首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Batch sorption isotherms of 1,3,5-trichlorobenzene, 1,3,5-trinitrobenzene, and tetracycline to organic-free montmorillonites and soils receiving heat treatment (375°C for 24 h) were compared with those to unheated sorbents. Sorption of the nonpolar 1,3,5-trichlorobenzene to soil was lowered after the removal of humus by heating, consistent with the mechanism of hydrophobic partition into organic matter. For 1,3,5-trinitrobenzene, the enhanced sorption to heated soils was attributed to specific interactions with exchangeable cations facilitated by heating-induced irreversible partial dehydration of the clay interlayer. For tetracycline, an additional mechanism for sorption enhancement could be due to increased exposure of strong complexation sites on clay minerals after removal of the humic coating. These hypotheses were supported by the sorption data to heated and unheated Na-, K-, and Cs-saturated montmorillonites. The combustion method is commonly adopted to measure the content of black carbon in soils and sediments. However, findings from the present study indicate that combustion may greatly modify the structural properties of clay minerals, leading to misinterpreted sorption contributions of different soil components to sorption of polar or ionic compounds.  相似文献   

2.
Clay minerals modified with organic ions, also known as organoclays, have found applications in a wide range of organic pollution control fields because of their excellent sorption capacity towards organic pollutants. Regeneration of the spent organoclays after the sorption of organic pollutants is of great importance during their application in pollution control. In this review, the reported methods for the regeneration of the spent organoclays are summarized, including biological degradation, photo-assisted oxidation, chemical extraction/desorption, supercritical extraction, thermal desorption, et al. The characteristics and applications of these methods are briefly described. It shows that most of these methods have been developed for regenerating spent organoclays from wastewater treatment. The biological regeneration method, as an in situ, low cost and easy-operating method, is applicable for regenerating spent organoclays not only from wastewater treatment, but also from soil and groundwater remediation.  相似文献   

3.
Clay minerals and zeolites have large cation exchange capacities, which enable them to be modified by cationic surfactant to enhance their sorption of organic and anionic contaminants. In this study, the influence of quaternary ammonium surfactants on sorption of five metal cations (Cs+, Sr+, La3+, Pb2+, and Zn2+) onto a clinoptilolite zeolite was investigated. Generally, the metal cation sorption capacity and affinity for the zeolite decreased, indicating that presorbed cationic surfactants blocked sorption sites for metal cations, as the surfactant loading on the zeolite increased. Cesium and Pb2+ sorption was affected to a small extent, indicating that selective sorption for Cs+ and specific sorption for Pb2+ play an important role in addition to cation exchange. Sorption of cationic surfactants on zeolite preloaded with different metal cations showed a strong correlation with the chain length of the surfactant tail group, while the roles of the charges and types of the metal cations were minimal. As the chain length increases, the critical micelle concentration decreases and the surfactant molecules become more hydrophobic, resulting in progressive bilayer coverage. Desorption of presorbed metal cations by cationic surfactants was strongly affected by the surfactant chain length and metal type. More metal cations, particularly Sr2+ and Zn2+, desorbed with an increase in surfactant chain length. The results, in combination with those from organic and oxyanion sorption on surfactant-modified zeolite, may be used for future surfactant modification to target sorption and desorption of a specific type of contaminant or a mixture of different types of contaminants.  相似文献   

