首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The cold and arid mountains and plateaus of High Asia, inhabited by a relatively sparse human population, a high density of livestock, and wildlife such as the iconic snow leopard Panthera uncia, are usually considered low risk for disease outbreaks. However, based on current knowledge about drivers of disease emergence, we show that High Asia is rapidly developing conditions that favor increased emergence of infectious diseases and zoonoses. This is because of the existing prevalence of potentially serious pathogens in the system; intensifying environmental degradation; rapid changes in local ecological, socio-ecological, and socio-economic factors; and global risk intensifiers such as climate change and globalization. To better understand and manage the risks posed by diseases to humans, livestock, and wildlife, there is an urgent need for establishing a disease surveillance system and improving human and animal health care. Public health must be integrated with conservation programs, more ecologically sustainable development efforts and long-term disease surveillance.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01599-7.  相似文献   

2.
This research developed a simulation-aided nonlinear programming model (SNPM). This model incorporated the consideration of pollutant dispersion modeling, and the management of coal blending and the related human health risks within a general modeling framework. In SNPM, the simulation effort (i.e., California puff [CALPUFF]) was used to forecast the fate of air pollutants for quantifying the health risk under various conditions, while the optimization studies were to identify the optimal coal blending strategies from a number of alternatives. To solve the model, a surrogate-based indirect search approach was proposed, where the support vector regression (SVR) was used to create a set of easy-to-use and rapid-response surrogates for identifying the function relationships between coal-blending operating conditions and health risks. Through replacing the CALPUFF and the corresponding hazard quotient equation with the surrogates, the computation efficiency could be improved. The developed SNPM was applied to minimize the human health risk associated with air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicated that it could be used for reducing the health risk of the public in the vicinity of the two power plants, identifying desired coal blending strategies for decision makers, and considering a proper balance between coal purchase cost and human health risk.
Implications:A simulation-aided nonlinear programming model (SNPM) is developed. It integrates the advantages of CALPUFF and nonlinear programming model. To solve the model, a surrogate-based indirect search approach based on the combination of support vector regression and genetic algorithm is proposed. SNPM is applied to reduce the health risk caused by air pollutants discharged from Gaojing and Shijingshan power plants in the west of Beijing. Solution results indicate that it is useful for generating coal blending schemes, reducing the health risk of the public, reflecting the trade-off between coal purchase cost and health risk.  相似文献   

3.
The society demands safer products with a better ecological profile. Regulatory criteria have been developed to prevent risks for human health and the environment, for example, within the framework of the European regulation REACH (Regulation (EC) No 1907, 2006). This has driven industry to consider the development of high throughput screening methodologies for assessing chemical biodegradability. These new screening methodologies must be scalable for miniaturisation, reproducible and as reliable as existing procedures for enhanced biodegradability assessment. Here, we evaluate two alternative systems that can be scaled for high throughput screening and conveniently miniaturised to limit costs in comparison with traditional testing. These systems are based on two dyes as follows: an invasive fluorescent dyes that serves as a cellular activity marker (a resazurin-like dye reagent) and a noninvasive fluorescent oxygen optosensor dye (an optical sensor). The advantages and limitations of these platforms for biodegradability assessment are presented. Our results confirm the feasibility of these systems for evaluating and screening chemicals for ready biodegradability. The optosensor is a miniaturised version of a component already used in traditional ready biodegradability testing, whereas the resazurin dye offers an interesting new screening mechanism for chemical concentrations greater than 10 mg/l that are not amenable to traditional closed bottle tests. The use of these approaches allows generalisation of high throughput screening methodologies to meet the need of developing new compounds with a favourable ecological profile and also assessment for regulatory purpose.  相似文献   

4.
Bioaerosols are a vehicle for the dissemination of human and animal pathogens. Because of land-filling costs and the ban on ocean dumping of municipal biosolids, land application of biosolids and animal manure is increasing all over the globe. There is no doubt that the creation, generation, and disposal of human and animal wastes increases the aerosolization potential of a wide variety of microbial pathogens and related pollutants. In an attempt to address public health issues associated with the land application of municipal biosolids, the U.S. National Research Council (Washington, D.C.) published a report on this issue in 2002. This paper focuses on the current information and technology gaps related to estimating the public health risks associated with bioaerosols during the land application of biosolids.  相似文献   

