首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
固定化微生物菌种的筛选与鉴定   总被引:2,自引:0,他引:2  
以菲、芘作为降解对象,对多种菌株进行筛选,从中挑选出降解率最高的两株菌,细菌和真菌各一株,并对其生长曲线进行测定,为菌种的固定化提供了一定的依据。同时对菌种进一步鉴定,细菌为动胶杆菌(Zoogloea sp.),在72h内对菲、芘的降解率为87.82%和49.22%;真菌为镰刀菌(Fuarium sp.),在216h内对菲、芘的降解率为93.32%和96.29%。  相似文献   

2.
从二连油田原油和油层水中筛选驯化出3株能够降解稠油的细菌DS1、DS2和DS3,通过16S rRNA基因序列比对发现DS1、DS2和DS3分别与溶血不动杆菌(Acinetobacter haemolyticus)、鹑鸡肠球菌(Enterococcus gallinarum)和耳炎短杆菌(Brevibacterium otitidis)相似度最高,分别为99%、99%和98%。研究结果表明,DS1对温度和pH有较强耐受性,DS3对盐度的适应性较好,2株菌最适的降解条件为温度35~40℃、盐度2%~5%(W/V)、pH为7~10。在5%的原油浓度下,复合菌对原油的30 d降解率达89.2%。经GC-MS分析,微生物降解作用后,除C29其他烃类几乎被全部降解。3株菌在7d内对500 g/L粘度为1 746 mPa·s(50℃)的稠油降粘率分别为49.1%、46.6%和49.0%,而复合菌对稠油的降粘效果高于单一菌株,其降粘率达到57.0%。  相似文献   

3.
从肥沃的土壤中经过分离获得14株降解纤维素的细菌,以菌株在纤维素刚果红平板中溶菌圈直径与菌落直径的比值为依据进行筛选,获得一株比值为4.5的菌株,编号为X62。采用DNS法对影响该菌产生纤维素酶活力的单因素进行了分析,并通过对其进行形态特征、生理生化特征测定以及16S rDNA序列分析,确定X62为梭形芽胞杆菌(Lysinibacillus fusiformis),将其命名为Lysinibacillus fusiformis X62。X62的16S rRNA序列GenBank登录号为JX198550。  相似文献   

4.
5.
为了获得有效降解有机磷农药乐果的微生物,采用北京大兴黄村施用过乐果的土壤为菌源,以乐果作为唯一碳源和能源分离得到5株对乐果有一定降解能力的细菌。正交实验结果显示:降解菌在温度为40℃,pH值为9,NaCl浓度为0 .5g/L条件下生长良好。  相似文献   

6.
从活性污泥中分离筛选得到1株N-乙烯基吡咯烷酮(NVP)高效降解菌株ZF1,根据菌株ZF1的形态特征、生理生化特性和16S rRNA基因序列同源性分析,将其初步鉴定为产脲节杆菌(Arthrobacter ureafaciens)。菌株ZF1能以NVP为唯一碳、氮源进行生长,并在60 h内完全降解200 mg·L-1的NVP。菌株ZF1降解NVP的最适环境条件为温度30℃,初始pH 7.0,NaCl浓度7 g·L-1。为了更好地实现其在实际废水中的应用,将菌株ZF1固定到竹炭上,扫描电镜观察表明ZF1能很好的附着在竹炭表面,且固定菌对NVP的降解效率明显高于游离菌。游离菌和固定菌对NVP的降解均符合一级动力学模型。重复利用5次后,固定菌对NVP的降解率仍能达到98%。  相似文献   

