首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The feeding preferences of the coastal dolphins Pontoporia blainvillei and Sotalia guianensis in south-eastern Brazil (21o18′S–22o25′S) were assessed through the prey’s index of relative importance (IRI), total mercury concentration (Hgtot), and stable isotopic (δ15N and δ13C) to compare their efficiency in the discrimination of prey contribution to the predators’ diet. The IRI was the best tool to describe the dolphins’ preference, while Hgtot and δ15N seemed to be efficient as a trophic marker when the diet is made up of prey of varying sizes, as observed in S. guianensis. Both dolphins presented lighter δ15N than their prey species, which is an unusual pattern. However, as the sample size to isotope ratios analysis was small, especially to the dolphins, the results should be considered with caution, and further studies are necessary to corroborate these findings. The δ13C values characterized a typical coastal food chain, confirming the preferential area of these species.  相似文献   

2.
Isotopic niches of emperor and Adélie penguins in Adélie Land,Antarctica   总被引:2,自引:1,他引:1  
Yves Cherel 《Marine Biology》2008,154(5):813-821
The emperor and Adélie penguins are the only two species of penguins that co-occur at high-Antarctic latitudes. We first measured and compared their isotopic niches on the same year in Adélie Land in spring, when the two species co-exist. Emperor and Adélie penguins segregated by their blood isotopic signatures, with adult δ13C values (−24.5 ± 0.2 and −25.4 ± 0.2‰, respectively) suggesting that emperor penguins foraged in more neritic waters than Adélie penguins in spring. At that time, difference in their δ15N values (4.1‰, 12.0 ± 0.4 vs. 7.9 ± 0.1‰) encompassed more than one trophic level, indicating that emperor penguins preyed mainly upon fish (and squids), while Adélie penguins fed exclusively on euphausiids. Second, we compared the food of breeding adults and chicks. The isotopic signatures of adults and chicks of emperor penguins were not statistically different, but δ15N value of Adélie penguin chicks was higher than that of adults (10.2 ± 0.8 vs. 9.0 ± 0.2‰). The difference showed that adult Adélie penguins captured higher trophic level prey, i.e. higher-quality food, for their chicks. Third, the isotopic signatures of Adélie penguins breeding in Adélie Land showed that adults fed on Antarctic krill in oceanic waters in spring and shifted to neritic waters in summer where they preyed upon ice krill for themselves and upon fish and euphausiids for their chicks. A comparison of isotopic niches revealed large overlaps in both blood δ13C and δ15N values within the community of Antarctic seabirds and pinnipeds. The continuum in δ15N values nevertheless encompassed more than one trophic level (5.2‰) from Adélie penguin and crabeater seal to the Weddell seal. Such a broad continuum emphasizes the fact that all Antarctic seabirds and marine mammals feed on varying proportions of a few crustacean (euphausiids) and fish (Antarctic silverfish) species that dominate the intermediate trophic levels of the pelagic neritic and oceanic ecosystems.  相似文献   

3.
Ecologists primarily use δ15N values to estimate the trophic level of organisms, while δ13C, and even recently δ15N, are utilized to delineate feeding habitats. However, many factors can influence the stable isotopic composition of consumers, e.g. age, starvation or isotopic signature of primary producers. Such sources of variability make the interpretation of stable isotope data rather complex. To examine these potential sources of variability, muscle tissues of yellowfin tuna (Thunnus albacares) and swordfish (Xiphias gladius) of various body lengths were sampled between 2001 and 2004 in the western Indian Ocean during different seasons and along a latitudinal gradient (23°S to 5°N). Body length and latitude effects on δ15N and δ13C were investigated using linear models. Both latitude and body length significantly affect the stable isotope values of the studied species but variations were much more pronounced for δ15N. We explain the latitudinal effect by differences in nitrogen dynamics existing at the base of the food web and propagating along the food chain up to top predators. This spatial pattern suggests that yellowfin and swordfish populations exhibit a relatively unexpected resident behaviour at the temporal scale of their muscle tissue turnover. The body length effect is significant for both species but this effect is more pronounced in swordfish as a consequence of their different feeding strategies, reflecting specific physiological abilities. Swordfish adults are able to reach very deep water and have access to a larger size range of prey than yellowfin tuna. In contrast, yellowfin juveniles and adults spend most of their time in the surface waters and large yellowfin tuna continue to prey on small organisms. Consequently, nitrogen isotopic signatures of swordfish tissues are higher than those of yellowfin tuna and provide evidence for different trophic levels between these species. Thus, in contrast to δ13C, δ15N analyses of tropical Indian Ocean marine predators allow the investigation of complex vertical and spatial segregation, both within and between species, even in the case of highly opportunistic feeding behaviours. The linear models developed in this study allow us to make predictions of δ15N values and to correct for any body length or latitude differences in future food web studies.  相似文献   

