之间时,投加4~6mL混凝剂后,当先中速搅拌(120 r/min)2 min,最后慢速搅拌(60 r/min)搅拌10 min.此后静沉35 min,此时CODcr去除率及浊度去除率都可达到最佳情况;其中pH为8时,硫酸铁对CODcr去除率可达82%,浊度去除率率为92%;当PH为7时PAC对城市景观水CODcr的去除可达84%,浊度去除率率为96%.聚合氯化铝的处理效果优于硫酸铁,故而得出处理城市景观水时更适合选用聚合氯化铝.  相似文献   

4.
对生物质气化洗焦废水的水质进行初步分析 ;利用普通混凝剂、电厂粉煤灰 ( FA)和颗粒活性炭 ( GAC)对生物质气化洗焦废水 ( TWW)进行混凝沉降试验和静态吸附试验。混凝剂明矾和 Al2 ( SO4) 3对 TWW可有效去除浊度和悬浮物 ,但对COD的去除率不高 ,色度去除率极低 ;FA对 TWW的浊度、色度、COD去除率很低 ,FA与明矾或 Al2 ( SO4) 3共用可明显提高对浊度、 COD的去除率 ,且混凝沉降速度明显提高 ,絮凝物紧密稳定。  相似文献   

5.
PAC与PDMDAAC复合混凝剂去除高浊度水中有机氯   总被引:1,自引:0,他引:1  
以聚合氯化铝(PAC)和聚二甲基二烯丙基氯化铵(PDMDAAC)为原料制备复合混凝剂,采用强化混凝的处理方法,对高浊度水体中有机氯(OCPs)以及浊度去除效果进行研究.考察了PAC-PDMDAAC复合比例、复合混凝剂投加量、水样初始浊度、慢速搅拌时间、pH值等因素对浊度和OCPs去除效果的影响,结合絮体分形维数和Zeta电位对去除效果进行验证.结果表明,复合比例对处理高浊水体中的OCPs以及浊度效果影响较大,PAC与PDMDAAC复合比例为5:1,投药量为1mL/L,慢速搅拌时间为15min时,OCPs和浊度去除率达到最佳;随着初始浊度的升高,水体中OCPs的去除率也随之增加,表明PAC-PDMDAAC复合混凝剂更适用于高浊度水中OCPs和浊度的去除;复合混凝剂与其他混凝剂相比,其最佳pH值范围较广,当pH值为4时,OCPs和浊度去除率达到最佳.利用絮体分形维数和Zeta电位两种表征手段对混凝效果进行进一步探讨,说明了实验结果的正确性.  相似文献   

6.
羧甲基壳聚糖絮凝剂的研制及其应用研究   总被引:3,自引:1,他引:2  
用氯乙酸对壳聚糖进行化学改性,制备了羧甲基壳聚糖(CMC),探讨了原料用量、反应温度及反应时间等因素对羧甲基取代度(羧化度DS)的影响,并用红外光谱(IR)对其结构进行了表征。海水的絮凝实验结果表明羧甲基壳聚糖能有效去除海水的浊度和化学需氧量(COD),最佳条件下浊度去除率可达到95%,COD去除率为55%左右。羧甲基壳聚糖在海水的絮凝处理中有良好的应用前景。  相似文献   

7.
生物陶粒滤池预处理官厅水库水的试验研究   总被引:11,自引:0,他引:11  
针对官厅水库下游三家店水库水源水进行生物陶粒滤池预处理的现场试验研究。试验结果表明:在气水比为1∶1,滤速6m/h,水温高于5℃的运行条件下,生物陶粒滤池工艺对水中高锰酸盐指数的去除率为10%~18%,氨氮的去除率为80%~98%,出水浊度降低到2NTU以下;气水比为1∶1,滤速4m/h,水温0℃~4℃的情况下,高锰酸盐指数的去除率为5%~12%,氨氮的去除率为65%~80%,出水浊度降低到3NTU以下。  相似文献   

