首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetation baseline studies are dependent on the use of an adequate classification of vegetation, which structures all further study. The reliable and careful execution of sampling techniques is as important as choosing a sound sampling scheme. In order for vegetation mapping to represent the vegetation accurately, significant community gradation and anomalous communities should be portrayed. Data analysis should distinguish between precision and accuracy, include an indication of the statistical reliability of estimates, and explain and interpret findings.  相似文献   

2.
Exchange flow between open water and floating vegetation   总被引:1,自引:1,他引:0  
This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating vegetation. The partial-depth porous obstruction represents the root layer, which does not penetrate to the bed. Initially, a vertical wall separates the two regions, with fluid of higher density in the obstructed region and fluid of lower density in the open region. This density difference represents the influence of differential solar heating due to shading by the vegetation. For a range of root density and root depths, the velocity distribution is measured in the lab using PIV. When the vertical wall is removed, the less dense water flows into the obstructed region at the surface. This surface flow bifurcates into two layers, one flowing directly through the root layer and one flowing beneath the root layer. A flow directed out of the vegetated region occurs at the bed. A model is developed that predicts the flow rates within each layer based on energy considerations. The experiments and model together suggest that at time- and length-scales relevant to the field, the flow structure for any root layer porosity approaches that of a fully blocked layer, for which the exchange flow occurs only beneath the root layer.  相似文献   

3.
Structural patterns of tall stands (“tussock”) and short stands (“lawn”) are observed in grazed vegetation throughout the world. Such structural vegetation diversity influences plant and animal diversity. A possible mechanism for the creation and preservation of such patterns is a positive feedback between grazing and plant palatability. Although some theoretical studies have addressed this point in a non-spatial setting, the spatial consequences of this feedback mechanism on the stability and spatial characteristics of vegetation structure patterns have not been studied.We addressed this issue by analyzing a spatially explicit individual-based plant-grazer simulation model, based on published empirical relations and the assumption of optimal foraging.In the model, the selection by the grazer of short stands (that have a higher energy content and are more palatable) is affected by traveling costs and the spatial organization of swards. Nevertheless, the most selected biomass in this type of short stands was the optimal biomass predicted by cropping and digestion constraints. As a result of the optimal foraging strategy, the grazers displayed Lévy-flight traveling behavior during the simulations with characteristic exponent μ ≈ 2.Patterns of short and tall stands created by grazing were preserved for at least a decade. Even in seasonal habitat, the spatial organization of the patterns remained relatively constant, despite fluctuations in the area of short stands. Heterogeneity of initial vegetation increased heterogeneity of the grazing-induced pattern, but did not affect its stability.The area of short stands that was preserved by grazing scaled with the herbivore mass to the power 0.4 and with the carrying capacity of the vegetation to the power −0.75.Patterns of tall and short stands can be created and perpetuated by optimally grazing ruminants, irrespective of possible underlying soil patterns. The simulations generate predictions for the stability and spatial characteristics of such structural vegetation patterns.  相似文献   

4.
Global efforts to deliver internationally agreed goals to reduce carbon emissions, halt biodiversity loss, and retain essential ecosystem services have been poorly integrated. These goals rely in part on preserving natural (e.g., native, largely unmodified) and seminatural (e.g., low intensity or sustainable human use) forests, woodlands, and grasslands. To show how to unify these goals, we empirically derived spatially explicit, quantitative, area-based targets for the retention of natural and seminatural (e.g., native) terrestrial vegetation worldwide. We used a 250-m-resolution map of natural and seminatural vegetation cover and, from this, selected areas identified under different international agreements as being important for achieving global biodiversity, carbon, soil, and water targets. At least 67 million km2 of Earth's terrestrial vegetation (∼79% of the area of vegetation remaining) required retention to contribute to biodiversity, climate, soil, and freshwater conservation objectives under 4 United Nations’ resolutions. This equates to retaining natural and seminatural vegetation across at least 50% of the total terrestrial (excluding Antarctica) surface of Earth. Retention efforts could contribute to multiple goals simultaneously, especially where natural and seminatural vegetation can be managed to achieve cobenefits for biodiversity, carbon storage, and ecosystem service provision. Such management can and should co-occur and be driven by people who live in and rely on places where natural and sustainably managed vegetation remains in situ and must be complemented by restoration and appropriate management of more human-modified environments if global goals are to be realized.  相似文献   

