首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to estimate the in situ grazing rates of Salpa thompsoni and their implications for the development of phytoplankton blooms and for the sequestration of biogenic carbon in the high Antarctic, a repeat-grid survey and drogue study were carried out in the Lazarev Sea during austral summer of 1994/1995 (December/January). Exceptionally high grazing rates were measured for S. thompsoni at the onset of a phytoplankton bloom (0.2 to 0.8 μg chlorophyll a l−1) in December 1994, with up to ≃160 μg of plant pigments consumed by an individual salp of 7 to 10 cm length per day. Dense salp swarms extended throughout the marginal ice zone, consuming up to 108% of daily phytoplankton production and 21% of the total chlorophyll a stock. Due to the much faster sinking rates and higher carbon content of salp faecal pellets, the efficiency of downward carbon flux through salps is much higher than through the other major grazers, krill and copepods. S. thompsoni can thus export large amounts of biogenic carbon from the euphotic zone to the deep ocean. With the observed ingestion rates during December 1994, this flux could have attained levels of up to 88 mg C m−2 d−1, accounting for the bulk of the vertical transport of carbon in the Lazarev Sea. However, in January 1995, when phytoplankton concentrations exceeded a threshold level of 1.0 to 1.5 μg chlorophyll a l−1, salps experienced a drastic reduction in their feeding efficiency, possibly as a result of clogging of their filtering apparatus. This triggered a dramatic reversal in the relationship, during which a dense phytoplankton bloom developed in conjunction with the collapse of the salp population. Increases in the biomass and geographic range of the tunicate S. thompsoni have occurred in several areas of the southern ocean, often in parallel with a rise in sea-surface temperature during sub-decadal periods of warming anomalies. Received: 10 August 1997 / Accepted: 21 October 1997  相似文献   

2.
Feeding dynamics of the Antarctic salps Ihlea racovitzai and Salpa thompsoni were studied in the Lazarev Sea in fall 2004, summer 2005–2006 and winter 2006. Pigment concentrations in the guts of both species were positively correlated with ambient surface chlorophyll a (chl a). No evidence was found for salp clogging even at dense surface concentrations of up to 7 μg chl a L−1. However, gut pigment concentrations had a lower range than ambient pigment concentrations, suggesting that salps increased retention times of ingested material in low-food environments. For medium-sized I. racovitzai and S. thompsoni, estimated individual daily rations reached 7–10 and >100% of body carbon in winter and summer, respectively. Daily respiratory needs of I. racovitzai and S. thompsoni accounted for 28 and 22% of daily carbon assimilation based on pigment ingestion rates in winter, and for 2 and 1% in summer, respectively. The grazing impact of the salp populations on the phytoplankton standing stock was negligible during all seasons due to generally low salp densities. Fatty acid trophic biomarkers in the salps suggest high year-round contributions of flagellates and modest contributions of diatoms to the salp’s diet. These markers showed low seasonal variability for I. racovitzai. The more pronounced seasonality of trophic markers in S. thompsoni were likely related to their generally deeper residence depth in winter linked to a seasonal alternation of sexual and asexual generations.  相似文献   

