首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Chromated copper arsenate (CCA) treated wood has been used for more than 50 years. Recent attention has been focused on appropriate disposal of CCA-treated wood when its service life ends. Groups in the US and Europe concerned with the possibility of arsenic migration to groundwater from disposed CCA-treated wood have proposed that consumers be required to dispose of the wood as a hazardous waste, in the most protective of landfills. We examined available data for evidence of arsenic migration from unlined construction and demolition (C&D) debris landfills in Florida, where CCA-treated wood is disposed. Florida was chosen because soil, groundwater, landfill design, weather, and levels of CCA-treated wood use make the state a uniquely sensitive indicator for observing arsenic migration from CCA-treated wood disposal sites, should it occur. We developed and quality-checked a CCA-treated wood disposal model to estimate the amount of wood and associated arsenic disposed. By 2000, an estimated 13 million kg of arsenic in CCA-treated wood was disposed in Florida; however, groundwater monitoring data do not indicate that arsenic is migrating from unlined C&D landfills. Our results provide evidence that highly stringent regulation of CCA-treated wood disposal, such as treatment as a hazardous waste, is unnecessary.  相似文献   

2.
Several alternative methods for the disposal of chromated copper arsenate (CCA) treated wood waste have been studied in the literature, and these methods are reviewed and compared in this paper. Alternative disposal methods include: recycling and recovery, chemical extraction, bioremediation, electrodialytic remediation and thermal destruction. Thermochemical conversion processes are evaluated in detail based on experiments with model compounds as well as experimental and modelling work with CCA treated wood. The latter category includes: determination of the percentage of arsenic volatilised during thermal conversion of CCA treated wood, identification of the mechanisms responsible for arsenic release, modelling of high temperature equilibrium chemistry involved when CCA treated wood is burned, overview of options available for arsenic capture, characterisation of ash resulting from (co-)combustion of CCA treated wood, concerns about polychlorinated dibenzo-p-dioxins/furans (PCDD/F) formation. Finally, the most appropriate thermochemical disposal technology is identified on short term (co-incineration) and on long term (low-temperature pyrolysis or high-temperature gasification).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号