首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Prediction of machining forces involved in complex geometry can be valuable information for machine shops. This paper presents a mechanistic cutting force simulation model for ball end milling processes, using ray casting and voxel representation methods used in 3D computer graphics field. Using this method, instantaneous uncut chip cross sectional areas can be extracted, which can be used in cutting pressure coefficient extraction and machining simulation including machining forces and geometry of the workpiece. The major advantage of the proposed scheme is that it can simulate milling processes with arbitrary cutting tool geometry on a workpiece with complex geometry, using an algorithm with constant time complexity. A series of cutting experiments were carried out to validate the model.  相似文献   

2.
High-speed machining (HSM), specifically end milling and ball end cutting, is attracting interest in the aerospace industry for the machining of complex 3D aerofoil surfaces in titanium alloys and nickel-based superalloys. Following a brief introduction on HSM and related aerospace work, the paper reviews published data on the effect of cutter/workpiece orientation, also known as engagement or tilt angle, on tool performance. Such angles are defined as ±βfN and ±βf.Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force, and workpiece surface roughness when high-speed ball end milling Inconel 718™. Dry cutting was performed using 8 mm diameter PVD-coated solid carbide cutters with the workpiece mounted at an angle of 45° from the cutter axis.A horizontal downward (-βfN) cutting orientation provided the best tool life with cut lengths ∼50% longer than for all other directions (+βfN, +βf, and –βf). Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downward direction produced the least vibration. This contributed to improved workpiece surface roughness, with typical mean values of ∼0.4 μm Ra as opposed to ∼1.25 μm Ra when machining in the vertical downward (–βf) direction.  相似文献   

3.
Models for chatter prediction in machining often use a mechanistic force model that calculate the force as the product of a material dependent cutting constant and chip area. However, in reality, the forces are the result of complex interaction between the tool and the chip, and are affected by many factors. The effects of these complex, and often nonlinear, factors on the machining dynamics may only be included in chatter prediction if the chip formation process is simulated concurrently with simulation of the machining dynamics. In this paper, finite element simulation of the chip formation process is combined with simulation of chatter dynamics and the inter-relationship between the chip formation process and the chatter phenomenon is investigated. Mesh adaptation technique is used to simulate the chip formation within an FEM elastoplastic analysis with dynamic effects and frictional contact. The combined modeling predicts the occurrence of process damping at low cutting speeds, which other models are generally unable to predict.  相似文献   

4.
Geometric parameters and material properties are the two major categories of factors affecting burr formation in the milling process. Geometric parameters such as tool geometry, workpiece geometry, or process condition influence workpiece edge quality at the tool-chip interface. This study identifies a unified criterion to analyze burr formation for different tool engagements. The criterion exploits the exit order of cutting edges of the tool along the workpiece edge, which essentially includes the 3-D nature of the process. The criterion correlates the cutting mechanism and burr formation using the exit order sequence (EOS) as an approximation of chip flow angle. The impact of different possible exit order sequences on burr formation is analyzed. Previously observed phenomena are explained based on the EOS. Also, experiments are done with three different materials (with different ductilities) to analyze the impact of material properties on burr formation for a given EOS. Although burr sizes are different quantitatively with different material, the ranking of burr size for different EOS remained the same. An algorithm for the prediction of burr formation in face milling based on EOS is developed and tested and validated on two different profiles of an automotive part.  相似文献   

5.
This paper describes an analytical solution for turning and milling stability that includes process damping effects. Comparisons between the new analytical solution, time-domain simulation, and experiment are provided. The velocity-dependent process damping model applied in the analysis relies on a single coefficient similar to the specific cutting force approach to modeling cutting force. The process damping coefficient is identified experimentally using a flexure-based machining setup for a selected tool-workpiece pair (carbide insert-AISI 1018 steel). The effects of tool wear and cutting edge relief angle are also evaluated. It is shown that a smaller relief angle or higher wear results in increased process damping and improved stability at low spindle speeds.  相似文献   