4.
Application of stable isotope analysis (SIA) in jellyfish allows definition of trophic patterns not detectable using gut content analysis alone, but analytical protocols require standardization to avoid bias in interpreting isotopic data. We determined δ13C and δ15N in Aurelia sp. from the northern Gulf of Mexico (30°00′N, 89°00′W–30°24′N, 88°00′W) to define differences in stable isotope composition between body parts and whole body, the effect of lipid extraction on δ13C in tissues, and fractionation values from medusa to prey. The isotopic composition of bell and whole Aurelia sp. was not different. The increase in δ13C values after lipid removal suggested a correction is needed. To aid future analyses, we derived a correction equation from empirical data for jellyfish samples. Laboratory feeding experiments indicated medusae increased +4 ‰ in δ13C and +0.1 ‰ in δ15N compared to their diet. These results suggest protocols commonly applied for other species may be inaccurate to define Aurelia sp. trophic ecology. Because Aurelia spp. are commonly found in marine ecosystems, accurately defining their trophic role by use of SIA has implications for understanding marine food webs worldwide.  相似文献   

5.
Frolan A. Aya  Isao Kudo 《Marine Biology》2010,157(10):2157-2167
Use of stable isotope signatures to trace diet patterns in cultured marine bivalves, particularly when changing culture habitat, requires knowledge of the isotopic shift and enrichment between diet and consumer’s tissues. The aim of this study was to determine the patterns of isotope change and the variability of enrichment values (∆δ13C and ∆δ15N) in different tissues (muscle, gonad, digestive gland) of the Japanese scallop (Mizuhopecten yessoensis). It was hypothesized that the isotopic signatures of a consumer’s tissues changed during settlement and that the changes were related to variations in the isotopic signatures of food sources and gut contents. Particular attention was paid to the isotope enrichment between the diet and a consumer’s tissues using isotope analysis of gut content. Muscle δ15N values decreased significantly 3–5 months post-settlement in a nearshore seabed, concomitant with the ingestion of lower δ15N food. For juvenile scallops, sinking particles (SP) were considered a more important dietary source than suspended particulate organic matter (SPOM), based on the correspondence between SP and gut contents δ13C. Enrichment values (∆δ13C and ∆δ15N) varied with tissue and season. ∆δ15N was 2.4‰ in muscle, 1.2‰ in gonad, and 0.7‰ in the digestive gland. ∆δ13C was 3.2‰ in muscle, 2.3‰ in gonad, and −0.5‰ in the digestive gland. ∆δ15N was the lowest in summer (0.3‰), and ∆δ13C was the highest in autumn (2.8‰). ∆δ15N values were significantly influenced by age, but not ∆δ13C. Patterns of isotope ratios and enrichment values may be related to physiological attributes and differences in diet. This is the first study to demonstrate isotopic shift and enrichment encountered in different tissues of a cultured scallop when changing culture habitat.  相似文献   