5.
The concepts and algorithms of the Baldwin, Nye and Tinker model describing solute movement from bulk soil solution to roots (DIFMAS) and a model of solute dynamics and accumulation in plant tissues and litter (DRYADS) are presented. Foliar uptake of solutes and gases are included in the DRYADS code. These models form components in a coupled system of models having hourly resolution of carbon, water, and solute dynamics in terrestrial ecosystems. Applications showing successive hourly, monthly, and annual results illustrate the utility of the models. The DRYADS model sensitivity to both leaf solute conductivity and root solute conductivity parameters suggest the importance of careful experimental determination of these plant properties. The tissues of solute entry (leaves, roots) initially accumulate solutes in a fixed form in preference to the more remote tissues (stems, fruits). Model application results show that root sapwood is the first major site of trace contaminant accumulation from soil-borne pollutants. The algorithms describing solute movement along a concentration gradient in phloem and as mass flow in the xylem transpiration stream result in high mobility of solutes in vegetation. The simulated diurnal pattern of root solute uptake showed that more than 85% of solutes were taken up during the daylight hours. The simulations further showed that contaminants had the greatest effect on the litter system. Toxic effects of contaminants on decomposition resulted in lower mineralization losses and accumulation of contaminant in litter with continuing deposition.  相似文献   

6.
Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.  相似文献   

7.
This study aims to provide a quantitative framework to model the dynamics of Mediterranean coniferous forests by integrating existing ecological data within a generic mathematical simulator. We developed an individual-based vegetation dynamics model, constrained on long-term field regeneration data, analyses of tree-rings and seed germination experiments. The simulator implements an asymmetric competition algorithm which is based on the location and size of each individual. Growth is parameterized through the analysis of tree-rings from more than thirty individuals of each of the three species of interest. A super-individual approach is implemented to simulate regeneration dynamics, constrained with available regeneration data across time-since-disturbance and light-availability gradients. The study concerns an insular population of an endemic to Greece Mediterranean fir (Abies cephalonica Loudon) on the island of Cephalonia (Ionian Sea) and two interacting populations of a Mediterranean pine (Pinus brutia Ten.) and a more temperate-oriented pine (Pinus nigra Arn. ssp. pallasiana) on the island of Lesbos (NE Aegean Sea), Greece. The model was validated against plot-level observations in terms of species standing biomass and regeneration vigour and adequately captured regeneration patterns and overall vegetation dynamics in both study sites. The potential effects of changing climatic patterns on the regeneration dynamics of the three species of interest were subsequently explored. With the assumption that a warmer future would probably cause changes in the duration of cold days, we tested how this change would affect the overall dynamics of the study sites, by focusing on the process of cold stratification upon seed germination. Following scenarios of a warmer future and under the current model parameterization, changes in the overall regeneration vigour controlled by a reduction in the amount of cold days, did not alter the overall dynamics in all plant populations studied. No changes were identified in the relative dominance of the interacting pine populations on Lesbos, while the observed reduction in the amount of emerging seedlings of A. cephalonica on Cephalonia did not affect biomass yield at later stages of stand development.  相似文献   

8.
A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, “grows” individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering.  相似文献   

9.
Interaction between flow, transport and vegetation spatial structure   总被引:1,自引:0,他引:1  
This paper summarizes recent advances in vegetation hydrodynamics and uses the new concepts to explore not only how vegetation impacts flow and transport, but also how flow feedbacks can influence vegetation spatial structure. Sparse and dense submerged canopies are defined based on the relative contribution of turbulent stress and canopy drag to the momentum balance. In sparse canopies turbulent stress remains elevated within the canopy and suspended sediment concentration is comparable to that in unvegetated regions. In dense canopies turbulent stress is reduced by canopy drag and suspended sediment concentration is also reduced. Further, for dense canopies, the length-scale of turbulence penetration into the canopy, δ e , is shown to predict both the roughness height and the displacement height of the overflow profile. In a second case study, the relation between flow speed and spatial structure of a seagrass meadow gives insight into the stability of different spatial structures, defined by the area fraction covered by vegetation. In the last case study, a momentum balance suggests that in natural channels the total resistance is set predominantly by the area fraction occupied by vegetation, called the blockage factor, with little direct dependence on the specific canopy morphology.  相似文献   