5.
《Chemosphere》1988,17(8):1487-1492
The objectives of regulatory practice have evolved from eliminating all risks of pesticides and toxic chemicals to the environment to reducing risks to acceptable levels. This change in philosophy requires the development of methods for quantifying the risks of toxicant exposure to the exposed biota. Ecological risk assessment models that are comparable those used in human health risk assessment have been developed using methods drawn from ecotoxicology, ecology, statistics, and mathematical modeling. Initial applications have shown that the regulation of pesticides and toxic chemicals can be substantially improved through the use of ecological risk assessment.  相似文献   

6.
Heinzl H  Mittlböck M  Edler L 《Chemosphere》2007,67(9):S365-S374
When estimating human health risks from exposure to TCDD using toxicokinetic and toxicodynamic models, it is important to understand how model choice and assumptions necessary for modeling add to the uncertainty of risk estimates. Several toxicokinetic models have been proposed for the risk assessment of dioxins, in particular the elimination kinetics in humans has been a matter of constant debate. For a long time, a simple linear elimination kinetics has been common choice. Thus, it was used for the statistical analysis of the largest occupationally exposed cohort, the German Boehringer cohort. We challenge this assumption by considering, amongst others, a nonlinear modified Michaelis-Menten-type elimination kinetics, the so-called Carrier kinetics. Using the area under the lipid TCDD concentration time curve as dose metrics, we model the time to cancer-related death using the Cox proportional hazards model as toxicodynamic model. This risk assessment set-up was simulated in order to quantify uncertainty of both the dose (TCDD body burden) and the risk estimates, depending on the use of the kinetic model, variations of carcinogenic effect of TCDD and variations of latency period (lag time). If past exposure is estimated assuming a linear elimination kinetics although a Carrier kinetics actually holds, then high exposures in reality will be underestimated through statistical analysis and low exposures will be overestimated, respectively. This bias will carry over on the estimated individual concentration-time curves and the therefrom derived TCDD dose metric values. Using biased dose values when estimating a dose-response relationship will finally lead to biased risk estimates. The extent of bias and the decrease of precision are quantified in selected scenarios through this simulation approach. Our findings are in concordance with recent results in the field of dioxin risk assessment. They also reinforce the general demand for the scheduled uncertainty assessments in risk analyses.  相似文献   

7.
Areas contaminated with heavy metals can pose major risks to human health and ecological environments. The aims of this study are to assess human health risk and pollution index for heavy metals in agricultural soils irrigated by effluents of stabilization ponds in Birjand, Iran. The results revealed that the levels of Cr, Mn, Zn, Fe, Cu, Cd, and Pb were in range of 70.3–149.65, 355–570, 31.15–98.45, 23,925–29,140, 22.75–25.95, 0.17–6.51, and 8.5–23.5 mg/kg in topsoils, respectively. Total hazard index values from heavy metals through three exposure routes for adults and children were 9.13E−01 and 1.10, respectively, indicating that there was non-carcinogenic risk for children. The total risk of carcinogenic metals (Cr, Cd, and Pb) through the three exposure routes for adults and children was 1.06E−04 and 9.76E−04, respectively, which indicates that the metals in the soil will not induce carcinogenic risks to these age groups. Pollution levels of heavy metals in soil samples including enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geo-accumulation index (Igeo) showed heavy metal contamination of agricultural soils. The results of the present study provide basic information about heavy metal contamination control and human health risk assessment management in the study area.  相似文献   