6.
In this article, we show how a disease could bias stable isotope analyzes of trophic networks and propose a strategy in the choice of tissues to be analyzed. In the past few years, a new pathology (brown muscle disease or BMD) affecting the posterior adductor muscle of Ruditapes philippinarum has emerged in Arcachon Bay. BMD induces a necrosis of muscle tissues which become infused by conchiolin and hence calcified. As muscle of mollusks are often used for trophic food webs studies through stable isotopic analyzes, this work investigated the effect of BMD on carbon and nitrogen isotopic ratios of anterior and posterior adductor muscles of clams collected in February and August 2007. Infected clams displayed a lower condition index and a posterior adductor muscle δ13C enrichment of 1.2‰ in February and 0.7‰ in August. δ15N of posterior muscles was however not affected by the disease. Anterior muscle of diseased clams remained healthy and displayed the same isotopic signature as both posterior and anterior muscular tissues of healthy clam. Acidification significantly depleted δ13C in posterior muscles of infected clams, suggesting calcification, contrary to anterior muscles of infected clam and to both muscles of healthy clams, where no effect was observed. An X-ray diffractometry analysis confirmed the presence of CaCO3 (aragonite). Trophic food web studies relying on stable isotope ratios should utilize only healthy animals or anterior adductor muscles when expertise in mollusk pathology is lacking.  相似文献   

7.
In estuaries, eelgrass meadows contribute to fundamental ecosystem functions of estuaries, providing food to several predators and buffering the negative effects of eutrophication. We asked whether the presence of the eelgrass Zostera noltii decreased the nitrogen concentration in the overlying water, affected the sources of nitrogen sequestrated by primary producers and changed the benthic and pelagic food web structures. We also studied the importance of these food webs in providing food to fish. We compared bare sediment to sediment covered by a Z. noltii meadow, and examined nutrient concentrations in the water column and δ15N in primary producers as indicators of anthropogenic inputs of nutrients. We then measured both δ13C and δ15N in the tissues of plants and consumers to establish food web structures. There were no differences in the concentrations and sources of nitrogen between sites. Rather, δ15N values indicated anthropogenic inputs of N (e.g. sewage discharges, agriculture) in both sites. There were no major differences in the structure of the planktonic food web, which was in part sustained by particulate organic matter and supported most predator fish, and in the structure of the benthic food web. Nonetheless, there were differences in the sources of food for omnivore consumers and for the detritivore Scrobicularia plana. Overall, the benthic food web did not use food derived from the eelgrass or macroalgae deposited on the substratum. Suspension feeders used particulate and sediment organic matter, whereas the δ13C and δ15N values of the other consumers indicated a likely contribution of benthic microalgae. Furthermore, in both habitats we found large variability in the isotope signatures of benthic macrofauna consumers, which did not allow distinguishing clearly different trophic groups and indicated a high level of omnivory and a mixed diet opportunistically making use of the availability of food in the surroundings.  相似文献   

8.
Most studies on the foraging ecology of loggerhead turtles (Caretta caretta) have focused on adult females and juveniles. Little is known about the foraging patterns of adult male loggerheads. We analyzed tissues for carbon and nitrogen stable isotopes (δ13C and δ15N) from 29 adult male loggerheads tracked with satellite transmitters from one breeding area in Florida, USA, to evaluate their foraging habitats in the Northwest Atlantic (NWA). Our study revealed large variations in δ13C and δ15N and a correlation between both δ13C and δ15N and the latitude to which the loggerheads traveled after the mating season, thus reflecting a geographic pattern in the isotopic signatures. Variation in δ13C and δ15N can be explained by differences in food web baseline isotopic signatures rather than differences in loggerhead trophic levels. Stable isotope analysis may help elucidate residency and migration patterns and identify foraging sea turtle subpopulations in the NWA due to the isotopically distinct habitats used by these highly migratory organisms.  相似文献   