8.
利用天然物质城市草炭土、草甸土、火山岩和红壤与壳聚糖絮凝剂絮凝复配处理味精废水,并对影响絮凝复配过程中味精废水浊度去除率的助剂投加量、壳聚糖用量和pH值的影响做了进一步的探讨.结果表明,壳聚糖经天然物质复配絮凝处理味精废水后的浊度去除率均优于复配前,其中草甸土和红壤最为突出.在最佳复配比例为m(草甸土):m(壳聚糖)=5∶1、pH为1.0~2.0(即在原味精废水中)时,草甸土复配后味精废水浊度去除率为45.77%;对于红壤,在最佳复配比例为m(红壤):m(壳聚糖)=25∶3、pH=6.0时,其浊度最佳去除率为78.41%.此絮凝复配方法为味精废水的处理提供了一种廉价的新方法.  相似文献   

9.
混凝吸附处理生物质气化洗焦废水的研究   总被引:1,自引:0,他引:1  
对生物质气化洗焦废水的水质进行初步分析;利用普通混凝剂、电厂粉煤灰(FA)和颗粒活性炭(GAC)对生物质气化洗焦废水(TWW)进行混凝沉降试验和静态吸附试验。混凝剂明砜和Al2(SO4)3对TWW可有效去除浊度和悬浮物,但对COD的去除率不高,色度去除率极低;FA对TWW的浊度、色度、COD去除率很低,FA与明矾或Al2(SO4)3共用可明显提高对浊度、COD的去除率,且混凝沉降速度明显提高,絮凝物紧密稳定。  相似文献   

10.
压力强化混凝沉淀除藻工艺研究   总被引:2,自引:1,他引:2  
为了强化蓝藻混凝沉淀去除效果,采用外加压力破坏藻细胞内气囊,使藻类失去浮力,再经混凝沉淀去除.通过静态实验测定了太湖蓝藻水在0~0.7 MPa预压力作用后混凝沉淀效果,并与预氧化混凝沉淀工艺进行了比较.结果表明,在预压力0.4~0.7 MPa作用下取得了较好的效果,沉淀出水浊度为1.04~0.69 NTU;叶绿素a浓度为2.9~0.8 μg·L-1,去除率为95.8% ~98.8%;CODMn为3.8~2.9 mg·L-1,去除率为66.2%~ 74.1%;UV254值为0.0686 ~0.0646,去除率为23.7% ~28.1%.预加压工艺比预氧化工艺节省混凝剂50%.动态实验表明,预压力混凝沉淀过滤出水浊度小于0.25 NTU;叶绿素a浓度小于lμg·L-1,平均去除率为99.5%;CODMn小于3.6 mg·L-1,平均去除率为70%;UV254值小于0.057,平均去除率为33.7%.过滤出水水质优于饮用水水质标准.  相似文献   

11.
采用硫酸对火电厂脱硫灰进行了改性处理,分析了改性脱硫灰与PAM对矿井水浊度的去除能力。结果表明,单独投加80 mg/L改性脱硫灰对矿井水浊度的去除率即可达80%,以80 mg/L改性脱硫灰复配0.3 mg/L PAM可进一步提高浊度去除效果,浊度去除率提高至92%,出水浊度小于10 NTU。  相似文献   

12.
PVA膜生物反应器去除效果的研究   总被引:1,自引:0,他引:1  
应用了一种高亲水性的膜材料——PVA膜材料,处理生活污水,在污泥浓度为8000mg/L,HRT为3.5h的条件下,出水COD值维持在20mg/L以下,平均去除率达到93.3%;氨氮去除率达到90%以上;出水SS在1~3mg/L之间,平均去除率达到98.4%,有的甚至能达到100%;出水水质清澈透明,出水浊度平均在0.81NTU,小于1NTU,优于国家饮用水质标准。  相似文献   

13.
土著微生物修复城市小型湖泊实验研究   总被引:1,自引:0,他引:1  
利用生物制剂及生物修复技术对鞍山市英泽湖进行了净化治理.研究结果表明,经过8~30 d的生物净化,该湖水中的COD、植物营养元素浓度及浊度都有了大幅度的下降.其中COD降至20 mg/L以下,去除率达到70%以上;氨氮降至0.2 mg/L以下,去除率达97%;总磷降低至0.02 mg/L以下,去除率达到60%以上;浊度...  相似文献   