6.
Orthogonal machining of single-crystal and coarse-grained (i.e., grain size considerably larger than the uncut chip thickness) materials has been a subject to many studies in the literature. The first part of this paper presents background on machining single-crystal materials, including experimental and modeling attempts. The second part briefly describes more recent modeling results from the authors, and presents new experimental results on planing and plunge-turning of single-crystal and coarse-grained aluminum using diamond tools. The experiments indicate that (1) cutting across grains of a coarse-grained aluminum workpiece produces distinctly varying forces and surface roughness from one grain to another, (2) plunge-turning and planing of single crystal aluminum provide equivalent force data for large rake angles, (3) forces alter between two distinct levels while cutting single crystals with small rake angles, and (4) with small rake angles, subsurface damage on single-crystal aluminum is extensive, reaching depths comparable to the uncut chip thickness.  相似文献   

7.
The ball-end milling process is widely used for generating three-dimensional sculptured surfaces with definite curvature. In such cases, variation of surface properties along the machined surface curvatures is not well understood. Therefore, this paper reports the effect of machining parameters on the quality of surface obtained in a single-pass of a ball-end milling cutter with varying chip cross-sectional area. This situation is analogous to generation of free form cavities, pockets, and round fillets on mould surfaces. The machined surfaces show formation of distinct bands as a function of instantaneous machining parameters along the periphery of cutting tool edge, chip compression and instantaneous shear angle. A distinct variation is also observed in the measured values of surface roughness and micro-hardness in these regions. The maximum surface roughness is observed near the tool tip region on the machined surface. The minimum surface roughness is obtained in the stable cutting zone and it increases towards the periphery of the cutter. Similar segmentation was observed on the deformed chips, which could be correlated with the width of bands on the machined surfaces. The sub-surface quality analysis in terms of micro-hardness helped define machining affected zone (MAZ). The parametric effects on the machining induced shear and residual stresses have also been evaluated.  相似文献   

8.
Parametric glass milling is presented to machine periodical circular channels on the glass plates for manufacturing micro testing devices. An end mill traverses in the linear motion during the workpiece rotation, which are synchronized by simultaneous control. The glass milling is controlled by 4 parameters in a mathematical model without NC program. Based on the principle of the parametric machining and the effect of the cutter axis inclination on the cutting process, a milling machine was developed to perform the parametric glass milling with an inclined ball end mill. The cutter axis inclination and the actual feed rate are associated with the critical feed rate, the maximum feed rate at which a crack-free surface is finished. As a machining example, a periodical circular channel was machined with a transparent surface by the simultaneous control.  相似文献   

9.
The generation of fine dust during dry machining is a serious problem both for the environment and for workers. During machining, the fine dust particles generated remain suspended in the air for long periods, during they can be inhaled by workers. The quantity of dust generated is influenced by factors such as material type and heat treatment condition, temperature, and the associated chip formation mode. The aim of this work is to discover how these parameters influence dust generation during dry machining, which could lead to the control of dust production in the future. The materials tested are the wrought 6061 and foundry A356 aluminum alloys and 70-30 brass. It is found that pre-cooling a workpiece material leads to changes in chip formation, in the reduction of cutting forces, and hence in a reduction in fine dust generation by at least 70%, depending on the materials and cutting conditions used. Also, pre-heating the workpiece increases chip ductility and dust production levels.  相似文献   

10.
The development and implementation of a microstructure-based finite element model for the machining of carbon fiber-reinforced polymer composites is presented. A new approach to interfacial modeling is introduced where the material interface is modeled using continuum elements, allowing failure to take place in either tension or compression. The model is capable of describing the fiber failure mode occurring throughout the chip formation process. Characteristic fiber length in the chips, and machining forces for microstructures with fibers orientated at 0°, 45°, 90°, and 135° are examined. For model validation purposes, the model-based machining performance predictions are compared to the machining responses from a set of orthogonal machining experiments. A parametric study is presented that identifies a robust tool geometry, which minimizes the effects of fiber orientation and size on the machining forces.  相似文献   

11.
A new approach for the machining of tantalum is presented. The new approach is a combination of traditional turning and cryogenically enhanced machining (CEM). In the tests, CEM was used to reduce the temperature at the cutting tool/workpiece interface, and thus reduce the temperature-dependent tool wear to prolong cutting tool life. The new method resulted in a reduction of surface roughness of the tantalum workpiece by 200% and a decrease of cutting forces by approximately 60% in experiments. Moreover, cutting tool life was extended up to 300% over that in the conventional machining.  相似文献   