9.
The widespread omnivory of consumers and the trophic complexity of marine ecosystems make it difficult to infer the feeding ecology of species. The use of stable isotopic analysis plays a crucial role in elucidating trophic interactions. Here we analysed δ15N, δ13C and δ34S in chick feathers, and we used a Bayesian triple-isotope mixing model to reconstruct the diet of a generalist predator, the yellow-legged gull (Larus michahellis) that breeds in the coastal upwelling area off northwest mainland Spain. The mixing model indicated that although chicks from all colonies were fed with a high percentage of fish, there are geographical differences in their diets. While chicks from northern colonies consume higher percentages of earthworms, refuse constitutes a more important source in the diet of chicks from western colonies. The three-isotope mixing model revealed a heterogeneity in foraging habitats that would not have been apparent if only two stable isotopes had been analysed. Moreover, our work highlights the potential of adding δ34S for distinguishing not only between terrestrial and marine prey, but also between different marine species such as fish, crabs and mussels.  相似文献   

10.
Loss of macroalgae habitats has been widespread on rocky marine coastlines of the eastern Korean peninsula, and efforts for restoration and creation of macroalgal beds have increasingly been made to mitigate these habitat losses. Deploying artificial reefs of concrete pyramids with kelps attached has been commonly used and applied in this study. As a part of an effort to evaluate structural and functional recovery of created and restored habitat, the macroalgal community and food web structure were studied about a year after the establishment of the artificial macroalgal bed, making comparisons with nearby natural counterparts and barren ground communities. Dominant species, total abundance, and community structure of macroalgal assemblage at the restored macroalgal bed recovered to the neighboring natural bed levels during the study period. The main primary producers (phytoplankton and macroalgae) were isotopically well separated. δ13C and δ15N values of consumers were very similar between restored and natural beds but varied greatly among functional feeding groups. The range of consumer δ13C was as wide as that of primary producers, indicating the trophic importance of both producers. There was a stepwise trophic enrichment in δ15N with increasing trophic level. A comparison of isotope signatures between primary producers and consumers showed that, while suspension feeders are highly dependent on pelagic sources, invertebrates of other feeding guilds and fishes mainly use macroalgae-derived organic matter as their ultimate nutritional sources in both macroalgal beds, emphasizing the high equivalency of trophic structure between both beds. Isotopic signatures of a few mollusks and sea urchins showed that they use different dietary items in macroalgal-barren grounds compared with macroalgal beds, probably reflecting their feeding plasticity according to the low macroalgal biomass. However, isotopic signatures of most of the consumers at the barren ground were consistent with those at the macroalgal beds, supporting the important trophic role of drifting algae. Our results revealed the recoveries of the macroalgal community and trophic structure at the restored habitat. Further studies on colonization of early settlers and the following succession progress are needed to better understand the process and recovery rate in the developing benthic community.  相似文献   

11.
Food sources for cultivated marine bivalves generally are not well identified, although they are essential for a better understanding of coastal ecosystems and for the sustainability of shellfish farming activities. In addition to phytoplankton, other organic matter sources (OMS), such as microphytobenthos and detritus (of terrestrial or marine origins), can contribute significantly to the growth of marine bivalves. The aim of this study was to identify the potential food sources and to estimate their contributions to the growth of the Pacific oyster (Crassostrea gigas) in two contrasting trophic environments of Normandy (France): the Baie des Veys (BDV) and the Lingreville area (LIN). Two sites were studied in the BDV area (BDV-S and BDV-N) and one in the LIN area. To estimate the contribution of each type of OMS, we used a combination of stable natural isotope composition (δ13C, δ15N) analysis of OMS and oyster tissue together with a modelling exercise. Field sampling was conducted every 2 months over 1 year. The sampled sources were suspended particulate organic matter from marine (PhyOM) and terrestrial (TOM) origins, microphytobenthos (MPB), detrital organic matter from the superficial sediment (SOM), and macroalgae (Ulva sp., ULV). A statistical mixing model coupled to a bioenergetic model was used to calculate the contributions of each different source at different seasons. Results showed that isotopic composition of the animal flesh varied with respect to the potential OMS over the year within each ecosystem. Significant differences were also observed among the three locations. For instance, the δ13C and δ15N values of the oysters ranged from −20.0 to −19.1‰ and from 6.9 to 10.8‰ at BDV-S, from −19.4 to −18.1‰ and from 6.4 to 10.0‰ at BDV-N, and from −21.8 to −19.4‰ and from 6.3 to 8.3‰ at LIN. The contributions of the different sources to oyster growth differed depending on the ecosystem and on the period of the year. Phytoplankton (PhyOM) predominated as the principal food source for oysters (particularly in the LIN location). MPB, TOM, and ULV detritus also possibly contributed to oysters’ diet during summer and autumn at the BDV-S and BDV-N sites. SOM was not considered an OMS because it was already a mix of the other four OMS, but rather a trophic reservoir that potentially mirrored the trophic functioning of marine ecosystems.  相似文献   