3.
Distribution, density, and feeding dynamics of the pelagic tunicate Salpa thompsoni have been investigated during the expedition ANTARKTIS XVIII/5b to the Eastern Bellingshausen Sea on board RV Polarstern in April 2001. This expedition was the German contribution to the field campaign of the Southern Ocean Global Ocean Ecosystems Dynamics Study (SO-GLOBEC). Salps were found at 31% of all RMT-8 and Bongo stations. Their densities in the RMT-8 samples were low and did not exceed 4.8 ind m−2 and 7.4 mg C m−2. However, maximum salp densities sampled with the Bongo net reached 56 ind m−2 and 341 mg C m−2. A bimodal salp length frequency distribution was recorded over the shelf, and suggested two recent budding events. This was also confirmed by the developmental stage composition of solitary forms. Ingestion rates of aggregate forms increased from 2.8 to 13.9 μg (pig) ind−1 day−1 or from 0.25 to 2.38 mg C ind−1 day−1 in salps from 10 to 40 mm oral-atrial length, accounting for 25–75% of body carbon per day. Faecal pellet production rates were on average 0.08 pellet ind−1 h−1 with a pronounced diel pattern. Daily individual egestion rates in 13 and 30 mm aggregates ranged from 0.6 to 4.8 μg (pig) day−1 or from 164 to 239 μg C day−1. Assimilation efficiency ranged from 73 to 90% and from 65 to 76% in 13 and 30 mm aggregates, respectively. S. thompsoni exhibited similar ingestion and egestion rates previously estimated for low Antarctic (~50°S) habitats. It has been suggested that the salp population was able to develop in the Eastern Bellingshausen Sea due to an intrusion into the area of the warm Upper Circumpolar Deep Water  相似文献   

4.
During a repeat grid survey and drogue study carried out in the Lazarev Sea in the austral summer of 1994 to 1995, a sudden collapse of a rich population of the tunicate Salpa thompsoni was observed at the onset of a phytoplankton bloom. This may have been related to the inability of salps to regulate their filtration rate and avoid clogging of their filtering apparatus at particle concentrations ≥1 mg (chlorophyll a) m−3. It was at this stage that large numbers of salp individuals had their branchial cavities invaded by the copepod Rhincalanus gigas. Incubations, to compare the feeding rates of R.␣gigas in the presence and absence of salps, showed that copepods are able to utilize the high concentrations of microplankton accumulated in the food strand of the salp, thus enhancing their grazing efficiency. This is likely to represent a typical form of opportunistic parasitism. However, the timing of the invasion, and the observation that most salps could survive prolonged exposure to R. gigas invasion, suggest that the association may also constitute a novel type of symbiosis. S.␣thompsoni could potentially benefit from R. gigas cleaning its filtering apparatus when clogging due to high particle concentrations occurs. Received: 15 July 1996 / Accepted: 20 July 1996  相似文献   

5.
Bacterial abundance, production, and extracellular enzyme activity were determined in the shallow water column, in the epiphytic community of Thalassia testudinum, and at the sediment surface along with total carbon, nitrogen, and phosphorus in Florida Bay, a subtropical seagrass estuary. Data were statistically reduced by principle components analysis (PCA) and multidimensional scaling and related to T. testudinum leaf total phosphorus content and phytoplankton biomass. Each zone (i.e., pelagic, epiphytic, and surface sediment community) was significantly dissimilar to each other (Global R = 0.65). Pelagic aminopeptidase and sum of carbon hydrolytic enzyme (esterase, peptidase, and α- and β-glucosidase) activities ranged from 8 to 284 mg N m−2 day−1 and 113–1,671 mg C m−2 day−1, respectively, and were 1–3 orders of magnitude higher than epiphytic and sediment surface activities. Due to the phosphorus-limited nature of Florida Bay, alkaline phosphatase activity was similar between pelagic (51–710 mg P m−2 day−1) and sediment (77–224 mg P m−2 day−1) zones but lower in the epiphytes (1.1–5.2 mg P m−2 day−1). Total (and/or organic) C (111–311 g C m−2), N (9.4–27.2 g N m−2), and P (212–1,623 mg P m−2) content were the highest in the sediment surface and typically the lowest in the seagrass epiphytes, ranging from 0.6 to 8.7 g C m−2, 0.02–0.99 g N m−2, and 0.5–43.5 mg P m−2. Unlike nutrient content and enzyme activities, bacterial production was highest in the epiphytes (8.0–235.1 mg C m−2 day−1) and sediment surface (11.5–233.2 mg C m−2 day−1) and low in the water column (1.6–85.6 mg C m−2 day−1). At an assumed 50% bacterial growth efficiency, for example, extracellular enzyme hydrolysis could supply 1.8 and 69% of epiphytic and sediment bacteria carbon demand, respectively, while pelagic bacteria could fulfill their carbon demand completely by enzyme-hydrolyzable organic matter. Similarly, previously measured T. testudinum extracellular photosynthetic carbon exudation rates could not satisfy epiphytic and sediment surface bacterial carbon demand, suggesting that epiphytic algae and microphytobenthos might provide usable substrates to support high benthic bacterial production rates. PCA revealed that T. testudinum nutrient content was related positively to epiphytic nutrient content and carbon hydrolase activity in the sediment, but unrelated to pelagic variables. Phytoplankton biomass correlated positively with all pelagic components and sediment aminopeptidase activity but negatively with epiphytic alkaline phosphatase activity. In conclusion, seagrass production and nutrient content was unrelated to pelagic bacteria activity, but did influence extracellular enzyme hydrolysis at the sediment surface and in the epiphytes. This study suggests that seagrass-derived organic matter is of secondary importance in Florida Bay and that bacteria rely primarily on algal/cyanobacteria production. Pelagic bacteria seem coupled to phytoplankton, while the benthic community appears supported by epiphytic and/or microphytobenthos production.  相似文献   

