首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the results of heavy metals determination in samples of sedimentary rocks from the Mosina-Krajkowo water well field (Poland). The concentration of heavy metals was analysed by type of rock (sand, gravel, warp, silt, till, and clay). Variation of heavy metal concentrations with depth was studied taking into account the age series of the rocks (fluvial sediments of the modern Warta River valley, sediments of the Baltic Glaciation, tills of the Middle-Polish Glaciation, sediments of the Masovian Interglacial (Holstein), tills of the Poznań series) and granulometric fractions. The grain sizes considered included: >2.0, 2.0-1.0, 1.0-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.063, and <0.063 mm. The concentrations of the heavy metals studied were found to change with the type of rock, age series, and granulometric fraction. The levels of the metals were determined by the technique of atomic absorption spectrometry with flame atomisation (F-AAS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES).  相似文献   

2.
A study was carried out at Kalpakkam coast to find out the distribution of various fractions of phosphorus (P) in the marine sediment during pre-northeast monsoon period. Samples were collected from ten locations covering ~80 km2 of the inner-shelf region. Sedimentary parameters such as sand, silt, clay, and organic carbon percentage were analyzed in order to find out their relation with various P fractions. The sediment was found to be predominantly sandy in nature with low silt and clay content. Among all the fractions (loosely bound (LoP), calcium bound (CaP), iron bound (FeP), aluminum bound (AlP), and organic (OP)), CaP fraction constituted the largest portion (68.7 %) followed by organic fraction (16.3 %). The bioavailable P fractions ranged from 5 to 44 % of the total P (TP) content. Relatively high LoP content was observed at the offshore locations with comparatively high mud percentage as compared with the near-shore locations. As FeP and AlP concentrations were directly proportional to the amount of fine-grain sediment, the low levels of these fractions found in this coastal area were therefore attributed to the sandy nature of the sediments. The order of abundance of the major forms of P in the surface sediments of Kalpakkam coast was as follows: CaP?>?OP?>?LoP?>?AlP?>?FeP.  相似文献   

3.
Thirty-five surface sediment samples from the Indian continental shelf were recovered offshore from the mouths of the major rivers (Brahmaputra, Ganges, Narmada, Tapti, Godavari, Krishna and Cauvery) discharging into the coastal region of both east and west coasts were analysed using inductively coupled plasma atomic emission spectroscopy for selected major (i.e. Al, Ca, Fe, K, Ti, Mg and Na) and trace elements (e.g. Ba, Co, Cr, Cu, Ga, Ni, P and V), after total dissolution. The main objectives are to understand the processes controlling major and trace elements in the surface sediments and to identify natural and anthropogenic sources in the coastal environment using statistically regressed elemental concentrations to establish regional baseline levels. Metal enrichments observed close to the major urban areas in the east and west coasts are associated with the industrialised activities areas rich in Cu and Co in both the east and west coast sediments. Normalisation of metals to Al indicated that high enrichment factors are in the order of Ca>Ti≥Fe>Na>Mg>Co>Cu>Ga>V>Ba except K and P depletion. This indicated that the characteristic of estuarine sediment showed higher level along the west coast of India, which was reflected in the coastal sediments as similar to the source of its origin from the riverine composition and its abundances.  相似文献   