10.
Howe HF  Zorn-Arnold B  Sullivan A  Brown JS 《Ecology》2006,87(12):3007-3013
We ask whether vole herbivory in experimental grassland plots is sufficient to create an unpalatable community. In a six-year experiment, meadow voles (Microtus pennsylvanicus) reduced plant standing crop between 30% and 72%, well within the range of ungulate effects. Moreover, meadow voles reduced their available forage species by changing the plant community composition: four grass species and a legume upon which they foraged declined sharply in cover and/or number of individuals, five forbs avoided by voles increased, and two forbs neither declined nor increased with either measure. Reductions of diversity occurred when voles first defoliated the plots in 2000 but disappeared as plant species avoided by voles replaced vulnerable plants. Within six years, meadow voles created plant communities dominated by species that they did not eat.  相似文献   

11.
Hannan LB  Roth JD  Ehrhart LM  Weishampel JF 《Ecology》2007,88(4):1053-1058
Sea turtle nesting presents a potential pathway to subsidize nutrient-poor dune ecosystems, which provide the nesting habitat for sea turtles. To assess whether this positive feedback between dune plants and turtle nests exists, we measured N concentration and delta15N values in dune soils, leaves from a common dune plant (sea oats [Uniola paniculata]), and addled eggs of loggerhead (Caretta caretta) and green turtles (Chelonia mydas) across a nesting gradient (200-1050 nests/km) along a 40.5-km stretch of beach in east central Florida, USA. The delta15N levels were higher in loggerhead than green turtle eggs, denoting the higher trophic level of loggerhead turtles. Soil N concentration and delta15N values were both positively correlated to turtle nest density. Sea oat leaf tissue delta15N was also positively correlated to nest density, indicating an increased use of augmented marine-based nutrient sources. Foliar N concentration was correlated with delta15N, suggesting that increased nutrient availability from this biogenic vector may enhance the vigor of dune vegetation, promoting dune stabilization and preserving sea turtle nesting habitat.  相似文献   

12.
沙地退化植被恢复过程中植被的空间异质性   总被引:1,自引:0,他引:1  
通过野外取样和室内分析,应用地统计学分析方法研究了科尔沁沙地退化植被恢复过程中不同封育年限(0、11和20年)的流动沙丘的植被盖度和丰富度特征及其空间异质性规律。结果表明,随着流动沙丘的固定和封育年限的增加,植被盖度和丰富度逐渐增加。在流动沙丘植被恢复过程中,植被盖度和丰富度具有明显的空间自相关性,其空间自相关范围从封育0年的流动沙丘(46.05m和33.63m)、封育11的流动沙丘(21.63m和17.25m)到封育20年的流动沙丘(26.12m和24.18m)先减小后增加,但均未超出我们的研究尺度50m,表现出不同大小的斑块形式分布的小尺度分布格局。由半方差函数及其参数和空间分布格局图分析得出,随着沙丘植被的恢复,植被特征的空间异质性在所研究的尺度上表现出先增大(封育0年到封育11年)后减小(封育11年到封育20年)的变化特点。  相似文献   

13.
The aim of this study was to detect vegetation change and to examine trophic interactions in a Sphagnum-dominated mire in response to raised temperature and nitrogen (N) addition. A long-term global-change experiment was established in 1995, with monthly additions of N (30 kg x ha(-1) x yr(-1)) and sulfur (20 kg x ha(-1) x yr(-1)) during the vegetation period. Mean air temperature was raised by 3.6 degrees C with warming chambers. Vegetation responses were negligible for all treatments for the first four years, and no sulfur effect was seen during the course of the experiment. However, after eight years of continuous treatments, the closed Sphagnum carpet was drastically reduced from 100% in 1995 down to 41%, averaged over all N-treated plots. Over the same period, total vascular plant cover (of the graminoid Eriophorum vaginatum and the two dwarf-shrubs Andromeda polifolia and Vaccinium oxycoccos) increased from 24% to an average of 70% in the N plots. Nitrogen addition caused leaf N concentrations to rise in the two dwarf-shrubs, while for E. vaginatum, leaf N remained unchanged, indicating that the graminoid to a larger extent than the dwarf-shrubs allocated supplemented N to growth. Concurrent with foliar N accumulation of the two dwarf-shrubs, we observed increased disease incidences caused by parasitic fungi, with three species out of 16 showing a significant increase. Warming caused a significant decrease in occurrence of three parasitic fungal species. In general, decreased disease incidences were found in temperature treatments for A. polifolia and in plots without N addition for V. oxycoccos. The study demonstrates that both bryophytes and vascular plants at boreal mires, only receiving background levels of nitrogen of about 2 kg x ha(-1) x yr(-1), exhibit a time lag of more than five years in response to nitrogen and temperature rise, emphasizing the need for long-term experiments. Moreover, it shows that trophic interactions are likely to differ markedly in response to climate change and increased N deposition, and that these interactions might play an important role in controlling the change in mire vegetation composition, with implications for both carbon sequestration and methane emission.  相似文献   