6.
Two species of salps, Salpa thompsoni and Ihlea racovitzai, were sampled during three cruises to the Lazarev Sea, Southern Ocean, in summer (December–January) 2005/2006, Autumn (April–May) 2004 and Winter (July–August) 2006. Dry weight, carbon, nitrogen, protein, lipid and carbohydrate contents were measured to characterize the potential value of salps as a food source for predators in the Antarctic ecosystem. Biochemical composition measurements showed that despite having a high percentage of water (~94% of wet weight), both species had relatively high carbon and protein contents in their remaining dry weight (DW). In particular I. racovitzai showed high carbon (up to 22% of DW) and protein (up to 32% of DW) values during all seasons sampled, compared to lower values for S. thompsoni (carbon content only about 15% of the DW, protein content about 10% of the DW). At the same time, carbohydrates (CH) and lipids (Lip) only accounted for a small portion of salp DW in both species (1.4% CH and 3.6% Lip for I. racovitzai; 2.1% CH and 2.9% Lip for S. thompsoni). There was little variability in the biochemical composition of either salp species between the seasons sampled. Both biochemical composition and life cycle characteristics suggest that Antarctic salps, especially I. racovitzai, may be important prey items for both cold and warm-blooded predators in an environment where food is often very scarce.  相似文献   

7.
Temora stylifera adult copepods were fed with four different monoalgal diets and six combinations of the same cultures for 15 days. Fecundity, hatching success, number of cannibalized embryos, fecal pellet production, adult mortality and naupliar recruitment were compared, in order to find the best diet for this species. Phytoplankton species tested were Prorocentrum minimum (PRO); Isochrysis galbana (ISO); Tetraselmis suecica (TETRA) and Rhodomonas baltica (RHO) which were supplied alone or in different combinations and at various concentrations ranging from a minimum of 1 mg C L−1 day−1 to a maximum of 66 mg C L−1 day−1. Of the ten diets tested, ISO was the worst and was unable to sustain egg production and adult survival possibly because adults were unable to ingest this alga due to its small size. TETRA was also a poor food since it negatively impacted egg production and adult survival, as well as egg hatching success, possibly due to the lack of essential compounds necessary for optimal embryogenesis. RHO and PRO were the best foods inducing highest egg production, hatching success and naupliar recruitment. Even if mean egg production rates were similar to those obtained with some mixed diets, carbon intake concentrations with mixed diets were from 3 to 33 and from 6.6 to 66 times higher than with RHO and PRO given alone, respectively. Mixed diets of ISO and PRO, especially when supplied at higher concentrations (66 mg C L−1 day−1), had a negative effect on egg hatching success and adult survival, with a corresponding reduction in naupliar recruitment. On the other hand, mixed diets of TETRA and PRO promoted high naupliar recruitment but values were similar to PRO offered alone. Our results indicate that a good monoalgal diet such as RHO and PRO can be as effective as a mixed diet to sustain the mass cultivation of T. stylifera.  相似文献   

