首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the development and parameterization of a grid-based model of African savanna vegetation processes. The model was developed with the objective of exploring elephant effects on the diversity of savanna species and structure, and in this formulation concentrates on the relative cover of grass and woody plants, the vertical structure of the woody plant community, and the distribution of these over space. Grid cells are linked by seed dispersal and fire, and environmental variability is included in the form of stochastic rainfall and fire events. The model was parameterized from an extensive review of the African savanna literature; when available, parameter values varied widely. The most plausible set of parameters produced long-term coexistence between woody plants and grass, with the tree–grass balance being more sensitive to changes in parameters influencing demographic processes and drought incidence and response, while less sensitive to fire regime. There was considerable diversity in the woody structure of savanna systems within the range of uncertainty in tree growth rate parameters. Thus, given the paucity of height growth data regarding woody plant species in southern African savannas, managers of natural areas should be cognizant of different tree species growth and damage response attributes when considering whether to act on perceived elephant threats to vegetation.  相似文献   

2.
In this paper, detrended canonical correspondence analysis was performed to analyze the relationships between diversity indices and environmental gradients, generalized additive model was employed to modal the response curves of diversity indices to the elevation, based on data from field investigation in the mountainous region of the Ili River Valley and a survey of 94 sample plots. Two hundred fifty-nine plant species were recorded in the 94 sample plots investigated, up to 235 species all appeared in the herb layer, and the species of woody plants were very limited. The communities with a complicated vertical structure presented higher values of indices. The distribution pattern of plant species diversity on the northern slope was affected by such factors as elevation, slope aspect, slope gradient, total nitrogen, total potassium, soil water content, organic matter, and that on the southern slope was mainly affected by such factors as slope gradient, elevation, available phosphorus, and soil water content. On the northern slope, Patrick index and Shannon?CWiener index of the plant communities presented a bimodality pattern along altitude; Simpson index and Pielou index showed a partially unimodal pattern. On the southern slope all the distribution pattern of species diversity indices showed two peaks, though Patrick index??s bimodality pattern was not an obvious one. These altitudinal patterns were formed by the synthetic action of a variety of environmental factors with elevation playing an important role.  相似文献   

3.
Knowledge of the spatial distribution of plant species is essential to conservation and forest managers in order to identify high priority areas such as vulnerable species and habitats, and designate areas for reserves, refuges and other protected areas. A reliable map of the diversity of plant species over the landscape is an invaluable tool for such purposes. In this study, the number of species, the exponent Shannon and the reciprocal Simpson indices, calculated from 141 quadrat sites sampled in a tropical forest were used to compare the performance of several spatial interpolation techniques used to prepare a map of plant diversity, starting from sample (point) data over the landscape. Means of mapped classes, inverse distance functions, kriging and co-kriging, both, applied over the entire studied landscape and also applied within vegetation classes, were the procedures compared. Significant differences in plant diversity indices between classes demonstrated the usefulness of boundaries between vegetation types, mapped through satellite image classification, in stratifying the variability of plant diversity over the landscape. These mapped classes, improved the accuracy of the interpolation methods when they were used as prior information for stratification of the area. Spatial interpolation by co-kriging performed among the poorest interpolators due to the poor correlation between the plant diversity variables and vegetation indices computed by remote sensing and used as covariables. This indicated that the latter are not suitable covariates of plant diversity indices. Finally, a within-class kriging interpolator yielded the most accurate estimates of plant diversity values. This interpolator not only provided the most accurate estimates by accounting for the indices' intra-class variability, but also provided additional useful interpretations of the structure of spatial variability of diversity values through the interpretation of their semi-variograms. This additional role was found very useful in aiding decisions in conservation planning.  相似文献   

4.
Houttuynia cordata Thunb. is a rhizome-bearing aromatic medicinal herb and is restricted to specialized moist habitats. The plant is collected from natural habitats for local consumption and trade. The status of the species and its variations in physiological performance in different habitats were studied in selected sites of geographically different areas of Brahmaputra valley in eastern India. The surveys were conducted in two different growth stages of the plant during 2005–2007. The sites where the species was encountered were marked and a distribution map was prepared. The frequency and density of the plant was higher in the moist habitats with higher organic carbon (0.85 ± 0.05%). Generally, the density, biomass production and growth had significant (P < 0.05) positive relationship with the soil physicochemical properties (linear curve fit). Soil moisture was the most dependent factor for the plant growth and the optimum growth was recorded at 78 ± 5.6% (r2?= 0.9; P ≤ 0.01). The physiological performance of the plant in all the studied sites were significantly varied (P < 0.05). The growth and development of H. cordata were also different in the flowering and senescence stages. Clay loam soil, average soil pH of 5.9, and 78% soil moisture were the favorable soil characteristics for the better growth of H. cordata and, hence, these data may be considered for conservation of the species.  相似文献   