12.
Nitrogen (δ15N) and carbon (δ13C) stable isotopes and contaminants, such as mercury, have been widely used to characterise foraging ecology of temperate and polar seabirds. In this study, for the first time, we used isotopic signatures and mercury levels of feathers and blood of eight tropical seabird species, that forage in a range-gradient between inshore and offshore areas, to describe the foraging habits of a large tropical seabird community (from two neighboring islands of the Seychelles archipelago, western Indian Ocean) during both the breeding and inter-breeding periods. Overall, we found a high overlap in both δ15N and δ13C signatures among species. The high inter-specific overlap in δ15N values was expected, given the similarities in the diet of the species from this community. However, several unexpected results, such as (1) the consistently higher δ15N signatures of white terns (Gygis alba), (2) the large variation in inter-specific differences in δ15N signatures among the sampling groups (season, age, island and tissue) and (3) the consistent low δ15N values of breeding birds during the northwest monsoon (austral summer), suggest that δ15N signatures cannot be used as indicators of seabird trophic levels in this community. The high inter-specific overlap in δ13C signatures and the absence, during the breeding season, of a δ13C gradient that follows the inshore-offshore foraging gradient within the community can be explained by the habitat homogeneity of the Seychelles continental shelf and suggest that birds forage mostly within the limits of this “plateau”. On the other hand, the similarities in δ13C values between the breeding and inter-breeding periods in species that are known to show post-breeding dispersal, strongly support the hypothesis of a lack of latitudinal variation in δ13C signatures of POM in the central Indian Ocean, and the consequent inaccuracy of δ13C values to track seabird movements within this geographic area. Inter-specific differences in mercury levels seem to be related to prey size, while consistent higher mercury concentrations in one of the studied islands suggest different island mercury-backgrounds and possible segregation in foraging areas between the seabirds of the two islands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
 The carbon and nitrogen isotopic composition of 18 faunistic groups collected during the 39th cruise of the R.V. “Akademik Mstislav Keldysh” in September 1996 at the Broken Spur vent field, MAR, was studied. The trophic structure of the Broken Spur vent community is considered. All age stages of the shrimp Rimicaris exoculata living 5 m below the main aggregations at black smokers show higher δ15N and more depleted δ13C values than the same stages inhabiting the black smokers themselves. The shrimps R. exoculata and Chorocaris chacei demonstrate ontogenetic changes in δ13C (the former also in δ15N), with smaller individuals showing higher δ15N and more depleted δ13C values than larger shrimps. Benthopelagic and benthic components of the vent community differ significantly in δ13C and δ15N, the benthic fauna being less dependent upon chemosynthetic production. Received: 30 March 1999 / Accepted: 28 September 1999  相似文献   

