首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Minho River, also called Miño (in Spain), extends to about 300 km from Spain to Portugal. The source of the river lies in Spain and in the last 75 km, the river defines the border between Portugal and Spain. Under the scope of a cooperation project between North Portugal and Galicia region of Spain, titled: “Valorization of the natural resources of the Minho/Miño drainage basin”, seven water-sampling campaigns were carried out during the last 2 years in Minho River basin. Seven sampling sites were selected along the international stretch, and five were chosen in the main Portuguese and Spanish tributaries of Minho River. Water quality based on the physicochemical and microbial parameters was assessed. According to the Portuguese legislation for surface waters, the international section of Minho River presents a reasonably good water quality (BOD5 <5 mg/L, TNK <2 mg/L, and total phosphorous <1 mg P/L). Valença and Louro were found to be the most polluted sampling sites and Louro the most polluted tributary (maximum values observed: TSS?=?26 mg/L, BOD5?=?6.6 mg O2/L, COD?=?20.8 mg O2/L, total nitrogen?=?9.9 mg N/L; minimum value observed: OD?=?1.3 mg O2/L). A one-dimensional stream water quality model QUAL2Kw was calibrated using data measured in field surveys along the international stretch of Minho River. QUAL2Kw was also used to predict the impact of flow conditions, discharges, and tributaries on the water quality of international stretch of Minho River, essential to establish proposals for management and planning of Minho River Basin.  相似文献   

2.
The concentrations of trihalomethanes (THMs), including chloroform, bromodichloromethane, dibromochloromethane, and bromoform, and haloacetic acids (HAAs; monochloroacetic acid, monobromoacetic acid, dibromoacetic acid, dichloroacetic acid, and trichloroacetic acid) were measured in tap waters passing through water distribution systems of six water treatment plants in Seoul, Korea, and their associated health risks from exposure to THMs through ingestion, dermal contact, and inhalation were estimated using a probabilistic approach. The concentration ranges for total THMs and HAA5 were 3.9–53.5 and <LOD–49.5 μg/L, respectively. Among DBPs, chloroform, bromodichloromethane, dichloroacetic acid, and trichloroacetic acid were the most frequently detected. Spatial and seasonal variations in concentrations of THMs and HAAs in the six water distribution systems were significant (P?<?0.001).The mean lifetime cancer risks through ingestion, dermal contact, and inhalation during showering ranged as 7.23–10.06?×?10?6, 2.19–3.63?×?10?6, and 5.22–7.35?×?10?5, respectively. The major exposure route to THMs was inhalation during showering. Sensitivity analysis showed that shower time and shower frequency had a great impact on the lifetime cancer risk by the exposure to THMs in tap water.  相似文献   

3.
A sampling program was conducted to investigate the formation of disinfection by-products (DBPs) and dissolved organic carbon (DOC) at two advanced water treatment plants in Kaohsiung City, Taiwan. The results in this study can be used as a reference for the operational control of water treatment plants and the setting of regulations in Taiwan. Samples of drinking water were collected from two advanced water treatment plants from June 2007 to April 2008. Changes in the concentration of dissolved organic carbon, the trihalomethane formation potential, and the haloacetic acids formation potential were measured in raw water samples. Variations in the concentrations of trihalomethanes (THMs) and haloacetic acids (HAA5) in finished drinking water were evaluated. The major species of HAA5 were in the order of dichloroacetic acid and trichloroacetic acid and the THM was of trichloromethane. DOC was strongly related to DBPs in raw water. In this investigation, the removal efficiency of DBPs in Plant A (ultrafiltration/reverse osmosis system) exceeded that in Plant B (ozonation/biological activated carbon system). Both advanced water treatment plants greatly improved the quality of drinking water.  相似文献   