5.
A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.  相似文献   

6.
A majority of the native medicinal plants that are commercialized in Brazil are harvested from natural populations. In addition to this essentially unrestrained collecting, these plants have been heavily impacted by the cutting and the fragmentation of forest formations throughout the country. Considering the limited availability of natural resources, threats to species diversity, and the necessity of conservation efforts in light of the rapid exhaustion of natural ecosystems, it is becoming exceedingly important to establish conservation priorities. The present work sought to identify the native medicinal plants harvested for industrial purposes and to establish conservation priorities for the species of highest commercial value. To that end, a survey of Brazilian industrial products that use medicinal plants was undertaken in 54 shops in the city of Recife (Pernambuco, NE Brazil). The survey noted information concerning the commercial name of the product, its plant composition and pharmaceutical presentation, therapeutic indications, as well as the laboratory that produced it. Only native species were considered. A total of 74 different native species used to produce more than 300 types of products were encountered in the present survey. Twelve species demonstrated significant versatility (Species which had the highest numbers of different therapeutic indications and body systems), and 58.33% of these plants were trees. Destructive collecting predominates (58.11%), greatly affecting taxa collected exclusively from wild populations (86.49%). The intensive use of exclusively wild species and the destructive harvesting techniques employed in gathering them create serious problems that will threaten the availability of these resources to future generations.  相似文献   

7.
We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of urbanization. Vegetation data and soil properties were collected from 30 400-m2 plots at 6 study sites in urban and rural areas. The difference of plant species diversity and PFTs of remnant forests between urban and rural areas were analyzed. To discern the complex relationships, multivariate statistical analyses (e.g., canonical correspondence analysis and regression analysis) were employed. Pioneer species and stress-tolerant species can survive and vigorously establish their population dominance in the urban environment. The native herb diversity was lower in urban forests than in rural forests. Urban forests tend to prefer the species with Mesophanerophyte life form. In contrast, species in rural forests possessed Chamaephyte and Nanophanerophyte life forms and gravity/clonal growth dispersal mode. Soil pH and soil nutrients (K, Na, and TN) were positively related to herb diversity, while soil heavy metal concentrations (Cu) were negatively correlated with herb diversity. The herb plant species diversity declines and the species in the remnant forests usually have stress-tolerant functional traits in response to urbanization. The factors related to urbanization such as soil acidification, nutrient leaching, and heavy metal pollution were important in controlling the plant diversity in the forests along the urban–rural gradients. Urbanization affects the structure and functional traits of remnant subtropical evergreen broad-leaved forests.  相似文献   

8.
The value of pollination to human society is not limited to agricultural production, but also in the sustainability of ecosystems and the services that they provide. Seed set can be used as a comparative measure of pollination effectiveness, with minimum variability expected when other resources are not limiting. Six species of self-incompatible fall asters (Symphyotrichum) were used to evaluate pollination service at 12 sites across a spectrum of expected levels of pollination. Seed set per inflorescence was generally lower at sites with lower pollinator numbers and diversity, although as expected pollinator assemblage characteristics were highly variable within and between sites. However, rankings of sites showed consistency of response across phytometer species and between years; the summed ranks across multiple species appears to have as the greatest value in Pollination Service Measurement (PSM). Abundance, richness, and Shannon diversity of pollinator assemblages were highly autocorrelated and showed variable relationships with seed set depending on plant species and temporal scale of pollinator assemblage assessment. Use of seed set to directly measure pollination service at a site was consistent and cost effective when compared to less certain and more labour-intensive methods of pollinator collection and identification, and shows promise for implementation in pollination monitoring and bioassessment practices.  相似文献   