4.
Organoclays are excellent sorbents for nonionic contaminants and therefore may have many environmental applications. A major limitation on the use of organoclays is that the contaminant merely changes its location from one environmental compartment to another while still remaining intact. In this study, a new type of organoclay, termed a bifunctional organoclay, has been prepared. It is able not only to sorb organophosphate pesticides, but also to catalyze their hydrolysis, and thereby detoxify them. The bifunctional organoclay prepared in this study is based on sodium montmorillonite, in which the inorganic counter ions are replaced by N-decyl-N,N-dimethyl-N-(2-aminoethyl) ammonium (DDMAEA). The detoxifying capacity of this organoclay for two organophosphate pesticides, methyl parathion [O,O-dimethyl O-(p-nitrophenyl) thionophosphate] and tetrachlorvinphos [2-chloro-1-(2,4,5-trichlorophenyl)ethenyl dimethyl phosphate], was demonstrated. It was shown that although the sorption of these pesticides on the bifunctional organoclay is very similar to that on N-decyl-N,N,N-trimethyl ammonium (DTMA) organoclay (the corresponding nonbifunctional organoclay), the hydrolysis of these pesticides is substantially enhanced only by the bifunctional organoclay. The half-life for the hydrolysis of the investigated pesticides in the presence of the bifunctional organoclay is about 12 times less than for their spontaneous hydrolysis, and the enhancement is even more pronounced relative to the hydrolysis of these pesticides in the presence of the DTMA organoclay (which actually inhibits their hydrolysis). Based on kinetic measurements, the pK(a) of the ethylamino group of the bifunctional organoclay was estimated to be around 9.0. It is postulated that the catalytic effect of the bifunctional organoclay can be attributed to a nucleophilic attack of the unprotonated ethylamino group of the organoclay on the organophosphate ester.  相似文献   

5.
Clay minerals and humic substance (HS)-clay complexes are widely distributed in soil environments. Improved predictions on the uptake of organic pollutants by soil require a better understanding of fundamental mechanisms that control the relative contribution from organic and inorganic constituents. Five selected aromatic compounds varying in electronic structure, including nonpolar phenanthrene (PHEN), 1,2,4,5-tetrachlorobenzene (TeCB), polar 1,3-dinitrobenzene (DNB), 2,6-dichlorobenzonitrile (dichlobenil [DNL]), and 1-naphthalenyl methylcarbamate (carbaryl [CBL]), were sorbed separately from aqueous solution to Na(+)-, K(+)-, Cs(+)-, and Ca(2+)-saturated montmorillonites with and without the presence of dissolved HS at pH about 6. Upon normalizing for hydrophobic effects by solute aqueous solubility, the overall trend of sorptive affinity to HS-free K(+)-clay is DNB > DNL, CBL > PHEN, TeCB, indicating preferential adsorption of the polar solutes. With the presence of HS, sorption of PHEN, TeCB, and CBL increases by several times compared with the pure clay, attributed to HS-facilitated hydrophobic partition (PHEN and TeCB) or H-bonding (CBL). The enhanced sorption of PHEN by HS is cation dependent, where Cs(+) shows the strongest facilitative effect. Coadsorption of HS does not affect sorption of DNB and DNL to clays except that of DNB to Ca(2+)-clay because cation-dipole interactions between the polar group (NO(2) or CN) of solute and weakly hydrated exchangeable cations dominate the overall sorption.  相似文献   

6.
Polymer application to soil is a growing practice to improve soil physical properties and reduce soil erosion. Polymer addition can potentially influence herbicide and pesticide sorption in soil. The one-point distribution coefficient Kd values of two herbicides in the absence and presence of each of 10 polymers (7 polyacrylamides and 3 polysaccharides) were determined by the batch equilibrium method. The results showed that nonionic napropamide [2-(alpha-naphthoxy)-N,N-diethyl propionamide] sorption was essentially unaffected by the presence of any of the polymers. The influence of polymers on anionic picloram (4-amino-3,5,6-trichloropicolinic acid) sorption depends on the charge characteristics of polymers and salt concentrations in the solution. Electrostatic interaction and competition for sorption sites are two primary underlying mechanisms for the polymer influence. At low salt concentration, the increased picloram sorption in the presence of both cationic and anionic polymers was attributed to different electrostatic interactions and polymer partitioning between soil and solution phases. At high salt levels, the presence of polymers had either no influence or a slightly negative influence on the picloram sorption, which was attributed to competition for sorption sites. In field conditions, it is more likely that polymers have no or a slightly negative influence on herbicide sorption due to the presence of salts.  相似文献   