14.
黄河三角洲自然湿地植被的特征及演化   总被引:6,自引:0,他引:6  
在群落样方调查基础上对黄河三角洲自然湿地植被进行了分类、分布及演化研究.研究表明,黄河三角洲滨海湿地的自然湿地植被有2个植被亚型、7个群系、51个群丛,分盐生植被、水生植被和湿生植被3类.盐生植被、水生植被和湿生植被分别包括10、19和22个群丛类型.盐生植被和湿生植被的面积各约23万hmz,各占自然湿地总面积的44.76%,水生植被约7.83万hm2,占自然湿地总面积的10.48%.湿地植被的分布受距海远近、黄河河道摆动和人类活动的制约,盐生植被主要分布在三角洲外缘潮间带滩涂和潮上带外缘的微斜平地,湿生植被、水生植被主要分布在潮上带中上部的微斜平地、黄河入海河道2侧及古河道、决口扇形地间的河间洼地.受三角洲新生湿地不断形成等自然因素的影响,湿地植被发生顺行演替;受海岸侵蚀、黄河断流、风暴潮等自然灾害及人类活动的影响,湿地植被发生逆行演替和次生演替.湿地植被的顺行演替和次生演替使自然湿地的生态环境功能增强,逆行演替使自然湿地的生态环境功能减弱.  相似文献   

15.
Boone RB  Thirgood SJ  Hopcraft JG 《Ecology》2006,87(8):1987-1994
We used evolutionary programming to model innate migratory pathways of wildebeest in the Serengeti Mara Ecosystem, Tanzania and Kenya. Wildebeest annually move from the southern short-grass plains of the Serengeti to the northern woodlands of the Mara. We used satellite images to create 12 average monthly and 180 10-day surfaces from 1998 to 2003 of percentage rainfall and new vegetation. The surfaces were combined in five additive and three multiplicative models, with the weightings on rainfall and new vegetation from 0% to 100%. Modeled wildebeest were first assigned random migration pathways. In simulated generations, animals best able to access rainfall and vegetation were retained, and they produced offspring with similar migratory pathways. Modeling proceeded until the best pathway was stable. In a learning phase, modeling continued with the ten-day images in the objective function. The additive model, influenced 25% by rainfall and 75% by vegetation growth, yielded the best agreement, with a multi-resolution comparison to observed densities yielding 76.8% of blocks in agreement (kappa = 0.32). Agreement was best for dry season and early wet season (kappa = 0.22-0.57), and poorest for the late wet season (0.04). The model suggests that new forage growth is a dominant correlate of wildebeest migration.  相似文献   

16.
动态监测植被覆盖的时空演变,深入研究植被与气候变化和人类活动之间的响应关系,揭示区域环境状况的演变和变迁有着重要的现实意义。山东省植被覆盖率高,为了更好地了解自然因素和土地利用变化对山东地区植被的影响,研究利用MODIS-EVI、气象及城市化数据,通过分析2000—2008年7月月均EVI植被指数与月均温、降水及城市建成区面积之间的关系。得出如下结论:山东省的植被指数在其西部地区和南部地区值比较高;7月EVI指数与月平均气温存在相关系数r=-0.43的负相关关系,EVI指数与月降水间存在相关系数r=0.38的弱正相关关系,与城市建成区面积相关系数为0.30,表明山东地区植被指数的变化与气温的关联度要大于其与降水的关联度。此外,研究考虑了离海远近,将山东地区划为东部和西部地区。从地理位置来看,东部区域EVI值与降水之间的相关度普遍低于西部地区,而东部地区植被指数与气温的相关度要高于西部地区,东部地区在城市化进程加快的同时应更注意环境的保护与人工植被的种植。  相似文献   

