首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental Geochemistry and Health - Heavy metal pollution significantly reduces the quality of the environment and threatens human health, especially in industrial cities. This study...  相似文献   

2.
Effluents collected from tanneries in Sialkot showed considerably higher levels of heavy metals. Sodium (12 660.91 mg/L) among macronutrients and Cr (592.20 mg/L) among heavy metals were found in the highest concentrations. Effluent parameters, i.e. biological oxygen demand (BOD; 12.40), chemical oxygen demand (COD; 16.53), Cd (5.90), Cr (592.20) and Fe (18.59) were the respective times higher than Pakistan National Environmental Quality Standards and their continuous unchecked discharge into agricultural soils poses a potential risk. Mean concentrations (mg/L) of Cr (592.20), Ni (2.66), Mn (1.16), Fe (37.17), Zn (0.90), Cd (0.59) and Pb (1.18) in this study exceeded levels recorded to date from different tanning hubs in Pakistan. Factor analysis/principal components analysis (FA/PCA) for the effluent parameters resulted in six varimax factors, i.e. VF1 (salinity, electrical conductivity, total dissolved solids, chloride, phosphate, BOD and COD; including characteristic tannery effluent features), VF2 (pH, Cr and alkalinity; tanning operations), VF3 (Cd and Pb; dyeing processes), VF4 (Mn and Fe; finishing operations), VF5 (Ni; retaining processes) and VF6 (hardness, Ca and Cu; bating processes). Cluster analysis performed on metal data resulted in three clusters confirming metal–metal relations obtained either from FA/PCA or a correlation matrix. The results of this study are useful for heavy metal source apportionment, assessment of risk to peripheral soils and the future management of environments around tanneries.  相似文献   

3.
High concentrations of total arsenic (As) have been measured in soils of gold mining areas of Brazil. However, bioaccessibility tests have not yet been conducted on those materials, which is essential for better health risk estimates. This study aimed at?evaluating As bioaccessibility in samples from a gold mining area located in Brazil and assessing children's exposure to As-contaminated materials. Samples were collected from different materials (a control and four As-contaminated soils/sediments) found in a gold mine area located in Paracatu (MG), Brazil. Total and bioaccessible As concentrations were determined for all samples. The control soil presented the lowest As concentrations, while all other materials contained high total As concentrations (up to 2,666?mg?kg(-1)) and low bioaccessible As percentage (<4.2%), indicating a low risk from exposure of resident children next to this area. The calculated dose of exposure indicated that, except for the pond tailings, in all other areas, the exposure route considering soil ingestion contributed at most to 9.7% of the maximum As allowed ingestion per day (0.3?μg?kg(-1) BW day(-1)).  相似文献   

4.
5.
风险评价代码法对农田土壤重金属生态风险的评价   总被引:4,自引:0,他引:4  
陆泗进  王业耀  何立环 《环境化学》2014,(11):1857-1863
为揭示矿区周边农田土壤中重金属分布特征及其潜在生态风险,于2013年在云南省某铅锌矿周边的农田土壤共布设68个采样点,分析土壤中Cd、Hg、As、Pb、Cr、Cu和Zn的含量及污染程度,并采用改进的BCR法测定了各重金属形态分布特征,在此基础上运用风险评价代码法评价了重金属的潜在风险程度.结果表明,7种重金属都存在不同程度的超标,其中超标最严重的是Cd和Zn,超标率分别达到92.6%和75%.7种重金属化学形态也不尽相同:在重金属有效态中,Cd的水溶态和可提取态较高(平均值达到31.2%);Pb、Cu和Zn可还原态、可氧化态这两部分含量较高,两部分之和的平均值分别可达到27.9%、30%和29.2%;Hg、As和Cr的残渣态含量较高,平均值分别为90.4%、72.9%和76.8%.风险评价代码评价结果表明,54.4%的样点Cd为高生态风险,45.6%的样点Cd为中度生态风险;100%的样点Zn为中度生态风险;Cu有41.2%的点位属于低生态风险,58.8%的点位属于中度生态风险;As和Pb主要以低生态风险为主(所占比例分别为92.6%和91.8%);Hg主要以无生态风险为主(所占97.1%).综上,该矿区周边农田土壤受到了严重的重金属污染,其中土壤中Cd的生态风险最高,同时,Zn和Cu的生态风险也不容忽视.  相似文献   