7.
Recent molecular modeling and spectroscopic studies have suggested that relatively strong interactions can occur between aromatic pi donors and metal cations in aqueous solutions. The objective of this study was to characterize potential cation-pi interactions between pi donors and exchangeable cations accumulated at mineral surfaces via both spectroscopic and batch sorption methods. Quadrupolar splitting in deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy for d(2)-dichloromethane, d(6)-benzene, and d(8)-toluene (C(6)D(5)- moiety) in aqueous suspensions of a Na-saturated reference montmorillonite unambiguously indicated the ordering of solute molecules with respect to the clay surface. The half line broadening (Delta nu(1/2)) of (2)H NMR of d(6)-benzene in montmorillonite suspensions showed that soft exchangeable cations generally resulted in more benzene sorption compared with harder cations (e.g., Ag(+) > Cs(+) > Na(+) > Mg(2+), Ba(2+)). In batch sorption experiments, saturating minerals (e.g., porous silica gels, kaolinite, vermiculite, montmorillonite) with a soft transition metal or softer base cations generally increased the polycyclic aromatic hydrocarbon (PAH) sorption relative to harder cations (e.g., Ag(+) > Cs(+) > K(+) > Na(+); Ba(2+) > Mg(2+)). Sorption of phenanthrene to Ag(+)-saturated montmorillonite was much stronger compared with 1,2,4,5-tetrachlorobenzene, a coplanar non-pi donor having slightly higher hydrophobicity. In addition, a strong positive correlation was found between the cation-dependent sorption and surface charge density of the minerals (e.g., vermiculite, montmorillonite > silica gels, kaolinite). These results, coupled with the observations in (2)H NMR experiments with montmorillonite, strongly suggest that cation-pi bonding forms between PAHs and exchangeable cations at mineral surfaces and affects PAH sorption to hydrated mineral surfaces.  相似文献   

8.
Batch sorption and column breakthrough studies were conducted to investigate the potential of layered double hydroxides (LDHs) to remove bacteriophage MS2 from contaminated waters. All four of the LDHs evaluated in this study had very high retention capacities for MS2. Sorption results showed that MS2 could be completely removed from 5.2 x 10(2) plaque-forming units (pfu)/mL solution by Mg-Al LDH 2 (i.e., 2:1 Mg to Al ratio LDH), with the highest sorption capacity observed in this study of 1.51 x 10(10) pfu/g. Attachment of MS2 to LDHs was a rapid process and reached quasi-equilibrium after a 1-h reaction time. Within the pH range studied (pH 4-9), Mg-Al LDH 2 showed high sorption potential for MS2 at all pH values but sorption decreased slightly with increasing solution pH. Background solution anions influenced virus sorption, with SO4(2-) and HPO4(2-) decreasing sorption significantly whereas the presence of NO3- had little effect on the attachment of MS2 to Mg-Al LDH 2. The addition of another virus (phiX174) only caused a slight decrease in the retention of MS2 by Mg-Al LDH 2, suggesting that there was insignificant competitive sorption between MS2 and phiX174 on LDH surfaces. Results from column experiments indicate that there was no MS2 breakthrough from columns packed with Mg-Al LDH 2-coated sand, suggesting complete MS2 retention at the virus concentration tested. The high mass recovery by beef extract solution revealed that the removal of viruses by the LDH was due to sorption of MS2 to LDH surfaces, rather than inactivation.  相似文献   

9.
Organic materials are widespread in natural soil and aquatic environments. Their effect on virus transport is very important in assessing the risk for contamination of ground water by viruses. This study aimed to determine how different forms (mineral-associated and dissolved) of natural organic matter influence the retention and transport of two bacteriophages (MS-2 and phiX174) in two porous media (a sand and a soil). We found that mineral-associated organic matter significantly promoted the transport of one virus (MS-2) but not the other (phiX174) in a phosphate-buffered saline solution. Similarly, MS-2 was retained less in sand columns with increasing concentrations of dissolved humic acid, while little effect was observed for phiX174 under the same conditions. The two viruses have different surface properties and thus exhibited different reactivity to the metal oxides present on sand particles and were affected differently by organic matter. Because the organic matter used in the study was negatively charged and hydrophilic, blocking of virus sorption sites and increasing of virus-medium electrostatic repulsion arising from modification of the sand and virus surface by organic matter are probably responsible for the facilitated transport. For dissolved humic acid, its competition for sorption sites with viruses was an additional mechanism involved. This study suggests that the effect of organic matter varied depending on the organic material properties and the type of viruses involved. As a general trend, the effect of organic matter was dominated by electrostatic rather than hydrophobic interactions.  相似文献   