9.
Ecological risk assessment of open coal mine area   总被引:2,自引:0,他引:2  
The coal mine areas in China have the serious conflicts between resources exploitation and ecology safety, therefore the coal mine ecological risk assessment is an important problem which relates to the sustainability of coal mines to regions and the whole country. In this study, open coal mine area serves as researching object, heavy metals, soil erosion and coast are screened out as risk resources, soil wireworm as the receiver of heavy metals risk, biotope ecosystem as the receiver of soil erosion and coast risk; ecological indexes are calculated with species background index, biological diversity index and natural degree index, ecological friability indexes are calculated with soil fertility index, plant coverage, plant species diversity index, soil wireworm index and maturity index, and the typical coal mine area assessment indexes system is established. In addition, the regional ecological risk assessment is conducted on the friable ecological system of Fuxin Haizhou open coal mine area. Examples are researched of Haizhou open coal mine, the coal mine risk distribution is established, and foundations are provided for the administrative decision-making.  相似文献   

10.
Because moderate to over-abundant white-tailed deer (Odocoileus virginianus) herbivory impacts biodiversity and can alter community function, ecological benchmarks of herbivory impact are needed to assess deer impacts. We evaluated spatial patterns of deer herbivory and their relation to herbivory assessment by evaluating woody vegetation along 20 transects at each of 30 sites spread across a wide range of deer herd densities and vegetative condition throughout the biodiverse Appalachian Mountains of Virginia, USA. Surprisingly, herbivory patterns and the availability of woody forage generally were unchanged among physiographic regions and land use diversity classes. However, some relationships between browsing pattern and vegetation varied with scale. The total quantity of vegetation browsed on a given site and at the transect scale were related positively to the availability of forage, as the proportion of stems browsed decreased as stem density increased. However, this was only true when all stems were considered equally. When stem densities by species were weighted for deer preference, the proportion of stems browsed had no relationship or increased with stem density. Compared to the value from all transects sampled, on average, the mean of ≥?3 transects within a site was within 0.1 of the browsing ratio and stem densities were within 0.5 stems m?2. Our results suggest that one transect per square kilometer with a minimum of three transects may be sufficient for most browsing intensity survey requirements to assess herbivory impacts in the Appalachian region of Virginia. Still, inclusion of spatial factors to help partition variation of deer herbivory potentially may allow for improved precision and accuracy in the design of field herbivory impact assessment methods and improve their application across various landscape contexts.  相似文献   

11.
Exotic species can threaten native ecosystems and reduce services that ecosystems provide to humans. Early detection of incipient populations of exotic species is a key step in containing exotics before explosive population growth and corresponding impacts occur. We report the results of the first three years of an exotic plant early detection and treatment program conducted along more than 3,000 km of transportation corridors within an area >1.5 million ha in the Mojave Desert, USA. Incipient populations of 43 exotic plant species were mapped using global positioning and geographic information systems. Brassica tournefortii (Sahara mustard) infested the most soil types (47% of 256) surveyed in the study area, while Nicotiana glauca (tree tobacco) and others currently occupy less than 5% of soil types. Malcolmia africana (African mustard) was disproportionately detected on gypsum soils, occurring on 59% of gypsum soil types compared to 27% of all surveyed soils. Gypsum soils constitute unique rare plant habitat in this region, and by conventional wisdom were not previously considered prone to invasion. While this program has provided an initial assessment of the landscape-scale distribution of exotic species along transportation corridors, evaluations of both the survey methods and the effectiveness of treating incipient populations are needed. An exotic plant information system most useful to resource mangers will likely include integrating planning oriented coarse-scale surveys, more detailed monitoring of targeted locations, and research on species life histories, community invasibility, and treatment effectiveness.  相似文献   

12.
Montane Meadows as Indicators of Environmental Change   总被引:1,自引:0,他引:1  
We used a time series of satellite multispectral imagery for mapping and monitoring six classes of montane meadows arrayed along a moisture gradient (from hydric to mesic to xeric). We hypothesized that mesic meadows would support the highest species diversity of plants, birds, and butterflies because they are more moderate environments. We also hypothesized that mesic meadows would exhibit the greatest seasonal and interannual variability in spectral response across years. Field sampling in each of the meadow types was conducted for plants, birds, and butterflies in 1997 and 1998. Mesic meadows supported the highest plant species diversity, but there was no significant difference in bird or butterfly species diversity among meadow types. These data show that it may be easier to detect significant differences in more species rich taxa (e.g., plants) than taxa that are represented by fewer species (e.g., butterflies and birds). Mesic meadows also showed the greatest seasonal and interannual variability in spectral response. Given the rich biodiversity of mesic montane meadows and their sensitivity to variations in temperature and moisture, they may be important to monitor in the context of environmental change  相似文献   