8.
Rates of fecal pellet production have been recorded from seven species of oceanic salps feeding on natural diets. Expressed as g C defecated per mg salp body C per hour, the values range between 3.7 and 27.7. Carbon: nitrogen ratios of the salp fecal pellets average 11.4; the organic matter of the pellets is mainly protein and carbohydrate. Sinking velocities of the pellets are very high, ranging from 320 to 2 238 m d-1 for pellets from three species. However, the pellets sink slower than would be predicted from extrapolation of rates for crustacean pellets, probably due to the shape of the pellets and their density. The high rates of defecation, large size and rapid sedimentation of salp fecal pellets make them likely mechanisms for rapid transport of small particulate matter from surface waters to deep water and the benthos.  相似文献   

9.
The vertical distribution of copepods, fecal pellets and the fecal pellet production of copepods were measured at seven stations across the Southern Indian Ocean from productive areas off South Africa to oligotrophic waters off Northern Australia during October/November 2006. We quantified export of copepod fecal pellet from surface waters and how much was retained. Furthermore, the potential impact of Oncaea spp. and harpacticoid copepods on fecal pellets degradation was evaluated and found to be regional substantial. The highest copepod abundance and fecal pellet production was found in the western nutrient-rich stations close to South Africa and the lowest at the central oligotrophic stations. The in situ copepod fecal pellet production varied between 1 and 1,000 μg C m−3 day−1. At all stations, the retention of fecal pellets in the upper 400 m of the water column was more than 99% and the vertical export of fecal pellets was low (<0.02 mg m−2 day−1).  相似文献   

10.
Organic matter (OM) remineralization may be considered a key function of the benthic compartment of marine ecosystems and in this study we investigated if the input of labile organic carbon alters mineralization of indigenous sediment OM (OM priming). Using 13C-enriched diatoms as labile tracer carbon, we examined shallow-water sediments (surface and subsurface layers) containing organic carbon of different reactivity under oxic versus anoxic conditions. The background OM decomposition rates of the sediment used ranged from 0.08 to 0.44 μmol C mlws−1 day−1. Algal OM additions induced enhanced levels of background remineralization (priming) up to 31% and these measured excess fluxes were similar to mineralization of the added highly degradable tracer algal carbon. This suggests that OM priming may be important in marine sediments.  相似文献   

11.
Sinking rates were determined for fecal pellets produced by gelatinous zooplankton (salps, Salpa fusiformis and Pegea socia; pteropods, Corolla spectabilis; and doliolids, Dolioletta gegenbaurii) feeding in surface waters of the California Current. Pellets from the salps and pteropods sank at rates up to 2 700 and 1 800 m d-1, respectively; such speeds exceed any yet recorded for zooplankton fecal pellets. Fecal pellets of salps were rich in organic material, with C:N ratios from 5.4 to 6.2, close to values for living plankton. The relation between volume and sinking rate indicates that salp and pteropod pellets are slightly less dense than those of pelagic Crustacea; moreover, pellet density varied between different collection dates, probably because of differences in composition. In contrast, doliolid pellets sank at rates up to 208 m d-1, a rate much lower than would be expected from pellet size. Thus, density and sinking rates of pellets are much more variable in zooplankton than would be expected from studies of crustaceans alone. Moreover, the extraordinarily high sinking rates of fecal pellets of salps indicates that these tunicates may be disproportionately important in the flux of biogenic materials during periods when they form dense population blooms.  相似文献   