14.
通过均匀设计实验,对造纸黑液进行湿式氧化处理,数据回归得到CODCr、吸光度、浊度的回归方程,各回归方程显著,氧分压对造纸黑液各指标影响最大;研究反应过程中反应温度、氧分压、进水pH值、进水浓度、搅拌强度、反应时间对造纸黑液湿式氧化(WAO)处理的影响,6因素优化的操作条件依次为:180℃、3.0MPa、7.25、5500mg/L、500r/min、60min;在优化的操作条件下,造纸黑液的CODCr、CODCr去除率为1661mg/L、69.8%,吸光度、脱色率为0.63、96.3%,浊度、浊度去除率为661NTU、74.8%.均匀设计法在造纸黑液WAO处理中得到了较好的应用.  相似文献   

15.
赵旺  袁辉洲  柯水洲 《环境工程》2015,33(11):54-57
对以西江为水源的某水厂及其各处理工艺单元出水浊度进行为期1年的现场监测研究,发现原水浊度在夏秋高温季节变化较剧烈,水厂常规处理工艺对浊度的平均去除率约为98.83%,其中混凝沉淀阶段是浊度去除的主要单元,而消毒(清水池)过程对浊度的去除率不太稳定,需加强管理。在分析各工艺单元除浊效率的基础上,提出了原水浊度预警水平,建立了原水浊度与常规水处理工艺相关联的预警机制,有助于水厂根据原水水质情况及时调整工艺参数或处理措施,以保障城镇供水安全。  相似文献   

16.
采用烧杯混凝实验研究了壳聚糖(CTS)、CTS与丙烯酰胺和丙烯酸乙酯季铵盐三元接枝共聚阳离子絮凝剂(CAS)对高岭土悬浊液的絮凝特性.结果表明,CAS具有比CTS絮凝效果好、用量少、pH值适用范围广等优点.CAS絮凝效能受胶体颗粒性质的影响小,对自来水和蒸馏水配置的高岭土悬浊液均具有较好的絮凝效能.中性条件下,CAS的最佳投加量仅为CTS的1/10.在pH值2.0-11.0范围内,CAA对浊度的去除率在95%左右.CAS投加量与原水浊度的关系为:投加量低于0.5nag·L-1时,絮凝效果随原水浊度的升高降低;投加量大于0.5 mg·L-1,浊度去除率随原水浊度的增大而提高;投加量超过1.0 mg·L-1后,对浊度(10~160 NTU)的悬浊;液浊度去除率均在85%以上.悬浮颗粒聚集状态的变化分析、颗粒ξ电位测定、絮体粒径分布测定及其形态结构的观察结果表明,电性中和、吸附架桥是CAS的主要絮凝作用机理,絮凝过程是多种机制共同起作用的动态变化过程.  相似文献   

17.
文章以模拟初期雨水为研究对象,采用改性硅藻土净化处理,并优化了改性硅藻土除磷的工艺条件;利用石英粉和底泥模拟初期雨水浊度,研究了浊度对改性硅藻土除磷的影响。结果表明:混凝搅拌速率为500 r/min,时间为1 min,沉淀时间为50 min,改性硅藻土投加量为75 mg/L时,为模拟初期雨水中磷的最佳去除条件。采用石英粉和含磷底泥模拟初期雨水浊度,保持总磷浓度和改性硅藻土投加量不变,总磷去除率均随着浊度的增加而提高;然而,当石英粉模拟初期雨水浊度达到150 NTU后,总磷去除率则随浊度的增大而趋于下降,底泥模拟初期雨水浊度达到400 NTU后,总磷、溶解性总磷的去除率均呈下降趋势;2种模拟初期雨水浊度的物质对改性硅藻土除磷的影响趋势大致相同。底泥模拟初期雨水浊度较接近自然水体,且总磷去除率较高,得出在保障处理出水水质相同的情况下,在一定浊度范围内,随着浊度的增大,硅藻土投加量反而减小,进一步得出各浊度范围内的最优投加量,为初期雨水净化处理提供技术参数。  相似文献   

