首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Metabolic fate of two dichloromethyl diaryl phosphonates (32P labelled) in/on rice plants was investigated. The test compounds were found to be less persistent on the surface of rice leaves with half lives 7.4 and 6.7 days respectively. Main degradation product from both the phosphonates were dichloromethyl phosphonic acid with trace of dichloromethyl-O-aryl phosphonate as a transitory intermediate product.  相似文献   

5.
There are different methods to estimate and predict effects of chemical elements and corresponding speciation forms in biochemistry and toxicology, including statements on essentiality and antagonisms. Two approaches are given here: (1) "identity cards" describing biologically fundamental aspects of element chemistry and (2) qualitative discussions which assume the existence of (indirect ways into) chemical autocatalysis to be essential for maintaining life and permitting reproduction. The latter method, developed by the present authors, draws upon Stoichiometric Network Analysis, a safe procedure for complexity reduction in feedback networks) and provides estimates of concentration regimes for different elements suitable for survival and reproduction. The biochemical hierarchy level considered here is that of (metallo-)proteins. Thermodynamic toxicity aspects are given in correlations with DMSO solvent affinities and thiocyanate bonding modes. Effects of antagonists and of ion substitution within metalloenzymes or of metabolic simplification can be dealt with, likewise increased sensitivities within symbiotic relationships and within carcinomas are explained which are relevant for environmental monitoring and tumour therapy, respectively.  相似文献   

6.
Noubactep C 《Chemosphere》2008,71(4):802-806
This letter suggests possible improvements on the discussion of the adsorptive removal of triazoles by iron minerals which are possible corrosion products of elemental iron materials (Fe0) in a recent article by Jia et al. [Jia, Y., Aagaard, P., Breedveld, G.D., 2007. Sorption of triaxoles to soil and iron materials. Chemosphere 67, 250-258]. Also recalled is the importance of the adsorption of organics by iron corrosion products which is not properly addressed in the iron technology literature when the contaminants are redox-sensitive.  相似文献   

7.
8.
The crystal structure of a "coplanar" polychlorinated biphenyl (PCB) derivative, 4-methoxy-3, 3', 5'-trichlorobiphenyl (C13H9Cl3O), is described. The torsion angle of the title compound is 41.31(07) degrees, which is in good agreement with the calculated torsion angle of 38.2 degrees in aqueous solution.  相似文献   

9.
10.
11.
12.
13.
The bioaccumulation potential in bleaks (Alburnus alburnus, Pisces) and acute toxic and reproductive effects on Nitocra spinipes (Crustacea), of 4,5,6-trichloroguaiacol (I), tetrachloroguaiacol (II) and tetrachlorocatechol (III) was investigated. Continuous flow tests with I and II (10 μg/l) gave a rapid bi-phasic uptake in the fish with I and II reaching a level of 4 μg/g fresh weight after 14 d. An equally rapid excretion was determined with the detection limit of I and II being reached after 10 days in pure water. The 96-h LC50 values for I, II and III to N. spinipes was determined to 5.2, 3.9 and 3.3 mg/l, respectively, in static tests. The fecundity of N. spinipes was reduced to 50 % of the control values at 37±6 and 54±4 μg/l (II) per liter in static and continuous flow tests, respectively.  相似文献   

14.
15.
16.
17.
Müller G 《Chemosphere》2003,52(2):371-379
"AOX" is the abbreviation of the sum parameter for water soluble "adsorbable organic halogens" in which 'A' stands for adsorbable, 'O' for organic and 'X' for the halogens chlorine, bromine and iodine.After the introduction of the AOX in 1976, this parameter has been correctly used for "real" AOX constituents (DDT and its metabolites, PCBs, etc.) but also misused for non-adsorbable adsorbed OX-compounds, mostly high molecular organohalogens in plants and even to inorganic compounds being neither organic nor adsorbable.The question of natural "Adsorbable Organic Halogens" (AOX) formed by living organisms and/or during natural abiogenic processes has been definitively solved by the known existence of already more than 3650 organohalogen compounds, amongst them the highly reactive, cancerogenic vinyl chloride (VC).The extension of the AOX to AOX-S18 for Sludges and Sediments, in which A stands for adsorbed (not for adsorbable) is questionable. It includes the most important water insoluble technical organochlorine product: polyvinyl chloride, PVC.In addition to organic halogens it also includes inorganic, mineralogenic halides, incorporated mainly in the crystal lattice of fine grained phyllosilicates, the typical clay minerals (kaolinite, montmorillonite, illite and chlorite) which are main constituents of sediments and sedimentary rocks representing the major part of the sedimentary cover of the earth.Other phyllosilicates, biotite and muscovite, major constituents of granites and many metamorphic rocks (gneiss and mica schist) will also contribute to the AOX-S18 especially in soils as result of weathering processes.Since chlorine is incorporated into the mineral structure and, as a consequence, not soluble by the nitric acid analytical step (pH 0.5) of the S18 determination, it will account to the AOX-S18 in the final charcoal combustion step at temperatures >950 degrees C.After heavy rainfalls sewage sludge composition is strongly influenced by mineralogenic components derived from the erosion of fine grained sediments or soils. Assuming 50% geogenic particles with a mean Cl concentration of 103 mg/kg (as in shales and clays) the mineralogenic Cl-content could add about 50 mg/kg to the organic AOX in sewage sludge.The occurrence of insoluble and non-adsorbable PVC in sewage sludge exhibits the same problems as the mineralogenic constituents: a detection as AOX-S18 is possible when the final high temperature analytical step is applied.Plants as major sources of organohalogens have never been doubted.Only recently [Science 295 (2002) 985] based on the determination of the form of Cl with near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy and extended X-ray adsorption showed the variations in the inorganic Cl(-) and organo-Cl compounds with increasing humification of plant leaves from "fresh leaves--senescent leaves on plants--senescent leaves on soil--powdered top soil--isolated soil humus". His finding of exclusively inorganic Cl(-) in the starting material (fresh leaves) is controverse to our earlier results indicating the presence of ionic inorganic Cl together with water insoluble absorbed organohalogens (AOX-S18) in eight different macrophytes of both terrestrial and marine environments.Our research on AOX in interstitial water of anaerobic limnic sediments has led to the role of bromine playing in the diagenesis of the organic matter of sediments. In sediments of Lake Constance Br(-) concentrations in lake water at the sediment water interface increased from <0.01 to 0.25 mg/l in the pore water at 77 cm sediment depth.In the Neckar River a Br concentrations of 0.02 mg/l at the water/sediment interface increasing to 0.74 mg/l in pore water in 85 cm depth was found. Here a parallel development could be found with ammonium concentration and alkalinity. The very high positive correlation ammonium:bromide and bromide:alkalinity leads to the conclusion, that bromine, originally a high molecular constituent of the organic matter, is released as bromide during an early dehalogenation stage of diagenesis.The mlusion, that bromine, originally a high molecular constituent of the organic matter, is released as bromide during an early dehalogenation stage of diagenesis.The main general reason to discard the AOX sum parameter as a whole lies in the fact, that adsorbable halogenated substances cannot a priori be categorized as natural/anthropogenic, biotic/abiotic, harmful/harmless. If applied to sludges and sediments, adsorbed organohalogens are not water soluble and therefore not adsorbable, and mineralogenic halogens (X) are neither organic nor adsorbable, and therefore by definition no AOX.  相似文献   