12.
Primary production at Antarctic coastal sites is contributed from sea ice algae, phytoplankton and benthic algae. Oxygen microelectrodes were used to estimate sea ice and benthic primary production at several sites around Casey, a coastal area in eastern Antarctica. Maximum oxygen export from sea ice was 0.95 mmol O2 m−2 h−1 (~11.7 mg C m−2 h−1) while from the sediment it was 6.08 mmol O2 m−2 h−1 (~70.8 mg C m−2 h−1). When the ice was present O2 export from the benthos was either low or negative. Sea ice algae assimilation rates were up to 3.77 mg C (mg Chl-a)−1 h−1 while those from the benthos were up to 1.53 mg C (mg Chl-a)−1 h−1. The contribution of the major components of primary productivity was assessed using fluorometric techniques. When the ice was present approximately 55–65% of total daily primary production occurred in the sea ice with the remainder unequally partitioned between the sediment and the water column. When the ice was absent, the benthos contributed nearly 90% of the primary production.  相似文献   

13.
The annual population dynamics (nauplii, old copepodites CIV–CV and adults) and seasonal variations in reproductive parameters of the cyclopoid copepod Oithona similis were investigated on the basis of the data 1999–2006 in Kola Bay, a large subarctic fjord in the Barents Sea. Population density of O. similis ranged from 110 to 9,630 ind m−3 and averaged 1,020 ± 336 ind m−3. The relative abundance of adults was high during winter (~60%). At the end of winter (mid-March), the population included a large percentage of later-stage copepodites (stage CIV 23% and stage CV 57%). There were two periods of mass spawning, in late June and September. Autumn and summer generations strongly differed in abundance, average prosome length (PL), clutch size (CS), egg diameter (D), egg production rates (EPR and SEPR) and female secondary production. Average PL decreased with increasing water temperature, while D and CS were strongly correlated with PL but unaffected by temperature. Annual average EPR and SEPR were 0.55 ± 0.18 eggs female−1 day−1 and 0.0011 ± 0.003 day−1, respectively. Female secondary production averaged 0.8 ± 0.3 μg C m−3 day−1 (range 0.001–3.58). There were positive relationships between abundance, EPR, SEPR, production and water temperatures. Reproductive parameters appeared to be controlled by hydrological factors and food conditions.  相似文献   

14.
The production dynamics and carbon balance of Thalassia testudinum in the lower Laguna Madre, Texas, USA, were examined during the 1995 summer period based on in situ photosynthesis vs irradiance (PI) measurements and continuous measurements of underwater photon-flux density (PFD). The validity of applying the H sat model, used to calculate production for Zostera marina as the product of the maximum rate of photosynthesis (P max) and daily hours of saturating irradiance (H sat) was assessed for T. testudinum by comparison with integrated production estimates derived through numerical integration. Gross integrated production values were combined with dark-respiration measurements of photosynthetic (PS) and non-photosynthetic (NPS) tissues and areal biomass to generate daily whole-plant carbon balance. Production and whole-plant carbon balance are discussed in relation to surface and underwater PFD measurements, biomass and other physical and chemical parameters collected during a 1 yr period from January to December 1995. The H sat model significantly underestimated production during all summer months, averaging 70% of integrated production over the entire study period. Gross integrated production ranged between 11.5 mg C g−1 leaf dry wt d−1 in June (during a period of unseasonably low PFDs caused by a drift-alga mat covering the seagrass bed) to 26.7 mg C g−1 leaf dry wt d−1 in July. Modeled net carbon gain was highest in July at 454 mg C m−2 d−1 (1.4 g dry wt m−2 d−1), sufficient to account for measured rates of leaf production in the study area and representative of T. testudinum populations of low productivity. During part of the summer period, however, the population was in negative carbon balance. The relatively low productivity of this population and the periods of negative carbon balance are attributed to low net photosynthesis:dark respiration (P net:R d) ratios, sporadic low-light periods, the small fraction of PS tissue relative to whole-plant biomass (5 to 13%) and nutrient limitation. Production models are sensitive to both light availability and the proportion of PS tissue supporting NPS biomass as reflected in whole-plant P net:R d ratios. Received: 13 August 1997 / Accepted: 6 March 1998  相似文献   