8.
The human health risk assessment is supported by methodology for utilizing toxic effects in animals consisting of carcinogenic and noncarcinogenic responses as a result of chronic, subchronic and acute exposures. One of the initial steps in a risk assessment activity involves the estimation of exposure levels. These estimates are typically based on either direct environmental measurements or predictions obtained from fate and transport models. The decision to develop assessment of risk from chronic exposure based on a nonthreshold model is made if a chemical demonstrates carcinogenic activity in animal bioassays and/or in human epidemiological studies. In the absence of any positive human epidemiologic data, it is assumed that a substance which induces a statistically significant carcinogenic response in animals has the probability to cause cancer in humans. The carcinogenic potential of 2,3,7,8-TCDD has been established based on chronic exposure in rodents. In addition, 2,3,7,8-TCDD has also been shown to be a liver cancer promoter in rodents. In the risk assessment on dioxins based on chronic exposure in experimental animals, 2,3,7,8-TCDD is regarded as a carcinogenic substance. Carcinogenic data from animal bioassays are utilized for the assessment of risk for the purpose of estimating the likelihood of 2,3,7,8-TCDD being carcinogenic for humans and to determine the magnitude of the potential impact on public health.  相似文献   

9.
Organochlorine pesticides (OCPs) are ubiquitous pollutants, and their presence in urban lakes is a concern for human and ecological health. Surface sediments in the East Lake, China, were collected in winter 2012 and summer 2013 to investigate concentrations, distribution patterns, possible sources, and potential ecological risks of OCPs in this area. The total concentrations of 14 OCPs ranged from 6.3 to 400 ng g?1 dry weight (dw) with an average concentration of 79 ng g?1 dw. The mean values of hexachlorocyclohexanes (HCHs) (α-, β-, γ-, and δ-HCH) and dichlorodiphenyltrichloroethanes (DDTs) (p,p’-DDE, p,p’-DDD, and p,p’-DDT) were 36 and 7.6 ng g?1 dw, accounting for 45 and 10 % of the total OCPs, respectively. The concentrations of OCPs in sediment samples collected in winter were significantly higher than those in summer, especially the HCHs, of which in winter were two times greater than summer. Composition analyses indicated that DDTs and endosulfan were mainly from historical contribution. Historical use of technical HCH and new input of lindane were probably the source of HCHs in the East Lake. Most sampling sites of HCHs and DDTs were found to have the potential ecological risk based on levels specified in the sediment quality standards.  相似文献   

10.
Health risks from air pollutants are evaluated by comparing chronic (i.e., an average over 1 yr or greater) or acute (typically 1-hr) exposure estimates with chemical- and duration-specific reference values or standards. When estimating long-term pollutant concentrations via exposure modeling, facility-level annual average emission rates are readily available as model inputs for most air pollutants. In contrast, there are far fewer facility-level hour-by-hour emission rates available for many of these same pollutants. In this report, we first analyze hour-by-hour emission rates for total reduced sulfur (TRS) compounds from eight kraft pulp mill operations. This data set is used to demonstrate discrepancies between estimating exposure based on a single TRS emission rate that has been calculated as the mean of all operating hours of the year, as opposed to reported hourly emission rates. A similar analysis is then performed using reported hourly emission rates for sulfur dioxide (SO2) and oxides of nitrogen (NOx) from three power generating units from a U.S. power plant. Results demonstrate greater variability at kraft pulp mill operations, with ratios of reported hourly to average hourly TRS emissions ranging from less than 1 to greater than 160 during routine facility operations. Thus, if fluctuations in hourly emission rates are not accounted for, over- or underestimates of hourly exposure, and thus acute health risk, may occur. In addition to this analysis, we also demonstrate an additional challenge when assessing health risk based on hourly exposures: the lack of human health reference values based on 1-hr exposures.

Implications: Largely due to the lack of reported hourly emission rate data for many air pollutants, an hourly average emission rate (calculated from an annual emission rate) is often used when modeling the potential for acute health risk. We calculated ratios between reported hourly and hourly average emission rates from pulp and paper mills and a U.S. power plant to demonstrate that if not considered, hourly fluctuations in emissions could result in an over- or underestimation of exposure and risk. We also demonstrate the lack of 1-hr human health reference values meant to be protective of the general population, including children.  相似文献   


11.

Background, aims and scope

Current studies have paid little attention to the dynamism in urban spatial expansion and its possible environmental and health effects or to the health effects of rapid urban environmental change at different points along the urbanisation gradient. This study adopts a public health ecology approach to systematically understand the relationship between urbanisation, urban environmental change and human health in China.