7.
净化烹饪油污微生物菌种的选育   总被引:4,自引:0,他引:4  
利用正交试验方法优化了净化烹饪油污菌种选育的环境和营养条件,即:油:20mL、NaNO3(2g/L):4mL、KH2PO4(0.5g/L):3mL、微量元素溶液(CuS04-5H200.03g/L,ZnSO4-7H2O0.1g/L,MnCl2-4H2O0.05g/L):1mL和温度37℃;而且得出氮源是影响菌体增长的最重要因素,温度是影响微生物降解的重要因素,而微量元素和磷源对菌种培育结果影响较小。在此优化条件下选育出了合适降解烹饪油污的c种子菌液,其每天可降解油22mg,L以上,并鉴定出主要的微生物是嗜水性气单孢菌(Aeromonas hydrophila 4AK4)、黄丝藻属(Tribonema)和多甲藻属(Peridinium)等菌体;分析了选育过程活性微生物、目标污染物和微生物的代谢产物三者之间的关系,发现所选微生物能利用油类物质作为碳源进行生长代谢。  相似文献   

8.
为了研究厌氧发酵启动阶段微生物菌群结构、数量变化情况与沼气产量的关系,分别对蔬菜废弃物和餐厨垃圾单一物料发酵进行分析,并测定pH值、挥发性脂肪酸(VFA)、氧化还原电位。结果表明,餐厨垃圾比蔬菜废弃物的启动时间长,但产气持久。蔬菜废弃物中细菌达峰值的时间早于餐厨垃圾,说明蔬菜废弃物中的有机质更利于微生物降解利用。两种原料中的微生物群落结构变化一致,启动阶段初期好氧和兼性厌氧细菌属优势菌,其中产酸菌增殖速率高于氨化细菌,是启动阶段降解有机质的主要菌群。随后厌氧细菌快速增殖,13增殖速率由不足20%增长到近100%并保持稳定。厌氧纤维素降解菌在启动阶段增殖较慢,原料中纤维素降解在厌氧发酵后期。原料液VFA中丁酸含量最多,最高浓度4.7mg/mL以上,占有机酸总量总量的46%以上,厌氧发酵类型为丁酸发酵型。  相似文献   

9.
利用平板分离技术,以甲硫醇为降解基质从农药废水生化池活性污泥中分离出1种异养菌和1种真菌。根据菌种的耐碱度实验和降解力实验,表明真菌的降解能力相当强,而按1:3比例配成的混合菌种降解效果最好。经分析,活性污泥菌胶团强大的吸附能力、真菌高效的分解能力以及混合菌群中各菌种的互生、共生关系起到了很好的协同作用,使降解效果大大提高。从菌落形态和显微镜观察到的菌体结构与形态情况看,初步确定该真菌属于子囊菌。  相似文献   

10.
固定化微生物修复石油污染土壤影响因素研究   总被引:4,自引:0,他引:4  
针对石油污染土壤修复,利用实验室已筛选的高效石油降解单菌SM-3,以天然有机材料为载体,吸附法制备固定化微生物。将游离与固定化微生物应用于室内花盆模拟修复石油污染土壤,对C/N/P、微生物投加量、石油含量、氧化剂和表面活性剂设计5因素4水平正交实验,探讨不同修复时期各影响因素的重要性顺序,最佳条件下各菌株的修复效果。结果表明,不同微生物在不同降解时期,各影响因素的重要性会发生变化;经过21 d的修复,固定化单菌SM-3石油降解率为22.77%,修复过程中,接种量是最重要的影响因素,营养元素N、P投加影响较大,表面活性剂和氧化剂影响次之。  相似文献   

11.
在含有真菌G 1培养液中加入染料厂污水排放口的污泥样品 ,从发生快速脱色降解染料的混合培养液中分离出 2株染料脱色细菌L_1和L_2 ,经API鉴定系统鉴定 ,确定菌株L_1为Enterobactersp .,菌株L_2为Peudomonassp .。研究比较了单一和不同组合混合的真菌G_1菌株 (Penicilliumsp .)、细菌L_1菌株 (Enterobactersp .)和L_2菌株 (Pseu domonassp .)对偶氮染料红M - 3BE(C .I .ReactiveRed 2 41)和蒽醌染料艳蓝KN -R(C .1.ReactiveBlue 19)的去除情况 ,发现G - 1真菌和 2种细菌组合的共培养体系对 5 0mg/L红M - 3BE和艳蓝KN -R处理 5h去除率达 10 0 %和 97.9% ,并且是以脱色降解作用为主 ,建立了染料脱色降解菌的最佳组合 ;进一步测定了此最佳共培养体系对另外 13种不同结构染料的脱色降解 ,结果表明 ,除对蒽醌染料R - 478脱色降解较差外 ,对其他染料均可在lh— 3d被完全脱色降解 ,表现出脱色降解染料的广谱性 ;向培养 4d的共培养体系中依次加入 8种染料 ,菌体可对染料连续脱色 ,维持脱色能力达 8d左右  相似文献   