15.
Artemia franciscana was grown on Isochrysis galbana Green (clone T. Iso) at saturated food concentrations (13 to 20 mg C l−1) for 11 d at 26 to 28 °C, and 34 ppt salinity. Three groups of brine shrimp were used in the feeding experiments: metanauplius III and IV (Group 1), post-metanauplius II and III (Group 2) and post-metanauplius VIII (Group 3), corresponding to 4-, 7- and 11-d-old animals, respectively. The ingestion rate, clearance rate and carbon balance were estimated for these stages at different concentrations of 14C-labeled I. galbana ranging from 0.05 to 30 mg C l−1. The handling time of algae was determined for all three groups. The ingestion rate (I, ng C ind−1 h−1) increased as a function of animal size and food concentration. In all three groups, the ingestion rate increased to a maximum level (I max) and remained constant at food concentrations ≥10 mg C l−1 (saturated food concentrations). The clearance rate (CR, μl ind−1 h−1) increased with increasing food concentration up to a maximum rate (CR max), after which it decreased for even higher food concentrations. The functional response of A. franciscana was most consistent with Holling's Type 3 functional response curve (sigmoidal model), which for the two oldest groups (Group 2 and 3) differed significantly from a Type 2 response (p < 0.05). The gut passage time for the three groups of A. franciscana, feeding on saturated food concentration (20 mg C l−1), varied between 24 and 29 min. As the nauplii developed to pre-adult stage the handling time of the algae increased as a function of animal size. The assimilation rate (ng C ind−1 h−1) in the youngest stages (Group 1 and 2) increased with increasing food concentrations, reaching a maximum level close to 10 mg C l−1. At higher food concentrations the assimilation rate decreased, and the proportions of defecated carbon increased, reaching 60 to 68% in the post-metanauplius stages (Group 3). The assimilation efficiency (%) was high at the lowest food concentrations in all three groups (89 to 64%). At higher concentrations, the assimilation efficiency decreased, reaching 56 to 38% at the highest concentrations. Received: 2 February 2000 / Accepted: 25 March 2000  相似文献   

16.
A total of 12 feeding experiments were conducted in the northern Gulf of Aqaba during spring (March/April) and autumn (September/October) 2002 at the Marine Science Station (MSS) in Aqaba. Females of three species of clausocalanids were selected: Clausocalanus farrani, C. furcatus and Ctenocalanus vanus. Natural occurring particle (NOP) larger than 5 μm were investigated as food source. The ambient chlorophyll a concentration at sampling depth (∼70 m) ranged between 0.15 and 1.00 μg chl a l−1 and NOP concentrations ranged between 1.78 and 14.0 × 103 cells l−1 during the sampling periods. The division of particles into five size classes (5–10, 10–20, 20–50, 50–100 and >100 μm) revealed that most of the particles were found in the size classes below 50 μm (81–98%), while most of the natural occurring carbon (NOC) was concentrated in the size classes larger than 20 μm (70–95%). Ingestion rates were food density dependent rather than size dependent ranging between 0.02 and 1.65 × 103 NOP ind−1 day−1 and 0.01 and 0.41 μg NOC ind−1 day−1, respectively, equivalent to a body carbon (BC) uptake between 0.4 and 51.8% BC day−1. The share of the size classes to the total ingestion resembled in most cases the size class composition of the natural particle community.  相似文献   