13.
The human health risk assessment (HRA) paradigm is being used as a basis for developing ecological risk assessment (ERA). The modification of the HRA paradigm to ERA will be most useful in an ecotoxicological sense, to assess the effect of hazards to single indicator species and populations, rather than to ecosystems. However, even for single species and population assessments, there are major differences in HRA and ERA. One such difference derives from the HRA tenet that human impairment at any age is important, and that each individual is important. For ERA, individuals are less important, and it is the population and its survival and interactions that are of concern. One exception is in the case of endangered species where every individual is critical because of its potential impact on survival and genetic diversity of the species. We suggest that ERA must take into account the relative reproductive value of the potentially impacted individuals in assessing hazards. This will involve adding additional steps to evaluate the value of the individual to current population levels, assessing reproductive value, and assessing recovery potential. Although ecologists recognize the importance of these factors, we suggest that they should be integral parts of ecological risk assessment.  相似文献   

14.
Firewood is the basic fuel source in rural Bolivia. A study was conducted in an Andean village of subsistence farmers to investigate human impact on wild firewood species. A total of 114 different fuel species was inventoried during fieldtrips and transect sampling. Specific data on abundance and growth height of wild firewood species were collected in thirty-six transects of 50 ×2 m2. Information on fuel uses of plants was obtained from 13 local Quechua key participants. To appraise the impact of fuel harvest, the extraction impact value (EIV) index was developed. This index takes into account local participants?? appreciation of (1) decreasing plant abundance; (2) regeneration capacity of plants; (3) impact of root harvesting; and (4) quality of firewood. Results suggest that several (sub-)woody plant species are negatively affected by firewood harvesting. We found that anthropogenic pressure, expressed as EIV, covaried with density of firewood species, which could entail higher human pressure on more abundant and/or more accessible species. The apparent negative impact of anthropogenic pressure on populations of wild fuel species is corroborated by our finding that, in addition to altitude, several anthropogenic variables (i.e. site accessibility, cultivation of exotics and burning practices) explain part of the variation in height of firewood species in the surroundings of Apillapampa.  相似文献   

15.
The use of native plants was examined in three rural communities in the semi-arid of the state of Pernambuco, in northeastern Brazil. The techniques employed in the present study combined a number of different techniques of data-gathering, including semi-structured interviews, guided tour, key-informants, and participating observation, and sampling of the vegetation to evaluate the biodiversity of useful plants. A total of 61 woody species were cataloged, mostly used for construction purposes or fuel. Among the species that stood out for their local importance and multiplicity of uses were: Myracrodruon urundeuva (Engl.) Fr. All., Schinopsis brasiliensis Engl., and Anadenanthera colubrina (Vell.) Brenan. The first two species are included in Brazilian lists of threatened species. Arguments are presented for strategies of management and conservation of plant resources in the semi-arid region that seek alternatives to the use of timber species and the development of alternative non-timber resources.  相似文献   

16.
Rapid Assessment of Plant Diversity Patterns: A Methodology for Landscapes   总被引:2,自引:0,他引:2  
We present a rapid, cost-efficient methodology to link plantdiversity surveys from plots to landscapes using: (1) unbiasedsite selection based on remotely sensed information; (2) multi-scale field techniques to assess plant diversity; (3)mathematical models (species-area curves) to estimate thenumber of species in larger areas corrected for within-typeheterogeneity; and (4) mathematical techniques to estimatetotal species richness and patterns of plant diversity in alandscape. We demonstrate the methodology in a 754 ha studyarea in Rocky Mountain National Park, Colorado, U.S.A.,using four 0.025 ha and twenty-one 0.1 ha multi-scalevegetation plots. We recorded 330 plant species (1/3 thenumber of plants recorded in the 1074 km2 Park) in the2.2 ha area within the plots: this represents a samplingintensity of 0.29% of the 754 ha study site. We estimated 552plant species, about half the plant species recorded in the Park,in just 0.7% of the Parks area. We show how this rapid,cost-efficient methodology: (1) produces a rich informationbase on the patterns of native plant diversity and thedistribution of non-native plant species and keystoneecosystems; and (2) can be easily adapted for other nationaland state parks, national forests, wildlife refuges, and nature reserves.  相似文献   