6.
The global consumption and production of pharmaceuticals is increasing concomitantly with concern regarding their environmental fate and effects. Active pharmaceutical ingredients are mainly released into the aquatic environment through wastewater effluent discharge. Once in the environment, pharmaceuticals can undergo processes of natural attenuation, i.e. dilution, sorption, transformation, depending on physico-chemical properties of the compound, such as water solubility, lipophilicity, vapour pressure, and environmental conditions, such as pH, temperature and ionic strength. A major natural attenuation process is the sorption on dissolved organic matter, colloids, suspended solids and sediments, which in turn control pharmaceuticals distribution, residence time and persistence in aquatic systems. Here we review studies of sorption capacity of natural sorbents to pharmaceuticals. These report on the importance of several environmental and sorbent-specific properties, such as the composition, quality, and amount of the sorbent, and the environmental pH, which determines the speciation of both the sorbent and compound. The importance of accounting for distribution processes on freshwater sorbents for any determination of environmental concentrations of pharmaceuticals is apparent, while the reliability of surrogate standards for measuring dissolved organic matter (DOM) distribution is evaluated in the context of the need for robust environmental risk assessment protocols.  相似文献   

7.
This study presents distribution of organochlorines (OCs) including HCH, DDT and PCBs in urban soils, and their environmental and human health risk. Forty-eight soil samples were extracted using ultrasonication, cleaned with modified silica gel chromatography and analyzed by GC-ECD. The observed concentrations of ∑HCH, ∑DDT and ∑PCBs in soils ranged between?<?0.01–2.54, 1.30–27.41 and?<?0.01–62.8 µg kg?1, respectively, which were lower than the recommended soil quality guidelines. Human health risk was estimated following recommended guidelines. Lifetime average daily dose (LADD), non-cancer risk or hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) for humans due to individual and total OCs were estimated and presented. Estimated LADD were lower than acceptable daily intake and reference dose. Human health risk estimates were lower than safe limit of non-cancer risk (HQ?<?1.0) and the acceptable distribution range of ILCR (10?6–10?4). Therefore, this study concluded that present levels of OCs (HCH, DDT and PCBs) in studied soils were low, and subsequently posed low health risk to human population in the study area.  相似文献   

8.
Environmental Geochemistry and Health - Chestnut soils developed over mineralized areas of southwestern Spain are characterized by high baseline concentrations of geogenic trace elements, notably...  相似文献   

9.
The concentrations and chemical distributions of heavy metals (Cd, Cr, Ni, Zn, U, and V) in the Al-Jiza phosphate ores were investigated. Typically, the mean concentration values of Cd, Cr, Ni, U, and Zn are 15 ± 8, 109 ± 21, 34 ± 6, 211 ± 55, 142 ± 55, and 161 ± 57 mg kg?1, respectively. On the other hand, the encountered average concentration values of Cd, Cr, Ni, Zn, U, and V in the phosphate dust particles (<0.053) were found to be 22 ± 5, 179 ± 5, 67 ± 11, 441 ± 14, 225 ± 58, and 311 ± 9 mg kg?1, respectively. The contamination factors of U and Cr are greater than 1, indicating that these heavy metals could be potentially hazardous, if released to the environment. Multivariate statistical analysis allowed the identification of three main factors controlling the distribution of these heavy metals and the other chemical constituents. The extracted factors are as follows: francolite mineral factor, clay minerals factor, and diagenesis factor. Health risk assessments of non-cancerous effects in finer-grained size fraction that might be caused by contamination with the heavy elements have been calculated for both children and adults. The risk assessments in case of children for non-cancerous effects showed that U has values greater than the safe level of hazard index (HI = 1). In case of adults, the value of risk for U is also higher as compared to those of Cd, Ni, Cr, and Zn where it lies within the safe range of hazard index (HI < 1). Child health risk assessment indicates that children are more vulnerable to contaminants from phosphate mining than adults.  相似文献   