Method

Remote sensing image analysis, based on night light data at five different time periods in recent decades, was used to determine changes to the overall urban area. Through a review of the evidence on the relationships between environmental health, urbanisation and health, we advance a pathway framework for explaining urban human health ecology. The Spearman rank correlation coefficient was used to measure the correlation between disease prevalence and urbanisation level, adding a further dimension to a systemic understanding of urban health.

Results and conclusions

Urban areas have been increasing spatially, but unevenly, in recent decades, with medium and small cities also expanding rapidly in the past decade. Urbanisation and urban expansion result in changes to land use/coverage change, the urban environment and the residents?? lifestyle, which result in human health problems. Regions with the highest urbanisation level were more inclined to have a high prevalence of chronic disease in recent decades. An ecological public health approach provides insights into the multiple types of data which need to be routinely collected if human disease is not to become a barrier to social and economic development.  相似文献   

12.
Passive sampling devices (PSDs) sequester the freely dissolved fraction of lipophilic contaminants, mimicking passive chemical uptake and accumulation by biomembranes and lipid tissues. Public Health Assessments that inform the public about health risks from exposure to contaminants through consumption of resident fish are generally based on tissue data, which can be difficult to obtain and requires destructive sampling. The purpose of this study is to apply PSD data in a Public Health Assessment to demonstrate that PSDs can be used as a biological surrogate to evaluate potential human health risks and elucidate spatio-temporal variations in risk. PSDs were used to measure polycyclic aromatic hydrocarbons (PAHs) in the Willamette River; upriver, downriver and within the Portland Harbor Superfund megasite for 3 years during wet and dry seasons. Based on an existing Public Health Assessment for this area, concentrations of PAHs in PSDs were substituted for fish tissue concentrations. PSD measured PAH concentrations captured the magnitude, range and variability of PAH concentrations reported for fish/shellfish from Portland Harbor. Using PSD results in place of fish data revealed an unacceptable risk level for cancer in all seasons but no unacceptable risk for non-cancer endpoints. Estimated cancer risk varied by several orders of magnitude based on season and location. Sites near coal tar contamination demonstrated the highest risk, particularly during the dry season and remediation activities. Incorporating PSD data into Public Health Assessments provides specific spatial and temporal contaminant exposure information that can assist public health professionals in evaluating human health risks.  相似文献   

13.
Concentrations of some metals (Cd, Cu, As, Hg, Pb) and polychlorinated biphenyls (PCBs) were investigated in edible marine organisms from different trophic levels and feeding behaviour like bivalve molluscs (Mytilus galloprovincialis and Chlamys glabra), gastropod molluscs (Hexaplex trunculus) and some commercial species of fish (Trachurus trachurus, Boops boops, Sarpa salpa and Gobius niger). These species were collected in the first inlet of the Mar Piccolo of Taranto (Ionian Sea, Southern Italy), classified as ‘Site of National Interest’ established by National Law 426 (1998) and included in the ‘National Environmental Remediation and Restoration Projects’. The aim of this work was to investigate contamination levels and public health risks, associated with consuming seafood harvested from these areas. Moreover, in this study, was also estimated the weekly intake in children and adults, both for metals and PCBs. In comparison with the permissible limits set by EC Regulations, Cd and Pb levels were over the limit in the H. trunculus (in all sampling stations) and in the fish T. trachurus respectively. PCBs were over the legal limit in all sampled species with the exception of M. galloprovincialis (station 1), C. glabra and the herbivorous fish S. salpa. In the fish T. trachurus, for example, the concentration of six target PCBs was about five times higher than the EC limit. The estimated intakes of those trace elements included in this study through seafood consumption by the population exceed the provisional tolerable weekly intake recommended by the Joint FAO/WHO Expert Committee on Food Additives for Cd and Hg in the H. trunculus and T. trachurus, especially in children. Moreover, hazard quotience (HQ) for Hg and Cd was >1 in the children for T. trachurus and H. trunculus consumption. As regard non-dioxin-like PCB (NDL-PCB), the estimated intake were always above the ‘provisional guidance value’ (70 ng/kg body weight) Arnich et al. (Regul Toxicol Pharm 54: 287–2, 2009) for all sampled organism. Thus, health risks due to the dietary Hg, Cd and PCBs intake, especially for children, cannot be excluded. Therefore, an extended remediation programme is necessary to safeguard marine ecosystem, human health and, not less important, the economic activities, in the Taranto marine area.  相似文献   