17.
Approaches linking biodiversity assessment with landscape structure are necessary in the framework of sustainable rural development. The present paper describes a methodology to estimate plant diversity involving landscape structure as a proportional weight associated with different plant communities found in the landscape mosaic. The area occupied by a plant community, its patch number or its spatial distribution of patches are variables that could be expressed in gamma plant diversity of a territory. The methodology applies (1) remote sensing information, to identify land cover and land use types; (2) aspect, to discriminate composition of plant communities in each land cover type; (3) multi-scale field techniques, to asses plant diversity; (4) affinity analysis of plant community composition, to validate the stratified random sampling design and (5) the additive model that partitions gamma diversity into its alpha and beta components. The method was applied to three Spanish rural areas and was able to record 150-260 species per ha. Species richness, Shannon information index and Simpson concentration index were used to measure diversity in each area. The estimation using Shannon diversity index and the product of patch number and patch interspersion as weighting of plant community diversity was found to be the most appropriate method of measuring plant diversity at the landscape level.  相似文献   

18.
Chile was one of many countries that initiated environmental impact assessments in the 1990s, and has relied on their use for species conservation and territorial planning without the use of larger-scale environmental and ecological planning. The capacity of Chile's environmental impact assessment system (SEIA) to evaluate resident freshwater fishes and the potential impacts of water projects and aquaculture activities – two categories of projects that create direct threats to freshwater fishes – are assessed. Of the 3997 such submissions to the SEIA, only 0.6% conducted any freshwater fish assessment, and only 0.1% conducted any quantitative assessment of expected impacts from the associated project. The small number of assessments was characterized by poor study design, inconsistent sampling methodology, and species misidentification. Traditional assessments failed to include freshwater fish ecology in the general assessment framework. The new strategic environmental evaluation system only underscores the need for vastly improved field sampling protocols and assessment methodologies.  相似文献   

19.
The capacity of cities to act on climate change mitigation is essential to fulfil the Paris Agreement target. In order to do so, cities should establish an effective climate policy which requires, as a first step, a complete greenhouse gas (GHG) emissions inventory. The accurate city-scale GHG inventory enables cities to develop, implement and track climate solution measures, mainly those related to transportation. The compilation of a city-scale GHG inventory requires a standardized method and up-to-date activity data. This systematic review critically examines 40 articles over the past 20 years to (1) identify city-scale GHG inventory methods being applied worldwide, (2) evaluate how these methods are evolving, (3) elaborate how emissions from transport sector are being estimated, and (4) determine what data types and sources of transport-related data are being used. The review was limited to articles that addressed the process of compilation of a GHG inventory. The results demonstrate that city-scale GHG inventory methods evolved from the Intergovernmental Panel on Climate Change (IPCC) Guidelines to a variety of GHG accounting methods that offer levels of complexity to estimate city-scale emissions. Although GHG inventory methods for city-scale have advanced over the years, almost one third of the articles reviewed were focused on the proposal of a GHG inventory framework, adjusting current methods to each city's reality or proposing new ones. The majority of the cities analysed lack local transport-related data to measure GHG emissions based on the bottom-up approach. Yet, more than 40% of the articles managed to deliver the bottom-up inventory using a diversity of data types and sources. This review shows that there is still a path to achieve a globally compatible method. This would require a joint effort between researchers and city authorities to make international protocols more compliant to each city's data availability along with the improvement of cities data collection.  相似文献   

20.
A study was conducted in central Texas to determine the potential of using remote sensing technology to distinguish Ashe juniper (Juniperus ashei Buchholz) infestations on rangelands. Plant canopy reflectance measurements showed that Ashe juniper had lower near-infrared reflectance than other associated woody plant species and lower visible reflectance than mixed herbaceous species in spring and summer. Ashe juniper could be distinguished on color-infrared aerial photographs acquired in March, April, June, and August and on QuickBird false color satellite imagery obtained in June, where it had a distinct dark reddish-brown tonal response. Unsupervised classification techniques were used to classify aerial photographic and satellite imagery of study sites. An accuracy assessment performed on a computer classified map of a photographic image showed that Ashe juniper had producer's and user's accuracies of 100% and 92.9%, respectively, whereas an accuracy assessment performed on a classified map of a satellite image of the same site showed that Ashe juniper had producer's and user's accuracies of 94.1% and 88.1%, respectively. Accuracy assessments performed on classified maps of satellite images of two additional study sites showed that Ashe juniper had producer's and user's accuracies that ranged from 87.1% to 96.4%. These results indicate that both color-infrared photography and false color satellite imagery can be used successfully for distinguishing Ashe juniper infestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号