14.
Carbon and nitrogen stable isotope ratios of Japanese anchovy (Engraulis japonicus) and their stomach contents were examined and compared among various regions around Japan. Geographical variations in the isotope ratios were found between inshore and Pacific offshore regions. While most of the anchovy samples had isotope ratios around −17.6‰ for δ13C and 10.0‰ for δ15N as median values, higher (more enriched) isotope values were found in the anchovy sampled from inshore regions. On the contrary, lower (more depleted) values were found mostly in the anchovy from the Pacific offshore region including the Kuroshio Extension and Kuroshio-Oyashio transition zones. Higher carbon isotope ratios in the inshore regions may reflect a carbon source from benthic primary producers in addition to phytoplankton possibly through the consumption of the larvae of benthic organisms such as bivalves or decapods, which were found in the stomach contents of the inshore anchovy. Variations in the nitrogen isotope ratio may reflect not only differences in the trophic level of prey species, but also variations in the baseline level of food webs. Stable isotope ratios are potentially a useful tool for understanding the stock/population structure and migration of anchovy. The present findings indicate the potential importance of the “inshore–offshore” variations in the biology of Japanese anchovy populations in the northwestern Pacific waters.  相似文献   

15.
Individual specialisation is widespread and can affect a population’s ecological and evolutionary dynamics. Whether intra-specific niche differences can influence reproductive investment was examined in a marine mammal, the southern elephant seal (Mirounga leonina), whose females were known to forage in two different areas during the austral winter. The study was conducted at Kerguelen Islands (49°21′S, 70°18′E), southern Indian Ocean, in late winter–early spring 2006. Pups were used as proxies of their mothers’ biology and combined information on their weaning mass (a proxy of females’ foraging success and short-term fitness) together with their blood δ13C value (a proxy of female foraging zone). First, the use of isotopic signature of pups was validated to study the female foraging ecology during their pre-breeding trip by demonstrating that δ13C and δ15N values of pups and their mothers were positively and linearly correlated. Then, blood samples were taken from a large number of newly-weaned pups, which were also weighed, to provide information at the population level. Estimated δ13C values of female seals encompassed a large range of values (from −23.7 to −19.1‰) with an unimodal frequency distribution, suggesting no contrasted foraging areas within the population. No significant relationship was found between pup weaning mass and their carbon signature, indicating no link between female foraging areas and maternal foraging success and investment. Finally, blood δ13C and δ15N values gave new insights into southern elephant seal ecology, suggesting that females mainly foraged north of the Polar Front where they preyed upon myctophid fish in late winter.  相似文献   

16.
Oceanographic sampling is often limited to local and temporally concise assessments of complex, transient, and widespread phenomena. However, long-lived, migratory pelagic vertebrates such as leatherback turtles (Dermochelys coriacea, Vandelli 1761) can provide important integrated information about broad-scale oceanographic processes. Therefore, the present study analyzed stable carbon and nitrogen isotope ratios (δ13C and δ15N) of egg yolk and red blood cells from nesting leatherback populations from Costa Rica in the eastern Pacific in 2003–2004 and 2004–2005 and from St. Croix in the North Atlantic in 2004 and 2005 to establish differences between nutrient sourcing and its influence on higher trophic level consumers in both ocean basins. Whereas δ13C signatures were similar between Costa Rica (−19.1±0.7‰) and St. Croix (−19.4±1.0‰) leatherbacks, reflecting the pelagic foraging strategy of the species, Costa Rica leatherback δ15N signatures (15.4±1.8‰) were significantly enriched relative to St. Croix leatherback δ15N signatures (9.8±1.5‰). This δ15N difference likely reflects inter-basin differences in nitrogen cycling regimes and their influence on primary productivity being transferred through several trophic levels. Thus, high-order marine consumer movements, habitat preferences, and stable isotope signatures can be combined with ocean sampling to elucidate interactions between oceanographic processes and marine megafauna.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
The degree of individual or gender variation when exploiting food resources is an important aspect in the study of foraging ecology within a population. Previous information on non-breeding skimmers obtained through conventional methodologies suggested sex-related differences in prey species. In this study, stable isotope techniques were used to investigate the intraspecific segregation in diet and foraging habits of the Black Skimmer (Rynchops niger intercedens) at Mar Chiquita Coastal Lagoon (37°40′S, 57°22′W), Argentina. These results were compared with contemporary data on the trophic composition obtained by conventional methodologies. Blood samples were taken from birds captured with mist-nets during their non-breeding season. The isotopic signatures of skimmers showed a diet mainly composed of marine prey with some degree of estuarine fish intake. When comparing diet between sexes, males showed enrichment in 15N compared to females, while no differences were observed in 13C. The use of mixing models revealed differences in the relative composition of prey in the diet of male and female skimmers. This study highlights stable isotope analysis as a valuable tool to test inter-individual differences and sexual segregation in trophic ecology of Black Skimmers as compared to conventional methodologies. The results show a trophic segregation in the Black Skimmer during the non-breeding season that can be explained by differences in prey species and larger prey sizes of male skimmers. Our findings have significant implications for conservation since any environmental change occurring at wintering areas might have profound effects on several avian life-history traits, and could be different for males and females due to trophic segregation.  相似文献   