14.
This study suggested the first Korean site-specific ecological surface water quality criteria for the protection of ecosystems near an artillery range at a Korean military training facility. Surface water quality (SWQ) criteria in Korea address human health protection but do not encompass ecological criteria such as limits for metals and explosives. The first objective of this study was to derive site-specific SWQ criteria for the protection of aquatic ecosystems in Hantan River, Korea. The second objective was to establish discharge criteria for the artillery range to protect the aquatic ecosystems of Hantan River. In this study, we first identified aquatic organisms living in the Hantan River, including fishes, reptiles, invertebrates, phytoplankton, zooplankton, and amphibians. Second, we collected ecotoxicity data for these aquatic organisms and constructed an ecotoxicity database for Cd, Cu, Zn, TNT, and RDX. This study determined the ecological maximum permissible concentrations for metals and explosives based on the ecotoxicity database and suggested ecological surface water quality criteria for the Hantan River by considering analytical detection limits. Discharge limit criteria for the shooting range were determined based on the ecological surface water quality criteria suggested for Hantan River with further consideration of the dilution of the contaminants discharged into the river.  相似文献   

15.
Ellis JB 《Chemosphere》2000,41(1-2):85-91
Alternative risk assessment approaches are reviewed for the evaluation of the ecological status and health of urban receiving waters subject to intermittent pollution events. Performance-based criteria founded on exceedance probabilities and related to the end-of-pipe discharge of chemical-specific substances comprise the conventional basis for setting regulatory standards in both North America and Europe. The difficulties and limitations of this approach, particularly in identifying realistic chronic, sub-lethal toxic risks arising from complex effluents are discussed. The potential role of Toxicity Based Criteria (TBC) for setting ecological consent limits for stormwater effluents is considered and the capabilities and limitations of Direct Toxicity Assessment (DTA) are identified. The inability of DTA procedures to satisfactorily evaluate chronic, sub-lethal risks has led to increasing interest in the potential use of in-situ biomarker techniques for the fingerprinting of stress-response properties as a means of diagnosing risk assessment for integrated urban runoff management.  相似文献   

16.

This study is based on self-reported information collected from selected farmers of Vehari District, Punjab, Pakistan, to determine their technical knowledge and awareness about pesticide use and associated environmental and health risks. Moreover, soil contamination by routinely used persistent organochlorine pesticide, endosulfan, was also evaluated. Survey data revealed very low literacy rate (on an average 9th grade education) and technical knowledge (almost missing) of the farmers in Vehari District. The farmers are unable to fully read and understand the instructions about the use of pesticide marked on the containers. They are not fully aware of pesticide persistence and toxicity (73%), unable to identify cotton pests and diseases (86%), and do not know which crop to grow in cotton adjacent fields (100%). Data also revealed that the farmers (100%) do not follow safety measure during pesticide application and are unaware of pesticide toxicity symptoms in human as well as the basic first-aid practices (89%).

Poor literacy rate and lack of technical knowledge of farmers in Vehari regarding pesticide use and handling are posing serious environmental and health risks among the local inhabitants, particularly among farmers. Soil analysis results showed that concentration of α- and β-endosulfan ranged from 0–14 to 0–14.64 μg/mg, respectively. Principal component analysis showed that soil organic matter is the key soil parameter controlling the occurrence and fate of endosulfan under sandy loam soil conditions of Vehari District. There is a serious need of improving technical and environmental knowledge of farmer about pesticide risks on human health in the studied area, in particular, and the entire country in general. Findings are of great use for policymaking in Pakistan to minimize pesticide risks in Pakistan.