4.
Sediments constitute a pollutant trap and have proven to be an efficient tool to identify environmental impacts. Sediments are considered a very important means to assess the level of contamination of water bodies because of their ability to accumulate metals and organic. The anthropogenic inputs of sewage, with or without prior treatment, in aquatic environments, affect the geochemical composition of sediment. In addition, the sediment adsorbs hydrophobic compounds found in feces, such as the fecal sterols. The granulometric and geochemical composition of the sediment of Barigüi River-Brazil was investigated. The results show that silt and clay dominate the granulometric composition of the sediments. The geochemical composition of sediments showed high concentrations of phosphorus and nitrogen. The Redfield ratios confirm the inputs of phosphorus and nitrogen. The TOC/N ratio was used to identify the source of pollution. N/TP ratios were found between 1.0 and 3.5. Clearly, an input of phosphorus, sewage is the most acceptable source, following the historic profile of the Barigüi River. High concentration of nitrogen phosphorus labels the area to be polluted by sewage. To confirm the sewage pollution, adsorbed fecal sterols in sediments were investigated. The concentration of total sterols was found between 0.86 and 304.58 μg g???1. Two distinguished scenario was found, one severely polluted and another slightly polluted. The highest concentrations of total fecal sterols were associated with sediment whose geochemical composition showed higher levels of TOC, as well as higher proportions of silt and clay. Also, epicoprostanol, a coprostanol isomer, was used as an indicator of the level of treatment or age of the fecal matter because it is formed during the treatment of wastewater and sludge digestion. If the treatment of sludge takes a long time, epicoprostanol can form from cholesterol, and relative proportions of those compounds may be used as an indicator of the presence of untreated sewage in the sediments. The epicoprostanol was found in the range between 0.02 and 9.71 μg g???1; concentration of up to 0.015 μg g???1 represents situations where there is strong contamination by sewage. All sites investigated showed a concentration of epicoprostanol higher than the value adopted as threshold. The lower concentration of epicoprostanol found for all sites is consistent with the high concentration found for coprostanol, and this is typical for untreated sewage.  相似文献   

5.
Marine ecosystems worldwide are threatened by aquatic pollution; however, there is a paucity in data from the Caribbean region. As such, five heavy metals (arsenic, cadmium, copper, zinc, mercury) were measured in tissues of the scleractinian corals Porites furcata and Agaricia tenuifolia and in adjacent sediments in the Bocas del Toro Archipelago, Panama. Samples were collected from five reef sites along a gradient of distance from an international shipping port and were analysed using inductively coupled plasma optical emission spectrometry and atomic absorption spectrophotometry for mercury. Copper and zinc were the most abundant metals and ranged from 11 to 63 mg kg?1 and from 31 to 185 mg kg?1 in coral tissues, respectively. The highest concentration of each metal was measured in P. furcata tissues, with copper and mercury concentrations significantly higher in P. furcata than in A. tenuifolia at every site. These results suggest that P. furcata has a higher affinity for metal accumulation and storage than A. tenuifolia. With the exception of cadmium, metal concentrations in coral tissues were generally elevated at coral reefs in closer proximity to the port; however, this pattern was not observed in sediments. Hard coral cover was lowest at reefs in closest proximity to the port, suggesting that metal pollution from port-related activities is influencing hard coral abundance at nearby coral reefs.  相似文献   

6.
Sixty-seven surface marine sediment samples in the <63 ?? m fraction collected from the coast of Sfax (Tunisia) were analyzed by inductively coupled plasma-atomic emission spectrometry for seven heavy metals (Pb, Ni, Cu, Cr, Zn, Cd, and Fe). Metal concentrations were compared with natural values, marine sediment quality standards, and also with other results concerning sediments from several Mediterranean coasts. The study of their spatial distributions refined by complementary approaches including principal component analysis, enrichment factors, and geoaccumulation index showed a significant impact of multiple anthropogenic sources. These included industrial sources and municipal discharges of the urban Sfax and also non-controlled discharges in rural zones close to the coastline. Moderate pollution of sediments, especially by Pb, Zn, and Ni, was shown to exist in localized sites. Besides, it was shown that other sites, slightly to highly enriched in terms of Cu, Cr, and Cd, are characterized by a quality of sediments varying from unpolluted to moderately polluted.  相似文献   

7.
Metal Pollution Assessment of Sediment and Water in the River Hindon, India   总被引:7,自引:0,他引:7  
The metal pollution in water and sediment of the River Hindon in western Uttar Pradesh (India) was assessed for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. The metal concentrations in water showed wide temporal variation compared with bed sediment because of variability in water discharge and variations in suspended solid loadings. Metal concentrations in bed sediments provided a better evaluation of the degree and the extent of contamination in the aquatic environment, Santagarh and Atali being the most polluted sites of the river. The ratio of heavy metals to conservative elements (Fe, Al, etc.) may reveal the geochemical imbalances due to the elevated metal concentrations normally attributed to anthropogenic sources. Metal/Al ratios for the bed sediments of the river Hindon were used to determine the relative mobility and general trend of relative mobility occurred Fe > Mn > Zn > Cr > Ni > Pb > Cu > Cd.  相似文献   