18.
19.
20.
Background, aim, and scope  The first step in the restoration of a medieval stained glass window is the evaluation of its degree of degradation. This implies the study of the chemical composition of the stained glass as well as the new mineral phases developed on its surface (patinas). Patinas are clearly related to glass composition, time, environmental conditions, microenvironments developed in local zones, bioactivity, physical and chemical factors, etc. This study was carried out on patinas developed in selected Na-rich stained glass of the Santa Maria de Pedralbes Monastery (Barcelona, Spain). The location of this monument in the city (about 5 km from the shoreline and close to the Collserola hill flank) helped to determine the environmental conditions in which patinas developed. The aim of our study was to characterize the patinas formed on the surface of the selected glass of this monastery in order to understand the role of the chemical composition of the original glass (Na-rich) as well as the environmental conditions in which they developed. Materials and methods  Powdered samples of two different color-type patinas (ochre-orange and brownish) were collected in the external and internal parts of the stained glass windows of the Prebystery and Chapter House of the Pedralbes Monastery by using a precision (odontological) drill. These patinas were subsequently analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Results  XRD analyses evidenced the presence of sulfates (gypsum and thenardite), calcite, Ca-oxalates (whewellite and weddellite), and quartz forming part of the patinas. Although these mineral phases can be found in both color-type patinas, whewellite and thenardite are more common in the ochre-orange patinas. The results obtained were validated by the FTIR measurements. It has been observed, when thenardite is present, that gypsum occurs as traces. Thenardite is in most of the cases associated with whewellite and mainly occurs in the internal parts of the glass. In contrast, weddellite is limited to the absence of thenardite and whewellite and to the external parts of the stained glass. Quartz is present in all the patinas independent of their location and color. Calcite also occurs in many samples. It appears in both color-type patinas and, in some cases, is associated to the presence of weddellite but not to whewellite and/or thenardite. Discussion  Glass composition together with environmental conditions and location of the patinas (internal or external parts of the stained glass window), as well as the provenance of the glass within the monastery, are the main factors that define the development of the new mineral phases. Moreover, the action of microorganisms, when present, can also strongly influence the development of some mineral phases. For example, the formation of calcite in the external parts of the stained glass (associated with the presence of oxalates) is related to the action of microorganisms. When calcite is formed in the internal parts of the glass and it is not associated with the presence of Ca-oxalates, an inorganic origin can be invoked. The presence of weddellite requires a very humid microenvironment with very little exposure to sunlight. In fact, this mineral phase has only been observed in the external parts of some glass located in the humid and shady side of the monastery. Whewellite (which only appears in the internal parts) needs a low degree of relative humidity. It has been observed that sulfur precipitating in basically one mineral phase (thenardite or gypsum) depends on the microenvironmental conditions of the moment and the glass composition. When thenardite occurs, it can be maintained that the original glass is of Na composition. The occurrence of quartz in all samples is interpreted as being due to the deposition of atmospheric particulate matter. The color of the patinas can be originated by different processes (presence of carotenes, organic pigmentation, atmospheric contamination, etc.). Conclusions  In the case of moderately weathered stained glass windows, the combination of XRD and FTIR techniques is very useful to obtain a fast preliminary evaluation of the degree of weathering of a stained glass window. The presence of specific mineral phases in the patina (e.g., thenardite) confirms the Na composition of the original stained glass. This is important since Na-rich glass underwent a lesser degree of weathering than K- or K-Ca-rich glass. However, their absence cannot preclude other possibilities. It has been extensively evidenced through time that environmental conditions play an important role on the formation of the different mineral phases which form part of the patinas. Recommendations and perspectives  The first step in the restoration of a stained glass window is the evaluation of the degree of deterioration of the glass. This evaluation includes a chemical analysis of the glass as well as a characterization of the patinas developed on their surfaces. The obtained results will be essential in order to define the best restoration practices to be followed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号