17.
The sea urchin Lytechinus variegatus is capable of surviving chronic exposure to sodium phosphate (inorganic phosphate) concentrations as high as 3.2 mg l−1, and triethyl phosphate (organic phosphate) concentrations of 1,000 mg l−1. However, chronic exposure to low (0.8 mg l−1 inorganic and 10 mg l−1 organic phosphate), medium (1.6 mg l−1 inorganic and 100 mg l−1 organic phosphate) or high (3.2 mg l−1 inorganic and 1,000 mg l−1 organic phosphate) sublethal concentrations of these phosphates inhibits feeding, fecal production, nutrient absorption and allocation, growth and righting behavior. Food consumption and fecal production declined significantly in individuals exposed to medium and high concentrations of inorganic phosphates and all levels of organic phosphates. Feeding absorption efficiencies for total organics and carbohydrates decreased significantly in individuals held in the highest concentration of organic phosphate. Feeding absorption efficiencies for lipids were significantly reduced in the highest inorganic phosphate concentration only, while they decreased significantly for protein with increasing phosphate exposure. Carbohydrate and lipid levels in gonad and gut tissues decreased significantly with exposure to increasing phosphate concentrations, potentially impairing both gametogenesis and nutrient storage in the gut. Moreover, gonad indices significantly decreased in individuals exposed to the highest concentrations of either phosphate. Growth rates decreased significantly under the influence of all phosphate concentrations, while increasing in seawater alone. Individuals exposed to increasing phosphate concentrations showed reduced righting responses (a measure of stress) and no acclimation in righting times during chronic exposure to phosphates over a 4 week period. These findings indicate that shallow-water populations of L. variegatus subjected to inorganic and organic phosphate pollutants will exhibit stress and be inhibited in their growth and performance due to reductions in feeding, nutrient absorption and allocation of nutrients to key somatic and reproductive tissues. Received: 10 April 2000 / Accepted: 2 October 2000  相似文献   

18.
Great scallop, Pecten maximus, and blue mussel, Mytilus edulis, clearance rate (CR) responses to low natural seston concentrations were investigated in the laboratory to study (1) short-term CR variations in individual bivalves exposed to a single low seston diet, and (2) seasonal variations in average CR responses of bivalve cohorts to natural environmental variations. On a short temporal scale, mean CR response of both species to 0.06 μg L−1 chlorophyll a (Chl a) and 0.23 mg L−1 suspended particulate matter (SPM) remained constant despite large intra-individual fluctuations in CR. In the seasonal study, cohorts of each species were exposed to four seston treatments consisting of ambient and diluted natural seston that ranged in mean concentration from 0.15 to 0.43 mg L−1 SPM, 0.01 to 0.88 μg L−1 Chl a, 36 to 131 μg L−1 particulate organic carbon and 0.019 to 0.330 mm3 L−1 particle volume. Although food abundance in all treatments was low, the nutritional quality of the seston was relatively high (e.g., mean particulate organic content ranged from 68 to 75%). Under these low seston conditions, a high percentage of P. maximus (81–98%) and M. edulis (67–97%) actively cleared particles at mean rates between 9 and 12 and between 4 and 6 L g−1 h−1, respectively. For both species, minimum mean CR values were obtained for animals exposed to the lowest seston concentrations. Within treatments, P. maximus showed a greater degree of seasonality in CR than M. edulis, which fed at a relatively constant rate despite seasonal changes in food and temperature. P. maximus showed a non-linear CR response to increasing Chl a levels, with rates increasing to a maximum at approximately 0.4 μg L−1 Chl a and then decreasing as food quantity continued to increase. Mean CR of M. edulis also peaked at a similar concentration, but remained high and stable as the food supply continued to increase and as temperatures varied between 4.6 and 19.6°C. The results show that P. maximus and M. edulis from a low seston environment, do not stop suspension-feeding at very low seston quantities; a result that contradicts previous conclusions on the suspension-feeding behavior of bivalve mollusks and which is pertinent to interpreting the biogeographic distribution of bivalve mollusks and site suitability for aquaculture.  相似文献   