  相似文献   

17.
Currently, more than half of the biosolids produced within the USA are land applied. Land application of biosolids introduces organic contaminants into the environment. There are potential ecological and human health risks associated with land application of biosolids. Biosolids may be used as a renewable energy source. Nutrients may be recovered from biosolids used for energy generation for use as fertilizer. The by-products of biosolids energy generation may be used beneficially in construction materials. It is recommended that energy generation replace land application as the leading biosolids management strategy.  相似文献   

18.
Bruce K. Hope 《Chemosphere》1995,30(12):2267-2287
In instances where empirical measurements are not practicable, ecological risk assessments may rely on site-specific exposure models for estimating uptake of chemical contaminants. This paper presents, based on a review of the literature, a compilation of relatively simple quantitative models that can be combined to produce site- and species-specific first-order estimates of uptake of chemicals from abiotic media. These models have proved useful in providing order-of-magnitude estimates for screening and sample program design purposes. This paper intended as both a practical guide for choosing models to estimate terrestrial wildlife exposures and as a step toward development of a more comprehensive and standard approach to exposure assessment in terrestrial ecological receptors.  相似文献   

19.
Recent years have seen considerable improvement in water quality standards (QS) for metals by taking account of the effect of local water chemistry conditions on their bioavailability. We describe preliminary efforts to further refine water quality standards, by taking account of the composition of the local ecological community (the ultimate protection objective) in addition to bioavailability. Relevance of QS to the local ecological community is critical as it is important to minimise instances where quality classification using QS does not reconcile with a quality classification based on an assessment of the composition of the local ecology (e.g. using benthic macroinvertebrate quality assessment metrics such as River InVertebrate Prediction and Classification System (RIVPACS)), particularly where ecology is assessed to be at good or better status, whilst chemical quality is determined to be failing relevant standards. The alternative approach outlined here describes a method to derive a site-specific species sensitivity distribution (SSD) based on the ecological community which is expected to be present at the site in the absence of anthropogenic pressures (reference conditions). The method combines a conventional laboratory ecotoxicity dataset normalised for bioavailability with field measurements of the response of benthic macroinvertebrate abundance to chemical exposure. Site-specific QSref are then derived from the 5%ile of this SSD. Using this method, site QSref have been derived for zinc in an area impacted by historic mining activities. Application of QSref can result in greater agreement between chemical and ecological metrics of environmental quality compared with the use of either conventional (QScon) or bioavailability-based QS (QSbio). In addition to zinc, the approach is likely to be applicable to other metals and possibly other types of chemical stressors (e.g. pesticides). However, the methodology for deriving site-specific targets requires additional development and validation before they can be robustly applied during surface water classification.  相似文献   

20.
Hung CL  Lau RK  Lam JC  Jefferson TA  Hung SK  Lam MH  Lam PK 《Chemosphere》2007,66(7):1175-1182
The potential health risks due to inorganic substances, mainly metals, was evaluated for the two resident marine mammals in Hong Kong, the Indo-Pacific Humpback Dolphin (Sousa chinensis) and the Finless Porpoise (Neophocaena phocaenoides). The stomachs from the carcasses of twelve stranded dolphins and fifteen stranded porpoises were collected and the contents examined. Concentrations of thirteen trace elements (Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mn, Ni, Se, V and Zn) were determined by inductively coupled plasma mass spectrometer (ICP-MS). An assessment of risks of adverse effects was undertaken using two toxicity guideline values, namely the Reference Dose (RfD), commonly used in human health risk assessment, and the Toxicity Reference Value (TRV), based on terrestrial mammal data. The levels of trace metals in stomach contents of dolphins and porpoises were found to be similar. Risk quotients (RQ) calculated for the trace elements showed that risks to the dolphins and porpoises were generally low and within safe limits using the values based on the TRV, which are less conservative than those based on the RfD values. Using the RfD-based values the risks associated with arsenic, cadmium, chromium, copper, nickel and mercury were comparatively higher. The highest RQ was associated with arsenic, however, most of the arsenic in marine organisms should be in the non-toxic organic form, and thus the calculated risk is likely to be overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号