10.
Sorption of organic pollutants by subsurface materials has been found to not only correlate with the total organic carbon (TOC) content, but also depend on the types of soil and sediment organic matter (SOM). Characterization of geochemically heterogeneous SOM is key to elucidating sorption mechanisms and predicting pollutant transport in ground water systems. In this study, kerogen, a nonextractable organic material, was isolated with an acid demineralization procedure from a sandy aquifer material (Borden, Ontario, Canada) having a TOC content of approximately 0.021% (w/w). Petrographical examinations reveal that the kerogen has three major types of macerals including bituminite (Kerogen Type I and II), vitrinite (Type III), and fusinite (Type IV or charred kerogen). The solid-state 13C nuclear magnetic resonance (NMR) spectrum shows two dominant peaks, aliphatic and aromatic carbons, for the isolated material. Sorption isotherms measured using phenanthrene, naphthalene, 1,3,5-trichlorobenzene (TCB), and 1,2-dichlorobenzene (DCB) as sorbates showed that both the isolated kerogen and the original sand exhibited nonlinear sorption and that the phenanthrene and TCB isotherms measured for the kerogen material are more nonlinear than the respective isotherms for the original sand. The single-point organic carbon--normalized sorption capacity measured for the isolated kerogen can be several times greater than that measured for the original sand for a given sorbate. The study suggests that kerogen plays a major role in overall sorption isotherm nonlinearity and could yield higher-than-predicted sorption capacities for the subsurface material even though the content of this organic material is very low.  相似文献   

11.
The accumulation of P in agricultural soils due to fertilization has increased the risk of P losses from agricultural fields to surface waters. In risk assessment systems for P losses, both P release from soil to solution and transport mechanisms need to be considered. In this study, the overall objective was to identify soil variables for prediction of potential P release from soil to solution. Soils from nine sites of the Swedish long-term fertility experiment were used, each with four soil P levels. Phosphorus extractable with CaCl2 was used as an estimate of potential P release from soil to solution. Ammonium lactate-extractable phosphorus (P-AL) or NaHCO3-extractable phosphorus (Olsen P) could not be used alone for prediction of potential P release since soils with high phosphorus sorption capacity (PSC) released less P than soils with low PSC at the same soil test phosphorus (STP) level. Degree of phosphorus saturation (DPS) was calculated as Olsen P or P-AL as a percentage of PSC derived from P sorption isotherms or from Fe and Al extractable in ammonium oxalate. The CaCl2-extractable total phosphorus (CaCl2-TP) was exponentially related to these DPS values (r2 > or = 0.79). The CaCl2-TP was also linearly related to ratios between Olsen P or P-AL and a single-point phosphorus sorption index (PSI; r2 > or = 0.86). These ratios, which are easily determined and gave good correlations with CaCl2-TP, seemed to be the most useful estimates of potential P release for risk assessment systems.  相似文献   

12.
The role of structural fractions of dissolved organic matter (DOM) from wastewater in the sorption process of hydrophobic organic compounds is still not clear. In this study, DOM from two wastewater treatment plants (Lachish and Netanya, Israel) was fractionated to hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The fractions were characterized and their sorptive capabilities for s-triazine herbicides and polycyclic aromatic hydrocarbons (PAHs) were studied. For all sorbates, the binding to the HoN fractions was much higher than to HoA fractions. The HoA fractions were more polar than the HoN fractions, containing a higher level of carboxylic functionalities. However the higher binding coefficients of atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine) and ametryn [2-(ethylamino)-4-isopropylamino-6-methyl-thio-s-triazine] obtained for the HoN fractions suggest that their sorption is governed by hydrophobic-like interactions rather than H bonding. The values of binding coefficients of PAHs measured for the HoN fractions were within the range reported for humic acids and much higher than other fractions, suggesting that this fraction plays an important role in the overall sorption of these compounds by DOM. Higher sorption coefficients were measured for the Netanya DOM sample containing higher level of hydrophobic fractions (HoA + HoN) than the Lachish DOM, suggesting that the sorption of hydrophobic organic compounds by DOM is governed by the level of these structural substances. The evaluation of mobility of organic pollutants by wastewater irrigation requires not only assessment of the total carbon concentration but also, more importantly, the content of the hydrophobic fractions.  相似文献   