18.
Within Monterey Bay, California, USA, the food web transfer of domoic acid (DA), a neurotoxin produced by diatoms of the genus Pseudo-nitzschia, has led to major mortality events of marine mammals and birds. Less visible, and less well known, is whether invertebrates and fish associated with the benthos are also affected by blooms of DA-producing Pseudo-nitzschia spp. This study examines the presence of DA in benthic flatfish offshore of Davenport, California, (37°0′36″N, 122°13′12″W) and within Monterey Bay, California (36°45′0″N, 122°1′48″W), including species that feed primarily in the sediment (benthic-feeding) and species that feed primarily in the water column (benthopelagic-feeding). Flatfish caught between 10 December 2002 and 17 November 2003 at depths of 30–180 m had concentrations of DA in the viscera ranging from 3 to 26 μg DA g−1 of viscera. Although the DA values reported are relatively low, benthic-feeding flatfish were frequently contaminated with DA, especially as compared with the frequency of contamination of flatfish species that feed in the water column. Furthermore, on days in which both benthic-feeding and benthopelagic-feeding flatfish were collected, the former had significantly higher concentrations of DA in the viscera. Curlfin turbot, Pleuronicthys decurrens, the flatfish with both the highest level and frequency of DA contamination, are reported to feed exclusively on polychaetes, suggesting that these invertebrates may be an important vector of the toxin in benthic communities and may pose a risk to other benthic-feeding organisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Seagrass meadows are among the most productive ecosystems in the marine environment. It has been speculated that much of this production is exported to adjacent ecosystems via the movements of organisms. Our study utilized stable isotopes to track seagrass-derived production into offshore food webs in the northeastern Gulf of Mexico. We found that gag grouper (Myctereoperca microlepis) on reefs as far as 90 km from the seagrass beds incorporate a significant portion of seagrass-derived biomass. The muscle tissue of gag grouper, a major fisheries species, was composed on average of 18.5–25% seagrass habitat-derived biomass. The timing of this annual seagrass subsidy appears to be important in fueling gag grouper egg production. The δ34S values of gag grouper gonad tissues varied seasonally and were δ34S depleted during the spawning season indicating that gag utilize the seagrass-derived biomass to support reproduction. If such large scale trophic subsidies are typical of temperate seagrass systems, then loss of seagrass production or habitat would result in a direct loss of offshore fisheries productivity.  相似文献   

20.
To investigate feeding variation between populations of an apex oceanic predator, stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) have been compared in skin of female and immature male sperm whales (Physeter macrocephalus) from the northern Gulf of Mexico (GoM) and the Gulf of California (GC). Whale sexes were determined genetically. The δ13C and δ15N values from squid muscle were used from the GC, and from inshore and offshore sites in the GoM. We documented contrastingly lower δ13C and δ15N from whales and squid of the GoM compared with those from the GC. While this difference may be associated with variation in trophic position, geographic variation in biochemical cycling influenced significantly the contrasting isotope values between gulfs. Within the northern GoM, the highly distinct δ15N values of neritic squid versus mesopelagic squid provide further evidence of habitat specificity in δ15N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号