8.
The Sava River is the biggest tributary to the Danube River. As a part of the 6th FW EU project, Sava River Basin: Sustainable Use, Management and Protection of Resources (SARIB), ecological status of sediments was investigated. In order to assess the geographical distribution in sediment contamination of the Sava River, inorganic and persistent organic pollutants were analyzed in sediments at 20 selected sampling sites along the Sava River from its spring to its outfall into the Danube River. For comparability of data to other river basins the sediment fraction below 63 μm was studied. Due to complexity of the work performed, the results are published separately (“Part I: Selected elements” and “Part II: Persistent organic pollutants”). In the present study, the extent of pollution was estimated by determination of the total element concentrations and by the identification of the most hazardous highly mobile element fractions and anthropogenic inputs of elements to sediments. To assess the mobile metal fraction extraction in 0.11 mol L???1, acetic acid was performed (first step of the Community Bureau of Reference extraction procedure), while anthropogenic inputs of elements were estimated on the basis of normalization to aluminum (Al) concentration. According to the Water Framework Directive, the following elements were investigated in sediments: cadmium (Cd), lead (Pb), nickel (Ni), and mercury (Hg). Furthermore, copper (Cu), zinc (Zn), chromium (Cr), arsenic (As), and phosphorous (P) were determined. The analyses of sediments demonstrated slightly elevated values for Hg, Cr, and Ni in industrially exposed sites (concentrations up to 0.6, 380, and 210 mg kg???1, respectively). However, the latter two elements exist in sparingly soluble forms and therefore do not represent an environmental burden. P concentrations were found in elevated concentrations at agricultural areas and big cities (up to 1,000 mg kg???1).  相似文献   

9.
Estuarine sediments are major reservoirs for the metals. Distribution and mobility of metals within estuaries depends strongly on their specific chemical form. In the present study, surface sediments from Zuari estuary, Goa were analysed by a sequential procedure for Fe, Mn, Cu, Zn, Cr and Co to determine their distribution in five geochemical phases (Exchangeable, carbonate, Fe-Mn oxide (reducible) organic bound (oxidisable) and residual). The total metal content, sand, silt, clay and organic carbon were also determined of the surface sediments. The total metal contents were found to be greater than the background concentrations of average shale values as well as to that of earlier studies indicating enrichment probably due to the anthropogenic origin of metals. The results obtained from sequential procedure showed that among the studied elements, Mn and Co are potentially available in the bioavailable fractions (exchangeable, carbonate and Fe-Mn oxide bound fractions) indicating their importance in toxicity whereas rest of the metals viz. Fe, Cu, Zn and to some extent Cr are largely available in residual phase although they are available in other fractions. The main source of metals to the estuary is mining and its associated activities in the study area. Chemical speciation by sequential extraction procedure has helped in assessing the mobility, bioavailability, diagenesis and toxicity of metals and hence giving a better insight into the ultimate fate of pollutants, which are introduced into the estuarine environment. To understand the risk of the metals to the sediment dwelling organisms the data were compared with the Sediment Quality Values (SQV) using SQUIRT. Also, correlation and Factor analysis were carried out to understand the associations of metals in the different fractions with sand, silt, clay, organic carbon and with other metals.  相似文献   