12.
利用自制的改性聚丙烯酰胺为载体包埋苯酚降解菌,考查了该载体对细胞性能的影响,比较了4种固定化方法--改性聚丙烯酰胺法、聚丙烯酰胺法、海藻酸钙法和聚乙烯醇-海藻酸钙法包埋微生物细胞的优劣.实验结果表明,单体丙烯酰胺经改性后制得的改性聚丙烯酰胺对微生物细胞活性无影响.以其为载体固定苯酚降解菌,其细胞相对活性比聚丙烯酰胺法高出了42.4%;比海藻酸钙法高出了16.4%;比聚乙烯醇.海藻酸钙法高出了44.3%,表明改性聚丙烯酰胺包埋细胞更有利于细胞的增殖和活性恢复.重复应用实验表明,改性聚丙烯酰胺法得到的细胞凝胶,机械强度好,有弹性,可多次重复利用.改性聚丙烯酰胺作为细胞固定化载体其优点是交联速度快、聚合放热温度低、在侧链发生交联反应、抗水解能力强、无毒、凝胶寿命长.  相似文献   

13.
一株耐盐柴油降解菌的分离鉴定及其降解性能   总被引:2,自引:0,他引:2  
从某油田附近受石油污染土壤中分离出一株以柴油为惟一碳源的耐盐菌株LS1。通过对菌株的生理生化特性、菌体的形态观察及16S rDNA基因序列分析鉴定菌株LS1为假单胞菌属(pseudomonas)。该菌株可耐受的最高盐度(NaCl)和柴油浓度分别为6%~8%和12 000 mg/L。菌株生长的适宜pH和温度条件分别为6.0~8.0和28~36℃。在盐度为6%、pH为7.0、温度为32℃、菌种投加量为10%的条件下,初始浓度为3 000 mg/L的柴油经6 d降解后,去除率可达78.3%,加入适量外加碳源葡萄糖和蔗糖,可使降解率分别提高至92%和90%左右。菌株LS1的耐盐机理可能是通过在细胞内积累甜菜碱以调节菌株细胞内外渗透压平衡。投加甜菜碱可提高耐盐菌LS1在高盐环境下对柴油的降解效率。  相似文献   

14.
寒地黑土中阿特拉津降解菌的筛选及降解特性   总被引:4,自引:1,他引:4  
从长期施用阿特拉津的寒地黑土耕层(0~10 cm)取样。利用富集培养的方法,筛选到2株阿特拉津降解菌,编号Z9和Z42。Z9以阿特拉津为惟一碳氮源生长,Z42以阿特拉津为惟一氮源生长,15 d对阿特拉津的降解率分别为77.7%和65.6%。对其初步鉴定并对降解特性进行研究,结果表明,细菌Z9为微杆菌属(Microbacterium sp.),细菌Z42为节杆菌属(Arthrobacter sp.)。在室内进行降解条件优化实验,得出2株降解菌对100 mg/L阿特拉津的最佳降解条件为:温度30℃,Z9 pH值为7,Z42 pH值为8。  相似文献   

15.
固定化微生物技术是一种有效的废水生物处理技术 ,与普通生物处理法相比有许多优点。本文对固定化微生物技术、微生物的固定化方法、固定化载体及固定化技术在废水处理中的应用及研究进展状况进行了综述 ,并对其以后的发展作了探讨  相似文献   