10.
秦普丰  刘丽  侯红  雷鸣  陈娅娜  李细红  贺琳 《生态环境》2010,19(7):1668-1674
为了研究和评价工业城市不同功能区的土壤和蔬菜中重金属污染和健康风险状况,以株洲市为例,在工业区(石峰区)、农业区(芦淞区)和旅游区(大京风景区)分别采集土壤和蔬菜样品,分析重金属Cd、As、Pb、Hg、Zn、Cr和Cu的质量分数,并采用地质累积指数法(Igeo)和健康风险评价模型分别对土壤和蔬菜中重金属进行评价。结果表明:工业区、农业区和旅游区土壤中Cd、As、Pb、Hg、Zn、Cr和Cu的平均质量分数都超出湖南省土壤背景值,部分重金属甚至超出国家土壤环境质量二级标准。不同功能区土壤中重金属的地质累积指数(Igeo)表明:工业区、农业区和旅游区土壤受到不同程度的重金属污染,其中Cd和Hg的污染最为严重,污染程度依次是工业区〉农业区〉旅游区。不同功能区蔬菜中Cd、As、Pb和Zn的危害商(HQ)值都大于1.0,而Cu和Cr的危害商(HQ)都小于1.0。不同功能区蔬菜中重金属危害指数(HI)都大于10.0,尤其是工业区蔬菜的危害指数(HI)〉100.0,当地成年人食用受到重金属污染的蔬菜会导致严重的健康危害,其中Cd和As,是危害指数(HI)的主要贡献者,两者贡献率之和的范围为75%~89%,而Cr的贡献率几乎为0。  相似文献   

11.
徐州煤矿混推复垦区土壤重金属分布特征及潜在风险评价   总被引:3,自引:0,他引:3  
以徐州煤矿混推复垦区为研究对象,采用Tessier连续提取法,对该复垦区土壤Zn、Pb、Ni、Mn、Cu、Cr等6种重金属含量进行分析和风险评价.结果表明,除Cr外,复垦区土壤Zn、Pb、Ni、Mn和Cu的含量均大于当地土壤背景值,但均未超过国家土壤环境质量二级标准,不同复垦年限下土壤重金属含量差异较大,Zn、Mn总体上随复垦年限延长,积累越明显.形态分析表明,Pb和Mn以铁锰氧化物结合态为主;Zn、Ni、Cu和Cr以残渣态为主.徐州煤矿复垦区土壤重金属的生物可利用系数(BF)的平均值大小为MnPbCuZnCrNi.各重金属的生态风险程度大小为PbCuNiMnCrZn.徐州煤矿复垦区土壤重金属的潜在生态风险指数范围是16.71—25.94,平均值为21.56,属于轻微生态危害.不同复垦年限下土壤重金属的综合潜在生态风险指数大小为1997年复垦2006年复垦1987年复垦2010年复垦塌陷未复垦未塌陷,各复垦年限下土壤重金属均属于轻微生态风险.  相似文献   

12.
Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.  相似文献   

13.
拉萨河流域重金属污染及健康风险评价   总被引:5,自引:0,他引:5  
刘凤  李梅  张荣飞  崔益斌 《环境化学》2012,31(5):580-585
在分析拉萨河水体重金属污染现状以及水质理化参数的基础上,对重金属含量进行Pearson相关性分析,并运用水环境健康风险评价模型对其进行了健康风险的初步评价.结果表明Cd、Pb、Cu、Mn、Ni和Zn未超过我国生活饮用水卫生标准(GB 5749—2006)的限值,As和Fe严重超标.8种重金属含量与pH值间均不存在显著相关性,其中Zn、Ni与Pb污染存在一定的同源性,而Ni与Cd来源不同,As、Mn、Fe、Cu之间污染具有多源性.污染物通过皮肤接触途径所造成的危害要远小于饮水途径,致癌物风险比非致癌物高2—8个数量级.其中As对总风险贡献率为99.60%,成为主要的风险污染物.拉萨河水体中污染物引起的总健康风险高于EPA推荐的标准值,具有显著的风险,应引起环境监测和环境管理部门的关注.  相似文献   