19.
Suspension-feeding bivalves increase the quantity and quality of sedimenting organic matter through the production of faeces and pseudofaeces that are remineralised in coastal sediments and thus increase sediment oxygen demand and nutrient regeneration. Bivalves are intensively cultivated worldwide; however, no bivalve biodeposit decay rates are available to parameterise models describing the environmental effects of bivalve culture. We examined sediment biogeochemical changes as bivalve biodeposits age by incubating coastal sediments to which we added fresh mussel (Perna canaliculus) biodeposits and measured O2 and nutrient fluxes as well as sediment characteristics over an 11-day period. Biodeposits elevated organic matter, chlorophyll a, phaeophytin a, organic carbon and nitrogen concentrations in the surface sediments. Sediment oxygen consumption (SOC) increased significantly (P=0.016) by ∼1.5 times to 1,010 μmol m−2 h−1 immediately after biodeposit addition and remained elevated compared to control cores without additions for the incubation period. This increase is in the range of observed in situ oxygen demand enhancements under mussel farms. To calculate a decay rate for biodeposits in sediments we fitted a first-order G model to the observed increase in SOC. The significant model fit (P=0.001, r 2=0.72) generated a decay rate of 0.16 day−1 (P=0.033, SE=0.05) that corresponds to a half-life time of 4.3 day. This decay rate is 1–2 orders of magnitude higher than published decay rates of coastal sediments without organic enrichment but similar to rates of decaying zooplankton faecal pellets. NH4+ release increased rapidly on the day of biodeposit addition (P=0.013) and reached a maximum of 144 μmol m−2 h−1 after 5 days which was 3.6 times higher compared to control cores. During this period NH4+ release was significantly (P<0.001 to P=0.043) higher in the cores with biodeposit additions than in control cores.  相似文献   

20.
Phytoplankton growth and microzooplankton grazing were investigated in the restricted Bizerte Lagoon in 2002 and 2004. The 2002 study, carried out at one station from January to October, showed significant seasonal variations in phytoplankton dynamics. High growth rates (0.9–1.04 day−1), chlorophyll a (Chl a) concentrations (6.6–6.8 μg l−1) and carbon biomass (392–398 μg C l−1) were recorded in summer (July), when several chain-forming diatoms had intensively proliferated and dominated the carbon biomass (74%). In 2004, four stations were studied during July, a period also characterized by the high proliferation of several diatoms that made up 70% of the algal carbon biomass. In 2004, growth rates (0.34–0.45 day−1) and biomass of algae (2.9–5.4 μg Chl a l−1 and 209–260 μg C l−1) were low, which may be related to the lower nutrient concentrations recorded in 2004. Microzooplankton >5 μm were mainly composed of heterotrophic dinoflagellates and ciliates. Microzooplankton biomass peaked during summer (2002 320–329, 2004 246–361 μg C l−1), in response to the enhanced phytoplankton biomass and production. The grazer biomass was dominated by ciliates (71–76%) in July 2002 and by heterotrophic dinoflagellates (52–67%) in July 2004. Throughout the year and at different stations, microzooplankton grazed actively on phytoplankton, removing 26–58% of the Chl a and 57-84% of the primary production. In 2002, the highest grazing impact was observed on the large algae (>10 μm) during the period of diatom dominance. These results have a significant implication for carbon export to depth. Indeed, the recycling of most of the diatom production by the microbial food web in the upper water column would reduce the flux of material to the seafloor. This should be considered when modeling the carbon cycling in coastal environments and under conditions of diatom dominance. During both studies, ciliates had higher growth rates (0.5–1.5 day−1) and a higher carbon demand (165–470 μg C l−1 day−1) than dinoflagellates (0.1–0.5 day−1, 33–290 μg C l−1 day−1). Moreover, when grazer biomass was dominated by ciliates (in July 2002), herbivory accounted for 71–80% of the C ingested by microzooplankton while it accounted only for 14–23% when dinoflagellates dominated the grazer biomass (in July 2004). These results suggest that, in contrast to findings from open coastal waters, ciliate species of the restricted Bizerte Lagoon were more vigorous grazers of the large algae (diatoms) than were dinoflagellates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号