4.
Aquatic stability and impact of titanium dioxide nanoparticles (TiO2 NPs, 10–30 nm) were investigated using Artemia salina. Acute exposure was conducted on nauplii (larvae) and adults in seawater in a concentration range from 10 to 100 mg/L TiO2 NPs for 24 and 96 h. Rapid aggregation occurred in all suspensions of TiO2 NPs to form micrometer size particles. Yet, both nauplii and adults accumulated the aggregates significantly. Average TiO2 content in nauplii ranged from 0.47 to 3.19 and from 1.29 to 4.43 mg/g in 24 and 96 h, respectively. Accumulation in adults was higher ranging from 2.30 to 4.19 and from 4.38 to 6.20 mg/g in 24 and 96 h, respectively. Phase contrast microscopy images revealed that Artemia were unable to excrete the particles. Thus, the TiO2 aggregates filled inside the guts. No significant mortality or toxicity occurred within 24 h at any dose. Lipid peroxidation levels characterized with malondialdehyde concentrations were not statistically different from those of the controls (p?>?0.05). These results suggested that suspensions of the TiO2 NPs were nontoxic to Artemia, most likely due to the formation of benign TiO2 aggregates in water. In contrast, both mortality and lipid peroxidation increased in extended exposure to 96 h. Highest mortality occurred in 100 mg/L TiO2 NP suspensions; 18 % for nauplii and 14 % for adults (LC50?>?100 mg/L). These effects were attributed to the particle loading inside the guts leading to oxidative stress as a result of impaired food uptake for a long period of time.  相似文献   

5.
This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L?1 (mean?=?0.57 mg L?1) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L?1 in 66.66 % of the drinking water samples, 0.51–1.0 mg L?1 in 23.29 %, and higher than 1.0 mg L?1 in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50–1.0 mg L?1). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.  相似文献   

6.
Nitroaromatic compounds are known to be hazardous to ecological and human health. To assess the status of nitroaromatic compounds contamination in the main rivers in the important industrial bases of the northeastern China, we collected water, suspended particulate matter (SPM) and sediment samples from 28 sites in the Daliao River watershed and analysed them for eight nitroaromatic compounds by gas chromatography. The total concentrations of eight nitrobenzenes in the water column including aqueous and SPM phases ranged from 740 to 15,828 ng L???1, with a mean concentration of 3,460 ng L???1. The total concentrations of eight nitrobenzenes in the sediment were 7.47 to 8,185.76 ng g???1, with a mean concentration of 921.98 ng g???1, and several times higher than those found from the Yellow River in China. 4-Nitrotoluene was the predominant contaminant in the water and sediment of the three rivers of the Daliao River watershed. 2,6-Dichloro-4-nitroaniline was generally dominant in the SPM. The levels of nitroaromatic compounds were different among different sites in the Daliao River watershed, mainly caused by the distribution of pollution sources. No obvious correlation was found between the total concentrations of eight nitrobenzenes concentrations and TOC or the slit-clay content of the sediments.  相似文献   

7.
Environmental monitoring of leachate quality from an open municipal solid waste dumping site in Tunceli, Turkey was studied in this research. The most commonly examined pollution parameters were determined on a seasonal basis. The annual average 5-day biological oxygen demand (BOD5) and chemical oxygen demand (COD) values of station points were measured as 70 and 425 mg/L, respectively, and also the average BOD5/COD ratio (a measure of biodegradability) was calculated as 0.20. The low ratio of biodegradability and slightly alkaline pH values in the leachate samples indicated that the site was characterized by methanogenic conditions. The mean ammonium-nitrogen (NH4 +-N) and corresponding phosphate (orthophosphate) values were assayed as 70 and 11 mg/L, respectively. The average solids content in the leachates was measured as 4,681 mg/L (total solids) and 144 mg/L (suspended solids). Very low concentrations of iron, manganese, copper, and zinc in the leachate samples were found and the concentration of cadmium was measured below detection limits. Excessive amount of nutrients and high organic and inorganic pollutant content in the leachates pose serious pollution potential to the environment. Since no drainage system or bio treatment exists in this open dumping site, high permeability of natural soil at the site and in the surrounding area and very fractured and crackled rocks under natural soil are indicators of high groundwater pollution potential in this site.  相似文献   