13.
A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok.  相似文献   

14.
Erythromycin has been widely used in food-producing animals and in humans, and is frequently detected as an organic pollutant in U.S. streams. In batch experiments with homoionic clays, the Freundlich isotherms were determined at 10 and 25 degrees C. The adsorption of erythromycin A was strongly influenced by clay type, exchanged cations, the pH of the bulk solutions, and the acidity of clay surfaces. The formation of clay-erythromycin A complexes was thermodynamically favorable except for K+- and Fe3+-exchanged montmorillonites, since the reactions were exothermic (deltaH(o) > 0) and the systems became stable (deltaS(o) > 0). Clays catalyzed the erythromycin A degradation by the hydrolysis of the neutral sugar and the multiple dehydrations. The surface acidity of clay surface enhanced the rate of clay-catalyzed degradation of erythromycin A. In addition, the Fe3+-exchanged clay minerals seemed to have an electrostatic interaction with the erythromycin A molecule, by which the hydrolysis of the neutral sugar was influenced.  相似文献   

15.
Phosphorus leaching in relation to soil type and soil phosphorus content   总被引:6,自引:0,他引:6  
Phosphorus losses from arable soils contribute to eutrophication of freshwater systems. In addition to losses through surface runoff, leaching has lately gained increased attention as an important P transport pathway. Increased P levels in arable soils have highlighted the necessity of establishing a relationship between actual P leaching and soil P levels. In this study, we measured leaching of total phosphorus (TP) and dissolved reactive phosphorus (DRP) during three years in undisturbed soil columns of five soils. The soils were collected at sites, established between 1957 and 1966, included in a long-term Swedish fertility experiment with four P fertilization levels at each site. Total P losses varied between 0.03 and 1.09 kg ha(-1) yr(-1), but no general correlation could be found between P concentrations and soil test P (Olsen P and phosphorus content in ammonium lactate extract [P-AL]) or P sorption indices (single-point phosphorus sorption index [PSI] and P sorption saturation) of the topsoil. Instead, water transport mechanism through the soil and subsoil properties seemed to be more important for P leaching than soil test P value in the topsoil. In one soil, where preferential flow was the dominant water transport pathway, water and P bypassed the high sorption capacity of the subsoil, resulting in high losses. On the other hand, P leaching from some soils was low in spite of high P applications due to high P sorption capacity in the subsoil. Therefore, site-specific factors may serve as indicators for P leaching losses, but a single, general indicator for all soil types was not found in this study.  相似文献   

16.
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils.  相似文献   

17.
Although most of the organic carbon in soils and sediments may be composed of humic substances, their interaction with other compounds, especially their sorption interactions, may be significantly affected by the presence of small amounts of the other components of natural organic matter (NOM). In this investigation, the influence of the lipid fraction of NOM on the sorption thermodynamics of fluorene, phenanthrene, and pyrene to several geosorbent samples was examined before and after extraction of lipids. Batch experiments were performed at the same concentration for all polycyclic aromatic hydrocarbons (PAHs) (0.025 x their solubility in water) at different temperatures (10, 20, 30, and 40 degrees C), and the thermodynamic parameters were calculated. Removal of the lipids increases the sorption capacity of the samples as well as the exothermicity of the process. The free energy change was negative for all the samples and no significant differences were noticed on lipid removal. The entropy changes were small and positive for the whole geosorbent samples, but even smaller or more negative when the lipids were removed. This indicates that the interaction of PAHs with soils and sediments in the absence of extractable lipids is stronger and the mechanisms involved may be different, changing from a partitioning-like mechanism to specific adsorption. Because of the competition between lipids and PAHs for the same sorption sites, the lipids can be viewed as an "implicit sorbate."  相似文献   