10.
In order to establish the natural processes and geochemical factors responsible for enrichment of trace metal ions (Cu, Co, Ni, Zn and Cr) with respect to textural parameters (sand, silt and clay weight percentages) along with depth, multivariate statistical approach has been carried out for sediments in different water zones of Chilika lake, the largest brackish water lagoon in Asia. The rotated varimax factor results reveal that Cobalt enrichment is controlled by both textural parameters as well as adsorption mechanism. In fresh and saline water region, textural parameters and in mixed water, adsorption phenomenon predominates. Zn in fresh water is related to clay, whereas it is in adsorbed state in mixed water. Cu in fresh water sediments is in absorbed state and in mixed water it is related to depth and Co concentration. Cr does not show any specific association in fresh water, but in both mixed and saline water it is associated with clay minerals. Although both textural parameters and adsorption mechanism play an important role for the enrichment of trace metal ions in these lagoonal sediments, their relative importance varies with specific metal ions as well as the water quality. Sequential extraction technique was used to characterize the various forms of metals in the < 63μ size sediments of Chilika lake. The concentrations determined indicated selective accumulation of the various metals in the different phases with spatial variability in different water zones. Slightly higher availability of Co and Zn near Balugaon township in exchangeable phase may be related to anthropogenic activities. Among the non-lithogenous (NL) phases, reducible phase associated with higher concentration of Ni, Cu and Cr. Organic bound Zn and Co contributed highest percentages among NL fractions. Residual fraction contributed more than 50% in most of the cases, reflected the predominance of physical weathering, high erosion rate along the drainage basin.  相似文献   

11.
To evaluate the effects of crude oil water accommodated fraction (WAF) on marine phytoplankton community, natural phytoplankton collected seasonally from the Yueqing bay were exposed to eight groups of crude oil WAF for 15 days under laboratory conditions. Chlorophyll a and cell density were measured, and species of phytoplankton were identified every 24 h to reflect the change of phytoplankton community. The results showed that (1) High concentrations (??2.28 mg l???1) of oil pollution would greatly restrain phytoplankton growth (p?< 0.001), decrease chlorophyll a content and cell density, whereas low concentrations (??1.21 mg l???1) did not restrain its growth but rather promoted the phytoplankton growth. (2) The biodiversity, evenness, and species number of phytoplankton were all significantly influenced by crude oil WAF in all seasons (p?<?0.001). (3) The dominant species changes were different under different pollutant concentrations in different seasons. Different species had different tolerances to the oil pollution, thus leading to abnormal succession.  相似文献   

12.
Dredging simulation by elutriate tests accurately predicted concentrations of Hg, Cu, Mn and Fe released to the water column from contaminated sediment to within 1 order of magnitude. Hg and Cu concentrations increased by up to 7-fold after dredging, but declined to background concentrations within 48 h. Maximum loadings of Hg and Cu coincided with Fe and total organic carbon (TOC) water column concentrations, suggesting Hg and Cu are adsorbed onto particulates of Fe oxides and organic material. Seasonal changes in redox potential and temperature did not significantly affect metal release from sediments. Saline water did not cause significant increases in contaminant release from sediments to the water column over that observed for freshwater. Water quality standards of 1 µg l–1 Hg and 28 µg l–1 Cu as annual averages were not breached by dredging operations. Long-term effects of dredging on Hg and Cu availability, due to deposition of contaminated material as surficial sediments, is, however, of concern.  相似文献   

13.
Analyses of trace metals in benthic sediments from selected fjords and channels between 41 degrees 30' and 46 degrees 50'S, 75 degrees -72.3 degrees W were made after the CIMAR 1 Fjords expedition co-ordinated by CONA-Chile in 1995; the metals analyzed include Ba, Cd, Co, Cr, Cu, Ni, Pb, Sr, V and Zn. The objective of this study was to establish baseline values for these metals and to compare them with similar studies made in comparable, but geographically distinct, environments. Box core samples were collected at 35 stations and metal analysis was by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) using the MESS-2 reference standard. The ranked abundance by metal was Ba > Sr > V > Zn > Cr > Cu approximately Ni approximately Pb > Co > Cd; these metals were not homogenous across the region and coefficients of variation were >10%. There were distinct groupings by metal and geographical area including the fjords, basins and channels. Depth profiles of the metal concentrations also varied spatially, e.g. Guafo, Laguna San Rafael, Moraleda, Corcovado, Quitralco, and Jacaf were predominantly homogeneous with depth profiles indicative of pristine systems experiencing few human impacts. In contrast, Aysen, Cupquelan and Puyuguapi Fjords had higher concentrations towards the surface, indicating elevated inputs in recent years. No major differences in metal content of the sediments were observed when compared with values from comparable natural systems in the northern hemisphere. Principal component analysis (PCA) grouped several seemingly isolated locations as having the same metal signature and indicated the pattern of dispersion across the region.  相似文献   