8.
Caffeic acid, rosmarinic acid, rutin, apigenin 7-O-glucoside, apigenin, and acesetin were the main phenolic compounds of Origanum onites extracts in all applications. While acesetin contents ranged from 133.59 mg/100 g (U1) to 437.25 mg/100 g (S3), rosmarinic acid changed between 215.94 mg/100 g (U4) and 1120.56 mg/100 g (S2) in Origanum vulgare L. subsp. hirtum (Link) Ietsw. Both rosmarinic acid and acesetin were not found in U5 application. Only caffeic acid (19.39 mg/100 g) was found in U5 application. Rosmarinic acid contents of O. onites extract changed between 158.62 mg/100 g (U5) and 799.87 mg/100 g (S2). Generally, dominant phenolic compound of Origanum extracts was rosmarinic acid compared with other extracts. In addition, methanol:water:acetic acid mixture (S2) (95:4.5:0.5) was found as the best application. Phenolic contents of extracts obtained with U series mixtures were found low.  相似文献   

9.
七虎林河源头区地表腐殖质随着径流的冲刷进入水体,形成了天然有机质(NOM),其中,溶解性有机质(DOM)易对河流水质造成影响。为了研究七虎林河中DOM的时空分布特征及其对水质的影响,开展了6次采样,分析了水体及土壤吸收光谱和荧光光谱特征参数,利用平行因子(PARAFAC)算法解析了水体DOM的特性及来源。结果表明:七虎林河上游水体五日生化需氧量(BOD5)、高锰酸盐指数(CODMn)、化学需氧量(COD)、可溶性有机碳(DOC)的浓度分别为1.4 mg/L±0.2 mg/L、6.1 mg/L±3.0 mg/L、21 mg/L±8 mg/L、7.0 mg/L±3.2 mg/L,BOD5/COD平均值为0.08,说明流域内水体DOM的可生化性差,对水质影响较小。光谱特征参数紫外吸收系数(SUVA254)、荧光指数(FI)、腐殖化指数(HIX)、生物源指数(BIX)分析结果表明,七虎林河上游云山水库库上林区河段DOM的物质组成与水库及库下河段差异显著。库上河段DOM的芳香碳含量更高、分子量更大、自生源组分...  相似文献   

10.
A dissolved oxygen (DO) model is calibrated and verified for a highly polluted River Ravi with large flow variations. The model calibration is done under medium flow conditions (431.5 m3/s), whereas the model verification is done using the data collected during low flow conditions (52.6 m3/s). Biokinetic rate coefficients for carbonaceous biochemical oxygen demand (CBOD) and nitrogenous biochemical oxygen demand (NBOD) (i.e, K cr and K n ) are determined through the measured CBOD and ammonia river profiles. The calculated values of K cr and K n are 0.36 day?1 and 0.34 day?1, respectively. The close agreement between the DO model results and the field values shows that the verified model can be used to develop DO management strategies for the River Ravi. The biokinetic coefficients are known to vary with degree of treatment (DOT) and therefore need to be adjusted for a rational water quality management model. The effect of this variation on level of treatment has been evaluated by using the verified model to attain a DO standard of 4 mg/L in the river using the biokinetic rate coefficients as determined during the model calibration and verification process. The required DOT in this case is found to be 96 %, whereas the DOT is 86 % if adjusted biokinetic rate coefficients are used to reflect the effect of wastewater treatment. The cost of wastewater treatment is known to increase exponentially as the removal efficiency increases; therefore, the use of appropriate biokinetic coefficients to manage the water quality in rivers is important.  相似文献   