14.
• The concentrations of 13 heavy metals in Taihu Lake were analyzed. • Aquatic vegetables intake was first included in deriving human health AWQC. • The human health AWQC for 13 heavy metals in Taihu Lake were derived. • Human health risk assessment for 13 heavy metals were conducted in Taihu Lake. Heavy metals are widely concerning because of their toxicity, persistence, non-degradation and bioaccumulation ability. Human health ambient water quality criteria (AWQC) are specific levels of chemicals that can occur in water without harming human health. At present, most countries do not consider the effects of aquatic vegetables in deriving human health AWQC. Therefore, the intake of aquatic vegetables (Brasenia schreberi) was added to the derivation of human health AWQC and a health risk assessment for 13 heavy metals in Taihu Lake. The human health AWQC (consumption of water, fish and aquatic vegetables) values of 13 heavy metals ranged from 0.04 (Cd) to 710.87 μg/L (Sn), and the intake of B. schreberi had a very significant effect on the human health AWQC for Cu, with a more than 62-fold difference. The hazard quotients of As (2.8), Cd (1.6), Cr (1.4) and Cu (4.86) were higher than the safe level (HQ= 1), indicating that As, Cd, Cr and Cu in Taihu Lake posed a significant health risk. Sensitivity analysis showed that the contribution rate of B. schreberi intake to the human health risk from Cu was 91.6%, and all results indicated that the risk of Cu in B. schreberi to human health should be of particular concern. This study adds the consideration of aquatic vegetable consumption to the traditional method of human health AWQC derivation and risk assessments for the first time, and this approach can promote the development of risk assessments and water quality criteria.  相似文献   

15.
Food safety is an important issue in the world. This study assessed the health risk for the Chinese public when consuming vegetables grown in China, based on 1335 data records from 220 published papers during 2007–2016. The results showed that the average of Pb, Cd, and Hg concentration in vegetables was 0.106, 0.041, and 0.008 mg/kg, which were lower than the maximum allowable concentrations, respectively. Leaf vegetables contained higher heavy metals than root vegetables and fruit vegetables. On a provincial scale, the highest Pb, Cd, and Hg concentrations in vegetables were determined by those in soil and atmosphere. The total health risk index showed that people in Guizhou, Yunnan, Guangxi, Hunan, Guangdong, Hubei provinces in southern China, and Liaoning Province in northeast China, faced a high risk of Pb, Cd, and Hg when consuming vegetables.  相似文献   

16.
There is limited study to simultaneously determine the relative bioavailability of heavy metals such as Cd, Pb, Cu, Cr(VI), and Ni in soil samples. In the present study, the bioaccessibility of heavy metals using in vitro assay was compared with the relative bioavailability of heavy metals using in vivo mouse model. The bioaccessibility of heavy metals ranged from 9.05 ± 0.97 % (Cr) to 42.8 ± 3.52 % (Cd). The uptake profile of heavy metals in soil and solution samples in mouse revealed that the uptake kinetics could be fitted to a two-compartment model. The relative bioavailability of heavy meals ranged from 34.8 ± 7.0 % (Ni) to 131 ± 20.3 % (Cu). Poor correlation between bioaccessibility and relative bioavailability of heavy metals was observed (r 2 = 0.11, p > 0.05). The relative bioavailability of heavy metals was significantly higher than the bioaccessibility of heavy metals (p < 0.05). The present study indicated that the in vitro digestion method should be carefully employed in risk assessment.  相似文献   

17.
In an effort to address public concerns of the long-term stability and ecological risk reduction of Cu and Cd in a farmland located at the Guixi, Jiangxi Province, China, containing ~ 800?mg?kg?1 Cu and 0.8?mg?kg?1 Cd soil, were treated in situ by attapulgite, apatite, montmorillonite and lime at the rate: 10, 10, 10 and 4?g?kg?1 soil, respectively. Field experiment consisted of 2?×?3-m plots arranged in a randomised complete block design with each treatment. Soil and plant samples were collected in sixth years post-treatments and analysed for Cu and Cd bioaccessibility, chemical fraction and Cu, Cd concentration in plant tissue. The results indicated that the apatite and lime treatments significantly reduced bioaccessible and exchangeable fractions Cu and Cd in the soil at sixth years post the treatments. Cu and Cd concentration in plant tissue was positively related to the bioaccessibility of Cu and Cd. The treatment used 10?g apatite kg?1 soil appeared to be most effective for overall risk reduction. The Cu and Cd stabilisation and risk reduction by the apatite treatments were accomplished by the induced transformation of labile Cu and Cu species to relatively insoluble forms. This study illustrated that in situ Cu and Cd stabilisation by apatite would be long-term and ecologically safe, which could safeguard human health and ecosystem from Cu and Cd contamination in mining areas.  相似文献   