12.
The paper presents a micro dimple machining on a cylinder surface with a two-flutes ball end mill. When the cutter axis is inclined and the depth of cut is less than the tool radius, non-cutting time, during which neither of the two cutting edges contacts the workpiece, appears in a rotation of the cutter. The rotation of the workpiece and the feed of the tool are controlled so that the cutting areas do not overlap each other. In order to incline the tool with respect to the tangential direction on the cylinder surface, the tool is located at a position oriented at 45° from the top of the cylinder. An analytical model is presented to control the shapes of the dimples with the cutting parameters. The presented machining is verified in cutting tests with measuring the shape and the profile of the dimples. Pre-machining operations are conducted to have a high cylindricity of the workpiece in longitudinal turning and polishing. The cutter runout of the tool is also eliminated by adjusting the orientation and the position of the tool in the collet chuck with measuring the cutting force. The micro dimples are machined accurately as they are simulated.  相似文献   

13.
Hydroxyapatite (HAP) is a widely used bio-ceramic in the fields of orthopedics and dentistry. This study investigates the machinability of nano-crystalline HAP (nHAP) bio-ceramic in end milling operations, using uncoated carbide tool under dry cutting conditions. Efforts are focused on the effects of various machining conditions on surface integrity. A first order surface roughness model for the end milling of nHAP was developed using response surface methodology (RSM), relating surface roughness to the cutting parameters: cutting speed, feed, and depth of cut. Model analysis showed that all three cutting parameters have significant effect on surface roughness. However, the current model has limited statistical predictive power and a higher order model is desired. Furthermore, tool wear and chip morphology was studied. Machined surface analysis showed that the surface integrity was good, and material removal was caused by brittle fracture without plastic flow.  相似文献   

14.
Single-point diamond turning (SPDT) experiments conducted on single-crystal 6-H silicon carbide (SiC) have shown chip formation similar to that seen in the machining of metals. The ductile nature of SiC is believed to be the result of a high-pressure phase transformation (HPPT), which generates a plastic zone of material that behaves in a metallic manner. This metallic behavior is the basis for using AdvantEdge, a metal machining simulation software, for comparison to experimental results.Simulations (2D) were carried out by matching the SPDT experimental conditions, which were conducted at nanometer (nm) depths of cut and varying tool rake angles. The experiments were performed by machining the circumference of the single-crystal wafer, thereby conforming to a 2D orthogonal cut (plunge cuts, or an infeed, achieved the depth of cut, and no cross feed was incorporated).The cutting and thrust forces generated from the experiments under ductile cutting conditions compared favorably with the simulation. As the depth of cut is decreased (250 nm, 100 nm, and 50 nm), the experimental conditions transition from a brittle to ductile behavior, with the 50 nm cuts being dominated by the ductile regime. Thus, the forces from the experiment and the simulations are in much better agreement for the smaller depths of cut, that is, below the critical depth of cut that establishes the ductile-to-brittle transition, as ductile conditions exist in both the simulation and experiments. The differences in the results that do arise are assumed to be primarily due to a springback of the material leading to increased rubbing on the flank face.  相似文献   

15.
Cost-effective machining of hardened steel components such as a large wind turbine bearing has traditionally posed a significant challenge. This paper presents an approach to machine hardened steel parts efficiently at higher material removal rates and lower tooling cost. The approach involves a two-step process consisting of laser tempering of the hardened workpiece surface followed by conventional machining at higher material removal rates with lower cost ceramic tools to efficiently remove the tempered material. The laser scanning parameters that yield the highest depth of tempered layer are obtained from a kinetic phase change model. Machining experiments are performed to demonstrate the possibility of higher material removal rates and improved tool wear behavior compared to the conventional hard turning process. Tool wear performance, cutting forces, and surface finish of Cubic Boron Nitride (CBN) tools as well as low cost ceramic tools are compared in machining of hardened AISI 52100 steel (~63 HRC). In addition, cutting forces and surface finish are compared for the laser tempering based turning and conventional hard turning processes. Experimental results show the potential benefits of the laser tempering based turning process over the conventional hard turning process.  相似文献   