11.
Silurian–Ordovician (S–O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3–Cl–Na–Mg–Ca, water is alkaline, and its Ca2+ content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na?+?Ca) and Cl/(Cl?+?HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S–O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F?=?100–400 mg/kg) and K-bentonites (F?=?2,800–4,500 mg/kg) contributes to the formation of F-rich groundwater.  相似文献   

12.
The oil industry is a major source of contamination in Peru, and wastewater and sediments containing oil include harmful substances that may have acute and chronic effects. This study determined polycyclic aromatic hydrocarbon (PAH) concentrations by GC/MS, mutagenicity using TA98 and TA100 bacterial strains with and without metabolic activation in the Muta-ChromoPlate? test, and Microtox® 5-min EC50 values of Peruvian crude oil, and water and sediment pore water from the vicinity of San José de Saramuro on the Marañón River and Villa Trompeteros on the Corrientes River in Loreto, Peru. The highest total PAH concentration in both areas was found in water (Saramuro?=?210.15 μg/ml, Trompeteros?=?204.66 μg/ml). Total PAH concentrations in water from San José de Saramuro ranged from 9.90 to 210.15 μg/ml (mean?=?66.48 μg/ml), while sediment pore water concentrations ranged from 2.19 to 70.41 μg/ml (mean?=?24.33 μg/ml). All water samples tested from Saramuro and Trompeteros sites, and one out of four sediment pore water samples from Trompeteros, were found to be mutagenic (P?<?0.001). One sediment pore water sample in Saramuro was determined to have a measurable toxicity (Microtox EC50?=?335.1 mg/l), and in Trompeteros, the EC50 in water and sediment pore water ranged from 25.67 to 133.86 mg/l. Peruvian crude oil was mutagenic using the TA98 strain with metabolic activation, and the EC50 was 17.18 mg/l. The two areas sampled had very high PAH concentrations that were most likely associated with oil activities, but did not lead to acute toxic effects. However, since most of the samples were mutagenic, it is thought that there is a greater potential for chronic effects.  相似文献   

13.
Mine drainage impacts from a coal waste pile at Smolnica, Poland have been monitored. Groundwater in an unconfined aquifer downgradient from the pile has near-neutral pH, but high concentrations of sulfate (up to 3,827 mg/l), chloride (up to 903 mg/l), and sodium (up to 2,606 mg/l). Concentrations of iron and manganese are elevated only locally, and concentrations of other metals are low. The behavior of sulfate seems to be conservative in the downgradient aquifer, and gypsum may only be precipitating locally. Concentrations of iron and manganese seem to be controlled by the precipitation of ferric oxide and hydroxides and rhodochrosite, respectively. Complete neutralization of mine drainage by carbonates is consistent with high concentrations of calcium (up to 470 mg/l) and magnesium (up to 563 mg/l) and also with high strontium concentrations of up to 3.08 mg/l, observed in groundwater downgradient from the pile. Hydraulic head profiles at two sites within the river bottom sediments indicate upward flow toward the river with large local differences in groundwater recharge. Water chemistry profiles in the river bottom sediments and geochemical modeling suggest conservative behavior of Na, Cl, and SO4 and precipitation of Fe and Mn at the groundwater/river water interface. Mine drainage enters the Bierawka River and causes increasing sulfate concentrations. In contrast, concentrations of sodium and chloride in the Bierawka River decrease downgradient from the pile because water in the river upgradient from the pile is already highly contaminated by these species from the discharge of mining waters. Concentrations of Fe and Mn in the river water are low, as a consequence of the precipitation of Fe and Mn oxide and hydroxides. Direct geochemical modeling was able to reproduce measured concentrations of conservative species (e.g., Na, Cl, and SO4), but errors for metals and Ba were relatively large. In addition, calculated PCO2 values in the river water are very high, suggesting that equilibrium with atmospheric PCO2 and PO2 has not been reached, and at least some reactions should be modeled as kinetic processes. High concentrations of Na, Cl, and SO4 contribute to the contamination of the Odra River, which is joined by the Bierawka River farther downgradient, thus limiting the use of river water for recreation and other purposes.  相似文献   