14.
Factors that play a role in determining metal accumulation in sediments of 26 intertidal marshes which are mainly vegetated by reed plants (Phragmites australis) were assessed along the Scheldt estuary (Belgium and The Netherlands). In the upper 20 cm sediment layer, several physico-chemical properties (clay, silt and sand content, organic matter, carbonate and chloride content, pH and conductivity) and aqua regia extractable metals (Cd, Cr, Cu, Ni, Pb, Zn) were determined. The sediments were significantly contaminated with trace metals. The Cd concentrations often exceeded the Flemish soil remediation thresholds for nature areas, whereas Cr, Cu and Zn levels indicated moderate contamination. Pb concentrations occasionally were high, whereas Ni concentrations leaned towards background values. Organic matter was the single most important predictor variable for total metal contents in regression models, except for Cr. Additional significant predictor variables were clay or chloride content, depending on the metal. Observed metal concentrations at sites within a range of a few km from specific point-sources of metals (e.g. shipyards, industrial areas with metallurgic activities, affluents, major motorways) were somewhat higher than predicted by the models, whereas they were lower than predicted at sites which are regularly subjected to flooding by water of high salinity. The ratio between observed and predicted concentrations seems to be a valuable tool for the identification of areas which are specifically impacted by point sources.  相似文献   

15.
Sampling of the offshore seabed sediments of southwestern part of the Caspian Sea was carried out by gravity corer in order to study heavy metal concentration and the physicochemical factors controlling their distribution in the fine-grained fraction. The grain size distribution, amount, and type of clay minerals, total organic carbon (TOC) content, and Eh–pH of the sediments were determined. The average concentrations of the heavy metals in ppm are Mn (563), Cu (207.5), Sr (187), Zn (94), Pb (26.3), Ni (14.5), Co (11.5), Cd (2.56), and Ag (1.04) in their order of abundances. Co and Zn mostly indicate increase in silt-size fraction of the sediments suggesting their probable detrital provenance but the Mn, Ni, Cu, Sr, Pb, Cd, and Ag concentrations show a similar trend to distribution of the clay-size fraction. The concentrations of Mn, Co, and Cd increase with increase in the TOC content but the Cu, Pb, Ni, Ag, and Sr concentrations decrease with increase of the TOC content. The amounts of Zn, Cu, Sr, Pb, Cd, and Ag increase with increase in the CaCO3 content. The calculated enrichment factor indicates that the sediments are very strong to extremely enriched in Ag, significantly enriched in Cu and Cd, and depleted to mineral for Pb, Sr, Co, Ni, and Zn. Variations of the Cu, Sr, Cd, Ag, and Pb concentrations are similar to the clay and CaCO3 distributions.  相似文献   

16.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe?>?Mn?>?Cr?>?Zn?>?Ni?>?Cu?>?Co?>?Pb?>?Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I geo), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I geo values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87 %. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.  相似文献   

17.
Soil and sediment samples from several intertidal environment exposed to different types of contamination were studied to investigate the importance of grain size in relation to the capacity of the substrates to retain trace metals. The unfractionated samples (referred to as bulk samples) were separated into the following grain/size fractions: fine–coarse sand (2?0.100 mm), very fine sand (0.100?0.050 mm), silt (0.050?0.002 mm), and clay (0.002 mm). The sample into its fractions was carried out was in a glove box under high-purity N2 atmosphere in order to minimize any alterations to the samples. The bulk samples were characterized in terms of physicochemical properties such as pH, redox potential, and grain size. The total organic carbon (TOC), total sulfur (S), iron (Fe) pyrite, Fe, and manganese (Mn), and trace metals lead (Pb), mercury (Hg), chromium (Cr), and nickel (Ni) were analyzed in the bulk samples and in each fraction. The sand fractions were also examined by scanning electron microscopy (SEM). Comparisons of the above parameters were made between fractions and between each fraction and the corresponding bulk sample. The fine–coarse sand fraction contained high levels of the primary elements of the geochemical processes that occur in marine sedimentary environments such as TOC, total Fe, Mn, and S. The net concentrations of these four elements were higher in the fine-coarse sand fraction than in the very fine sand fraction and were similar to the net concentrations in the silt and clay fractions. Detailed SEM analysis of the sand coarse fraction revealed the presence of Fe and aluminum oxyhydroxide coatings in the oxic layers, whereas the framboidal pyrites and coatings observed in the anoxic layers were Fe sulfides. The presence of the various coatings explains why the trace metal concentrations in the sand fine–coarse fraction were similar to those in the clay fraction and higher than those in the very fine sand fraction. The present results highlight the importance of the sand fraction, which is generally disregarded in geochemical and environmental studies of sedimentary layers.  相似文献   