18.
针对于中国北方某地表水源水藻类季节性爆发情况,采用臭氧强化混凝工艺去除藻毒素,实验分别考察了单独投加臭氧及聚合氯化铝(PAC)对微囊藻毒素及浊度、UV_(254)、TOC和高锰酸盐指数的去除效果,研究表明臭氧对MC-LR有较好的去除效果,2 mg/L臭氧对MC-LR的去除率达到了65.74%,对浊度及UV_(254)的去除率达到了29.43%与40.49%,但对TOC及高锰酸盐指数的去除效率却较低,去除率分别为11.59%与9.97%。20 mg/L PAC在单独使用时对MC-LR去除率为15.61%,对浊度、高锰酸盐指数、UV_(254)、TOC的去除率分别为79.21%、58.04%、31.29%与30.12%。在此基础上,采用臭氧-PAC联合工艺,结果表明当2 mg/L臭氧与20 mg/L PAC联用时,对MC-LR的去除率达到了89.87%,对浊度、UV_(254)、TOC及高锰酸盐指数的去除率分别为80.53%、58.75%,34.23%与61.96%。采用臭氧强化混凝联合工艺可以有效地去除该地表水藻类季节性爆发所引起的藻毒素。  相似文献   

19.
为研究不同碱度和浊度下抗生素SMZ(磺胺甲唑)和OTC(土霉素)的混凝去除特征,选择PAC(聚合氯化铝)为混凝剂,并分别以碳酸氢钠、高岭土调节碱度〔以ρ(CaCO3)计〕和浊度进行混凝模拟试验. 结果表明:当浊度为10 NTU时,SMZ和OTC的混凝去除率随着c(PAC)(以Al3+计)的增加而增加;在碱度为100 mg/L、c(PAC)为0.35×10-3 mol/L时,浊度对抗生素的去除有一定的影响但不显著,对SMZ去除的影响大于OTC. c(PAC)为0 mol/L时,高岭土对目标抗生素的吸附去除率较低,表明对抗生素去除起主要作用的是PAC. 碱度对SMZ和OTC的混凝去除率影响显著,这种影响是通过同时影响PAC的水解产物形态和抗生素总电荷而发挥作用的. 碱度为0 mg/L时,SMZ与OTC的混凝去除率分别为6.79%、-3.42%;碱度为25、100 mg/L时,SMZ与OTC的混凝去除率明显增加,并且当c(PAC)<0.3×10-3 mol/L时,低碱度(25 mg/L)下抗生素的混凝去除率优于高碱度(100 mg/L),而当c(PAC)>0.3×10-3 mol/L时则相反. 研究显示,碱度和浊度对混凝去除抗生素均有明显影响,但碱度对混凝去除抗生素的影响大于浊度.   相似文献   

20.
为研究不同碱度和浊度下抗生素SMZ(磺胺甲唑)和OTC(土霉素)的混凝去除特征,选择PAC(聚合氯化铝)为混凝剂,并分别以碳酸氢钠、高岭土调节碱度〔以ρ(Ca CO3)计〕和浊度进行混凝模拟试验.结果表明:当浊度为10 NTU时,SMZ和OTC的混凝去除率随着c(PAC)(以Al3+计)的增加而增加;在碱度为100 mgL、c(PAC)为0.35×10-3molL时,浊度对抗生素的去除有一定的影响但不显著,对SMZ去除的影响大于OTC.c(PAC)为0 molL时,高岭土对目标抗生素的吸附去除率较低,表明对抗生素去除起主要作用的是PAC.碱度对SMZ和OTC的混凝去除率影响显著,这种影响是通过同时影响PAC的水解产物形态和抗生素总电荷而发挥作用的.碱度为0 mgL时,SMZ与OTC的混凝去除率分别为6.79%、-3.42%;碱度为25、100 mgL时,SMZ与OTC的混凝去除率明显增加,并且当c(PAC)0.3×10-3molL时,低碱度(25 mgL)下抗生素的混凝去除率优于高碱度(100 mgL),而当c(PAC)0.3×10-3molL时则相反.研究显示,碱度和浊度对混凝去除抗生素均有明显影响,但碱度对混凝去除抗生素的影响大于浊度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号