14.
The current article maps perfluoroalkyl acids (PFAAs) contamination in the largest Science Park of Taiwan. The occurrence of ten target PFAAs in the effluent of an industrial wastewater treatment plant (IWWTP), its receiving rivers, rainwater, sediment, and the muscles and livers of fish was investigated. All target PFAAs were found in effluent of IWWTP, in which perfluorooctane sulfonate (PFOS) (6,930 ng/L), perfluorohexyl sulfonate (PFHxS) (2,662 ng/L) and perfluorooctanoic acid (PFOA) (3,298 ng/L) were the major constituents. Concentrations of PFBS and PFOS in the IWWTP downstream areas have exceeded safe concentration levels of avian and aquatic life, indicating a potential risk to wildlife in those areas. In sediment samples, predominant contaminants were PFOS (1.5–78 ng/g), PFOA (0.5–5.6 ng/g), and perfluorododecanoic acid (PFDoA) (nd–5.4 ng/g). In biological tissue samples, concentrations as high as 28,933 ng/g of PFOS were detected in tilapia and catfish liver samples. A positive correlation for log (C sediment/C water) and log (C tissue/C water) was found. The concentration and proportion (percentage of all PFAAs) of PFOS found in biotissue samples from the Keya River (which receives industrial wastewater) were found to be much greater (200 times) than those of samples from the Keelung River (which receives mainly domestic wastewater). These findings suggest that the receiving aquatic environments and, in turn, the human food chain can be significantly influenced by industrial discharges.  相似文献   

15.
宁夏典农河是黄河宁夏段的主要入黄排水沟之一,其水质状况对黄河宁夏-内蒙古段跨省流域水质安全至关重要。选取典农河2011—2020年10个监测点位的16项水质参数,采用综合污染指数(WPI)法,结合相关性分析、主成分分析、聚类分析等分析方法,综合分析该流域水污染特征,并对污染程度进行评估,对污染因子和污染原因进行解析,最终提出管控建议。研究结果表明:2011—2020年,影响典农河水质的主要污染因子为CODCr、NH3-N、TP、TN,对应的年均浓度范围分别为22.3~71.5、0.64~9.09、0.173~0.662、2.89~21.52 mg/L,超标率分别为46%、8%、13%、85%。典农河2011—2020年WPI范围为0.59~1.74,重金属含量一直维持在较低水平。流域TN与TP年均浓度比值范围为20~84,整体呈下降趋势,且各监测点的差异性逐渐减小;BOD5与CODCr浓度比值范围为0.02~0.19,反映出典农河流域水体可生化性较差。各监测断面污染物之间存在较强相关性,其中:流域C...  相似文献   

16.
A geophysical survey was conducted over an industrial belt encompassing 80 functional leather factories in Southern India. These factories discharge untreated effluents which pollute shallow groundwater where electrical conductivity (EC) value had a wide range between 545 and 26,600 μS/cm (mean, 3, 901 μS/cm). The ranges of Na+ and Cl? ions were from 46 to 4,850 mg/L (mean, 348 mg/L) and 25 to 10,390 mg/L (mean, 1,079 mg/L), respectively. Geoelectrical layer parameters of 37 vertical electrical soundings were analyzed to demarcate fresh and saline water zones. However, the analysis not did lead to a unique resolution of saline and fresh waters. It was difficult to assign a definitive value to the aquifer resistivity of any area. Thus, geophysical indicators, namely longitudinal unit conductance (S), transverse unit resistance (T), and average longitudinal resistivity (R s), were calculated for identifying fresh and saline waters. Spatial distributions of S, T, and R s reflected widely varying ranges for the saline and fresh water zones. Further, the empirical relation of formation factor (F) was established from pore-water resistivity and aquifer resistivity for fresh and saline aquifers, which may be used to estimate local EC values from the aquifer resistivity, where well water is not available.  相似文献   