18.
Surface sediment samples from the Tirumalairajan river estuary were studied for grain size pattern, organic matter, and heavy metals (Fe, Mn, Zn, and Pb) using the sequential and bulk metal extraction methods to evaluate metal behavior. Ten surface sediment samples were collected during the monsoon and summer seasons of the year 2009. The observed orders of concentrations of heavy metals in the sediments were as follows: Fe?>?Mn?>?Zn?>?Pb. The results obtained from sequential extraction showed that, among the metals studied, a larger portion of the metals were associated with the residual phase, although they are available in other fractions. The low concentration of metals available in bioavailable phases indicated that the sediments of Tirumalairajan river estuary were relatively unpolluted. Correlation analysis was also carried out to understand the associations of metals in different phases with sand, silt, clay, and organic matter. To understand the risk of heavy metals to sediment-dwelling organisms, the data were compared with risk assessment code and sediment quality values using the screening quick reference table. The main source of metals to the estuary is from the irrigation field and its associated activities in the study area.  相似文献   

19.
Bottom sediments from Nakaumi Lagoon and the Honjo Area in southwest Japan were analyzed to determine their geochemical compositions and to assess potential impacts by comparison with sediment quality guidelines. Present-day water quality was also assessed. Results showed that the water quality of Nakaumi Lagoon and the Honjo area contrasts between their upper and lower parts. Average abundances of As, Pb, Zn, Cu, Ni, and Cr in the Nakaumi sediments were 12, 25, 135, 32, 21, and 46 ppm, respectively, compared to 10, 24, 110, 26, 20, and 38 ppm in the Honjo area. All averages are greater than those of the upper continental crust. The elevated metal concentrations are probably related to the fine-grained nature of the sediments, reducing bottom conditions produced by abundant organic matter and possibly minor non-point anthropogenic sources. Trace metal contents are strongly correlated with Fe2O3, suggesting that Fe oxides play a role in controlling abundances. Metal concentrations exceed the NYSDEC lowest effect level and CCME interim sediment quality guidelines that indicate moderate impact on aquatic organisms. Average abundances of As and Zn are comparable to the Coastal Ocean Sediment Database threshold, whereas maximum concentrations exceed that value, indicating that the concentrations of these metals are potentially toxic. These enrichments suggest that regular monitoring may be desirable even where no point sources of metal pollution exist.  相似文献   

20.
Hyalella azteca (Crustacea: Amphipoda), water and sediments from 12 circum-neutral lakes between Sudbury and North Bay in Ontario, Canada were sampled in August 1998 and analyzed for 10 metals including Cu, Zn, Cd, Ni, Pb, Co, Mo, V, Ba and Ti. Statistical analyses showed that concentrations of the metals in H. azteca, water and sediment differed significantly (ANOVA, P<0.05) among lakes (except for Zn and Pb in H. azteca and Mo in water). There was a trend of declining metal concentration, especially for Cu, Ni and Co (in water, Hyalella and sediment), with distance from the smelters indicating the reduced impact of atmospheric pollution. Metal concentrations of lakes (water) in the Sudbury area were found to be lower compared to data from the 1970s and 1980s indicating an improvement in water quality. Metal concentrations in field-collected amphipods compared favorably with those measured in the laboratory in animals exposed to deep-water sediments, provided metal concentrations were not extremely low (e.g., Pb) and that water chemistry differences (e.g., pH) were taken into account for some metals (especially Cd). In general bioaccumulation of metals in H. azteca was predicted better from surface water than from sediment total metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号