16.
鉴定了从黑龙江扎龙湿地土壤中筛选出的一株抗铅镉的菌株,研究了其生物学特性和部分生理生化指标。利用16SrDNA序列分析鉴定其菌属,并且研究Pb2+、Cd2+、Pb2+/Cd2+、温度、pH、盐以及抗生素对菌株生长的影响。经鉴定,该菌株为阴沟肠杆菌属(Enterobacter cloacae)。该菌株对Pb2+的去除率和吸附率分别达到了70.34%和44.39%,对Cd2+的去除率和吸附率分别达到了40.54%和25.14%。该菌株最适生长温度为25℃,最适生长pH为7.0左右。此菌株对抗生素亚胺培南最敏感。随着盐、Pb2+、Cd2+、Pb2+/Cd2+混合浓度的升高,该菌株生长受到抑制。  相似文献   

17.
近年来,水体镉污染日益严峻,筛选超富集植物用于其治理具有重要意义。本研究以90个浮萍株系为实验材料,采用30 mg·L−1 的镉处理7 d,获得7个镉耐受优势株系。通过Blast比对和构建系统发育树鉴定该7个浮萍株系的种属,确定为Spirodela polyrhiza、Lemna japonica、Lemna minorLandoltia punctata。通过低质量浓度(0.5 mg·L−1)和高质量浓度(10 mg·L−1)镉处理7 d,进一步比较和研究了7个优势株系对镉的富集效果。结果表明,低浓度镉处理后,5个株系的镉富集量超过100 mg·kg−1;高浓度镉处理后,7个浮萍株系的镉富集量超过1 200 mg·kg−1,生物富集系数大于120,对水体中镉的去除率高于70%。其中,4号株系(L. japonica)为本次筛选出的最佳株系,其镉富集量、生物富集系数和对水体中镉的去除率分别达到2 834.30 mg·kg−1、283.43和82.50%。  相似文献   

18.
在筛选到的染料吸附脱色真菌和细菌的基础上 ,测定了温度和pH值对青霉G 1吸附和与细菌共培养脱色降解染料的影响。结果表明 ,16— 36℃下青霉G 1对艳紫KN B(C .I.Re .Vi.2 2 )和黄M 3RE(C .I.Re .Ye .14 5 )的吸附去除能力受温度影响不大 ,吸附 5h去除率在 97.1%— 98.7% ,而染料的脱色时间受温度影响较大 ,2 8— 36℃下脱色速度快 .青霉G 1对pH 3— 11染料水中染料的吸附去除率高 ,达 94 .9%— 97.8% ,对pH 13的吸附去除率低 ,仅为 5 5 .4 %和 5 6 .2 % ,从pH 5—13染料水中吸附染料的菌丝在与细菌共培养 5— 2 6h即完成了对染料的脱色 ,脱色速度较快  相似文献   

19.
以三嗪类除草剂莠灭净(AMT)为目标污染物,对比研究了紫外(UV)、紫外激活过硫酸盐(UV/PS)与紫外激活过一氧硫酸氢盐(UV/PMS)3种不同工艺对AMT的去除效果以及反应动力学模型。考察了底物初始浓度、氧化剂浓度、溶液初始pH和水中腐殖酸浓度对AMT降解的影响,并对反应中生成的主要自由基进行鉴定。结果表明,3种系统下AMT降解均符合拟一级反应动力学模型(R2 ≥ 0.93)。AMT在3种不同系统下降解效率基本遵循UV/PS > UV/PMS > UV规律。随着底物初始浓度的增加,AMT降解率减小,拟一级速率常数kobs减小;增加氧化剂的投加量可以促进AMT降解;溶液pH的改变对UV系统下AMT的降解影响较小,而在UV/PS系统下,随着pH的增大降解率逐渐减小,在UV/PMS系统中降解率则呈现先减小后增大的趋势;投加腐殖酸会抑制AMT的降解;pH为7时,UV/PS和UV/PMS系统中反应生成的自由基主要是·SO4-。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号