17.
The distribution of perfluorooctane sulfonate (PFOS) was investigated in a total of 15 water and sediment samples from the Yellow River Estuary, China in April 2011. The results indicated that the concentrations of PFOS in the water and sediment samples averaged 157.5 ng/L and 198.8 ng/g and ranged from 82.30 to 261.8 ng/L and 75.48 to 457.0 ng/g, respectively. The concentrations of PFOS in the sediment column increased from 45.32 to 379.98 ng/g with the decrease of the sampling depth, which showed that the increased PFOS pollution in the sediment appeared in this region in over recent years. The distribution coefficient (K d) of PFOS between water and sediment linearly increased from 0.37 to 4.80 L/g as the salinity (S‰) increased from 0.18 to 4.47. Correlation analysis revealed that K d was significantly and positively correlated to the contents of total organic carbon and clay of the sediment, and salinity. Therefore, salinity was an important parameter in controlling the sediment–water interactions and the fate or transport of PFOS in the aquatic environment. The results of this study showed that the estuary was an important sink for PFOS and suggested that PFOS might be carried with the river water and transported for long distances before it reached to the sea and largely scavenged to the sediment in the estuaries due to the change in salinity.  相似文献   

18.
19.
Different water quality management alternatives, including conventional wastewater treatment, transportation of wastewater, flow augmentation, low-cost treatment with reuse, and wetlands, are evaluated by using a verified dissolved oxygen (DO) model for the Ravi River. Biokinetic rate coefficients of the Ravi River for both the carbonaceous and nitrogenous oxygen-demanding wastes are adjusted, keeping in view the type and level of wastewater treatment. The conventional activated sludge process with nitrification comes out to be the most expansive alternative to meet the DO standard of 4 mg/L. Additional treatment cost is required to maintain un-ionized ammonia levels <0.02 mg/L, which corresponds to achieving treatment levels of 5 mg/L of DO in the river. Under critical low-flow conditions (i.e., minimum average seven consecutive days) of 9.2 m3/s, a flow augmentation of 10 m3/s can reduce 30 % of the cost with conventional wastewater treatment. Transportation of wastewater from the city of Lahore is a cost-effective alternative with 2.5 times less cost than the conventional process. Waste stabilization ponds (WSP) technology is a low-cost solution with 3.5 times less cost as compared to the conventional process. Further reduction in pollution loads to the Ravi River can be achieved by reusing WSP effluents for irrigation in the near proximity of Lahore along the Ravi River. The study results show that, for highly polluted rivers with such extreme flow variations as in case of the Ravi River, meeting un-ionized ammonia standards can reduce the efforts required to develop carbonaceous biochemical oxygen demand-based waste load allocations.  相似文献   

20.
A study on the quality of water abstracted for potable use was conducted in the Selangor River basin from November 2008 to July 2009. Seven sampling sites representing the intake points of water treatment plants in the basin were selected to determine the occurrence and level of 15 organochlorine pesticides (OCPs), six phthalate esters (PAEs) and bisphenol A (BPA). Results indicated OCPs were still detected regularly in 66.1 % of the samples with the Σ15OCPs ranging from 0.6–25.2 ng/L. The first data on PAEs contamination in the basin revealed Σ6PAEs concentrations were between 39.0 and 1,096.6 ng/L with a median concentration of 186.0 ng/L while BPA concentration ranged from <1.2 to 120.0 ng/L. Although di-n-butyl phthalate was detected in all the samples, concentrations of di-ethyl(hexyl)phthalate were higher. Sampling sites located downstream recorded the highest concentrations, together with samples collected during the dry season. Comparison of the detected contaminants with the Department of Environment Water Quality Index (DOE-WQI) showed some agreement between the concentration and the current classification of stream water. While the results suggest that the sites were only slightly polluted and suitable to be used as drinking water source, its presence is cause for concern especially to the fragile firefly “Pteroptyx tener” ecosystem located further downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号