18.
Cadmium solubility and sorption in an arable clay loam soil that had received sewage sludge for 41 years were compared to an unsludged control in batch studies. Soil pH dominated Cd sorption, explaining >92% of the variation in Kd values in both treatments. At any pH, Cd sorption was apparently slightly but significantly (p < 0.05) smaller in the sludge-amended soil compared to the control, even though the organic carbon content was 70% larger and the ammonium oxalate-extractable iron content was roughly doubled. Correction for dissolved organic carbon (DOC) complexation with the speciation model WHAM reduced the difference in sorption between treatments, but the sludged soil still had significantly smaller Kd values (p < 0.01). Batch equilibrations without addition of Cd showed that there was no significant difference in the solubility of "native" cadmium (defined as EDTA-extractable Cd) in sludged and control soils. The reason for the lack of increase in Cd sorption in the sludge-amended soil has not been established, but it may be due to competition for sorption sites on humic compounds with sludge-derived Fe and trace metals such as zinc. The fact that the pyrophosphate-extractable (i.e., organically associated) iron content was seven times larger in the sludged soil provides some supporting evidence for this hypothesis.  相似文献   

19.
Soil solution chemistry influences the sorption and transport behavior of hydrophobic organic compounds (HOCs) in soil. We used both batch and column studies to investigate the influence of ionic strengths (0.03 and 1.5 M) and flow velocities (12 and 24 cm h-1) on sorption and transport of naphthalene (NAP) in aggregated soil. Sorption parameters such as the Freundlich coefficient (Kf) and exponent (n) calculated from batch studies and column experiments were also compared. Retardation of NAP transport was greater at higher solution ionic strength, which may be attributed to greater sorption affinity due to enhanced aggregation of the sorbent. The effect of ionic strength on sorption of NAP observed in the batch study was consistent with the results from the column study. The Kf and n values obtained from the batch study for the two ionic strengths ranged from 7.8 to 13.7 and 0.68 to 0.80, respectively, whereas the Kf and n values obtained from the column study ranged from 7.9 to 9.9 and 0.73 to 0.85, respectively. The effluent breakthrough curve (BTC) of NAP at a flow rate of 24 cm h-1 showed significant chemical and physical nonequilibrium behavior, implying that a considerable amount of sorption in aggregated soil was time dependent when flow was relatively fast. The BTCs calculated with the parameters determined from batch studies compared poorly with the measured BTCs. The potential for nonequilibrium transport should be incorporated in models used for predicting the fate and transport of HOCs. Furthermore, caution is required when extrapolating the results from batch studies, especially for aggregated soils.  相似文献   

20.
Nonlinear isotherm behavior has been reported for the sorption of hydrophobic organic compounds (HOCs) in soil organic matter (SOM), but the exact mechanisms are unknown. Our objective was to provide insight into the sorption mechanism of HOCs in SOM by studying the sorption-desorption processes of naphthalene in a mineral soil, its humic fractions, and lignin. Additionally, humin and lignin were used for studying the effects of temperature and cosolvent on HOC sorption. All isotherms were nonlinear. The humin and lignin isotherms became more linear at elevated temperatures and with the addition of methanol indicating a condensed to expanded structural phase transition. Isotherm nonlinearity and hysteresis increased in the following order: soil humic acid (HA) < soil < soil humin. Of the samples, aliphatic-rich humin exhibited the largest degree of nonlinearity and had the highest sorption capacity for naphthalene. High nonlinearity and hysteresis in humin were most likely caused by its condensed structure. A novel aliphatic, amorphous condensed conformation is proposed. This conformation can account for both high sorption capacities and increased nonlinearity observed for aliphatic-rich samples and can explain many sorption disparities discussed in the literature. This study clearly illustrates the importance of both aliphatic and aromatic moieties for HOC sorption in SOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号