18.
Potentially toxic elements (PTEs) including nickel and chromium are often present in soils overlying basalt at concentrations above regulatory guidance values due to the presence of these elements in underlying geology. Oral bioaccessibility testing allows the risk posed by PTEs to human health to be assessed; however, bioaccessibility is controlled by factors including mineralogy, particle size, solid-phase speciation and encapsulation. X-ray diffraction was used to characterise the mineralogy of 12 soil samples overlying Palaeogene basalt lavas in Northern Ireland, and non-specific sequential extraction coupled with chemometric analysis was used to determine the distribution of elements amongst soil components in 3 of these samples. The data obtained were related to total concentration and oral bioaccessible concentration to determine whether a relationship exists between the overall concentrations of PTEs, their bioaccessibility and the soils mineralogy and geochemistry. Gastric phase bioaccessible fraction (BAF %) ranged from 0.4 to 5.4 % for chromium in soils overlying basalt and bioaccessible and total chromium concentrations are positively correlated. In contrast, the range of gastric phase BAF for nickel was greater (1.4–43.8 %), while no significant correlation was observed between bioaccessible and total nickel concentrations. However, nickel BAF was inversely correlated with total concentration. Solid-phase fractionation information showed that bioaccessible nickel was associated with calcium carbonate, aluminium oxide, iron oxide and clay-related components, while bioaccessible chromium was associated with clay-related components. This suggests that weathering significantly affects nickel bioaccessibility, but does not have the same effect on the bioaccessibility of chromium.  相似文献   

19.
TCLP法评价酸性矿山废水污染稻田土壤重金属的生态风险   总被引:7,自引:0,他引:7  
采用美国最新的法定重金属污染评价方法TCLP(Toxicity Characteristic Leaching Procedure,TCLP)法对粤北大宝山矿山下游受酸性矿山废水长期污染的稻田土壤的重金属(Cd、Zn、Pb、Cu)污染状况进行评价,以国际规定的TCLP法标准评价重金属生态环境风险.结果表明,TCLP试剂提取的土壤重金属Cd、Cu、Pb和Zn含量分别在0.02~0.58、1.42~38.07、0.16-31.01和1.84~75.29 mg·kg-1之间.酸性矿山废水污染稻田土壤不同程度地受到Cd、Cu、Pb、Zn的污染,其中以Pb、Zn污染最为严重,其次为Cu污染,Cd污染程度最轻.  相似文献   

20.
采集石河子市供暖时期的PM_(2.5)样品,使用ICP-MS对PM_(2.5)中5种重金属元素(Ni、Cu、Zn、Pb、Fe)进行检测,并对重金属元素进行健康风险评价.选取重金属元素中的Zn进行动物实验,以观察PM_(2.5)及其Zn元素对大鼠肺部的影响.将不同浓度的PM_(2.5)(0.5、3.0、15.0 mg·kg~(-1)体重)和Zn(0.06、0.3、1.5 mg·kg~(-1)体重)通过气管滴注的方式暴露于大鼠来探究PM_(2.5)中的Zn元素对大鼠肺部的损伤.处死大鼠后获取大鼠的支气管肺泡灌洗液(BALF)和肺组织,使用ELISA、比色法和HE染色来检测大鼠BALF中促炎因子白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、肺组织中氧化应激指标超氧化物歧化酶(SOD)、丙二醛(MDA)以及观察大鼠肺组织的病理变化.结果表明供暖期间石河子市PM_(2.5)浓度为109.85±58.76μg·m~(-3),PM_(2.5)中重金属的浓度为Fe (27.766μg·m~(-3)) Zn (3.484μg·m~(-3)) Pb (1.444μg·m~(-3)) Cu (0.628μg·m~(-3)) Ni (0.094μg·m~(-3)).Ni存在一定的致癌风险,Cu,Zn,Pb不存在非致癌风险.PM_(2.5)以及Zn浓度的升高能够显著抑制SOD活性并增加MDA、IL-6、TNF-α水平,但是在同等Zn元素含量的情况下(PM_(2.5)高剂量组和Zn中剂量组),PM_(2.5)对大鼠的损伤更为严重.因此,PM_(2.5)及其Zn元素可以引起大鼠肺部的损伤,在这一过程中Zn元素发挥重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号