16.
The crystallographic orientation or anisotropy is one of the main microstructural attributes strongly affecting the mechanical properties of materials. It is also an influential parameter to be considered during the manufacturing process especially for ultra-precision machining since it affects part quality, tool performance, and process productivity through material properties. In this study, a prediction toolset constituted of a Viscoplastic Self-Consistent model and machining process mechanics model is used to predict the texture evolution on the machined surface. The VPSC (Viscoplastic Self-Consistent) methodology which uses the mechanisms of slip and twinning that are active in single crystals of arbitrary symmetry was used. For this, an analytical model for the process mechanics is derived to understand the forces and stresses generated by the cutting tool at each workpiece point, then the strain and strain rate to capture the rate at which the material is deforming and finally the crystallographic orientations under various machining conditions. Experiments were performed on the orthogonal cutting of aluminum alloy AA-7075-T651 and the texture results were compared to model predictions.  相似文献   

17.
To achieve high precision and high productivity in machining sculptured surfaces, a new architecture for a five-axis CNC interpolator for machining ruled surfaces was developed and demonstrated on a milling machine. The objective of the five-axis interpolator is to continuously maintain the milling cutter axis in parallel with the straight lines of the ruled surface. The cutter position and orientation are calculated at each sampling period of the interpolator, and corresponding axial position commands are generated by an inverse kinematics algorithm. This real-time approach produces precise surfaces and requires substantially less machining time compared to the conventional off-line approach. Two new g-codes are also given in this paper for the new interpolator to produce part surfaces in CNC milling machines.  相似文献   

18.
Residual stress induced by machining is complex and difficult to predict, since it involves mechanical loads, temperature gradients or phase transformation in the generation mechanism. In this work, an experiment with a statistical design for the residual stress tensor was performed to investigate the residual stress profile on a machined surface. In order to understand the generation mechanism of residual stress in machining, three variables and workpiece materials were carefully selected to focus on the mechanical loads and avoid the temperature gradients and phase transformation on the machined surface. The mechanical loads considered here included the chip formation force at the primary shear zone and the plowing force at the tool tip–workpiece contact. Depths of cut and rake angles were selected to alter the chip formation force, and the tool tip radius was designed to emphasize the plowing effect. The workpiece material was aluminum 3003. The experimental results showed that the chip formation force provides basic shapes of the residual stress profile for a machined surface. It decides the depth of the peak residual stress below the surface. However, the plowing force was the dominating effect on the surface residual stress, causing high stresses on the surface. The plowing force can shift the surface stress from tensile to compressive. Additionally, the measured stress tensor proved that in-plane shear stress exists for the machined surface.  相似文献   

19.
A major obstacle that limits the productivity in machining operations is the presence of machine tool chatter. Machining is a dynamic process and chatter behavior depends upon a number of different aspects including spindle speeds, material properties, tool geometry, and even the location of tool respect to the rest of machine. Many of the traditional models used to predict chatter stability lobes assume that parameters such as natural frequency, stiffness, and cutting coefficients remain constant. In reality, these parameters vary and they affect the chatter stability. The uncertainty in these parameters can be taken into consideration by employing the robust stability theory into a two degree of freedom milling model. Utilizing the Edge theorem and the Zero Exclusion condition, a robust chatter stability model, based on the analytical chatter stability milling model, is developed. This improves the reliability compared to the projected pseudo single degree of freedom model. The method is verified experimentally for milling operations while considering a changing natural frequency and cutting coefficient.  相似文献   

20.
This paper presents a summary of recent developments in developing performance-based machining optimization methodologies for turning operations. Four major machining performance measures (cutting force, tool wear/tool life, chip form/chip breakability, and surface roughness) are considered in the present work, which involves the development and integration of hybrid models for single and multi-pass turning operations with and without the effects of progressive tool wear. Nonlinear programming techniques were used for single-pass operations, while a genetic algorithms approach was adopted for multi-pass operations. This methodology offers the selection of optimum cutting conditions and cutting tools for turning with complex grooved tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号