17.
The hydrodynamics of flows through a finite length semi-rigid vegetation patch (VP) were investigated experimentally and numerically. Detailed measurements have been carried out to determine the spatial variation of velocity and turbulence profiles within the VP. The measurement results show that an intrusion region exists in which the peak Reynolds stress remains near the bed. The velocity profile is invariant within the downstream part of the VP while the Reynolds stress profile requires a longer distance to attain the spatially invariant state. Higher vegetation density leads to a shorter adjustment length of the transition region, and a higher turbulence level within the VP. The vegetation density used in the present study permits the passing through of water and causes the peak Reynolds stress and turbulence kinetic energy each the maximum at the downstream end of the patch. A 3D Reynolds-averaged Navier–Stokes model incorporating the Spalart–Allmaras turbulence closure was employed subsequently to replicate the flow development within the VP. The model reproduced transitional flow characteristics well and the results are in good agreement with the experimental data. Additional numerical experiments show that the adjustment length can be scaled by the water depth, mean velocity and maximum shear stress. Empirical equations of the adjustment lengths for mean velocity and Reynolds stress were derived with coefficients quantified from the numerical simulation results.  相似文献   

18.
《Ecological modelling》2007,201(2):233-242
There is increased interest in vegetation spatial pattern as an indicator of transition shifts following catastrophes. Much, however, remains unknown about the mechanisms that underlie spatial pattern formations. In this study, we examined how the spatial heterogeneity of species distributions in the grasslands of the Central Pyrenees and Middle Atlas Mountains is associated with plant species diversity and the importance of self-organizing processes in the control of pattern formations. In the grasslands of the Central Pyrenees and Middle Atlas, the spatial heterogeneity of species distributions increased along a habitat degradation gradient defined by an increase in bare soil. In Central Pyrenees grasslands, however, the increase in heterogeneity was associated with self-organizing bare soil formations, rather than the self-organizing distribution of plant species. In Middle Atlas grasslands, the increased heterogeneity of species spatial distributions was a consequence of the self-organizing capacity of the composing species; the increase in bare soil was randomly distributed. In the more heavily grazed grasslands (Middle Atlas), but not in the more lightly grazed and better preserved ecosystem (Central Pyrenees), plant species richness and diversity declined significantly with an increase in grazing pressure because fewer species were able to colonize empty space. On the contrary, the colonization of bare soil by new species increased the diversity and spatial organization of new colonizing species in Central Pyrenees grassland.  相似文献   

19.
Pollinator welfare is a recognized research and policy target, and urban greenspaces have been identified as important habitats. Yet, landscape-scale habitat fragmentation and greenspace management practices may limit a city's conservation potential. We examined how landscape configuration, composition, and local patch quality influenced insect nesting success across inner-city Cleveland, Ohio (U.S.A.), a postindustrial legacy city containing a high abundance of vacant land (over 1600 ha). Here, 40 vacant lots were assigned 1 of 5 habitat treatments (T1, vacant lot; T2, grass lawn; T3, flowering lawn; T4, grass prairie; and T5, flowering prairie), and we evaluated how seeded vegetation, greenspace size, and landscape connectivity influenced cavity-nesting bee and wasp reproduction. Native bee and wasp larvae were more abundant in landscapes that contained a large patch (i.e., >6 ha) of contiguous greenspace, in habitats with low plant biomass, and in vacant lots seeded with a native wildflower seed mix or with fine-fescue grass, suggesting that fitness was influenced by urban landscape features and habitat management. Our results can guide urban planning by demonstrating that actions that maintain large contiguous greenspace in the landscape and establish native plants would support the conservation of bees and wasps. Moreover, our study highlights that the world's estimated 350 legacy cities are promising urban conservation targets due to their high abundance of vacant greenspace that could accommodate taxa's habitat needs in urban areas.  相似文献   

20.
锡林郭勒地区植被覆盖的空间分布及年代变化规律分析   总被引:4,自引:0,他引:4  
以1981-2007年锡林郭勒盟归一化差异植被指数NDVI数据为基础,在Arcgis软件的支持下,通过图形代数、空间建模、图层叠加等方法,以植被指数的消长规律人手.分析锡林郭勒盟植被覆盖状况的总体分布状况及年代间的变化规律.结果表明:锡林郭勒盟植被覆盖状况总体上呈现图斑镶嵌交错、带状递变、自东向西依次递减的空间分布规律;总体来讲.20世纪80年代以来锡林郭勒草原植被的整体退化趋势一直在延续.荒漠草原区与典型草原区的生态地理界线都发生了明显的东移,21世纪初,相当于草原化荒漠状况的稀覆盖植被区的面积比20世纪80-90年代扩展了4~5倍,尽管低覆盖植被区的面积比例没有发生变化,但东部界线向东推移了1个经度的范围,密覆盖植被区面积极度萎缩,同时向东收缩了一个经度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号